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Abstract

Private Information Retrieval (PIR) schemes allow a user to download a record

from a database without disclosing the identity of the desired record. Downloading

the entire database is clearly a solution, but it could be highly ine�cient when the

database is large. In the classical case, PIR is performed on a database replicated

among non-communicating servers, resulting in a high storage cost. This motivates

the use of erasure codes, where only a fraction of the database is stored in each

server, and the design of code-based PIR. However, many erasure codes su↵er from

needing a large download, sometimes the entire database, to repair a failed server.

In this thesis we consider code-based PIR that also allows e�cient repair, and

construct several PIR schemes using regenerating codes, a class of codes providing

e�cient repair.

Furthermore, we explore a multi-message scenario when a user wants to

retrieve multiple records. Obviously, the user can repeatedly use a single-message

PIR scheme, but we wish for a more e�cient way. We propose a general

multi-message PIR (MPIR) model for a particular class of regenerating codes and

derive relationships between costs of storage, retrieval and repair. We extend our

result on single-message PIR to build MPIR schemes that lie on the

repair-retrieval trade-o↵ curve. Additionally, we include an application of an

averaging technique which was first introduced by Blackburn, Etzion and

Paterson to improve retrieval rate for existing PIR schemes in replicated

databases. We answer an open question about application of the technique to

coded databases by applying the technique to our MPIR schemes. We also give an

improvement factor in general when applying the technique to existing code-based

PIR schemes in a similar way, and lastly propose a PIR scheme achieving the best

improvement factor.
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Chapter 1

Introduction

Preserving the identity of data retrieved from public online databases has captured

a growing research interest during the past decades. A private information retrieval

(PIR) scheme, introduced by Chor et al. [1], allows a user to download records from

a database without revealing the identity of desired records to the database server.

There are many real-world applications: notable examples include investors who

attempt to keep the identity of interested stocks secret to preserve the integrity of

the market price, or researchers who are in search of existing patents and do not

want to disclose their research topic. PIR can be divided into two main classes in

regard to the privacy guarantees they provide. The first class is computational PIR

where privacy is established against computationally bounded servers; therefore,

computing the identity of retrieved records is beyond the computational limits

of the servers (see more work on computational PIR in [2–9]). The second class

is information-theoretic PIR where privacy is established against computationally

unbounded servers. In this thesis, we only consider information-theoretic PIR, and

will refer to it simply as PIR.
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1.1 Motivation

A trivial solution for PIR is that the user can download the entire database and

examine the information of their interest. This is highly ine�cient. However, in

the case of the database stored on a single server, it is proved in [1] that this is

essentially the best possible solution. Accordingly, we consider PIR in the database

stored on multiple servers. We call infrastructure that can store a large amount of

information on a network of servers distributed storage systems (DSSs).

PIR schemes in DSSs using replication, where the whole database is stored

on each server, are called replication-based PIR schemes. In the original setting

for replication-based PIR [1], there are n non-colluding servers, where each server

stores the whole database, and the length of each record in the database is just one

bit. The following example will illustrate a basic idea of how PIR schemes work.

Suppose that we have three records X1
, X

2
, X

3 2 F2 replicated across two servers,

and a user wants to download the record X
1. The user generates a 3-bit vector

(u1, u2, u3) uniformly at random. Servers 1 and 2 are given the queries (u1, u2, u3)

and (u1 + 1, u2, u3), and then requested to return

u1X
1 � u2X

2 � u3X
3
,

and

(u1 + 1)X1 � u2X
2 � u3X

3
,

respectively. Hence the user can reconstruct the record X
1 by computing the XOR

of responses from both servers. Instead of downloading all three bits in order to

obtain one bit of information, the user only downloads two bits. The minimisation

of download cost is the focus of much of the literature and also of this work. More

work on replication-based PIR can be found in the survey [10] and references therein.
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The downside of replication-based PIR schemes is the high storage cost (for

instance, in the previous example, the savings in downloading are at the expense of

doubling the storage). This motivates the use of erasure codes in DSSs, where only

a fraction of the whole database is stored in each server, resulting in lower storage

cost. PIR schemes in DSSs using erasure codes are called code-based PIR schemes.

The literature review on code-based PIR will be found in Chapter 4.

Additionally, PIR has been extended to many variations. For example, PIR with

colluding servers where the servers can share information [11–14], and symmetric

PIR (SPIR) where on top of the privacy of the desired record, the user also learns

nothing about undesired records [15, 16]. One interesting scenario is when a user

wants to retrieve multiple records without having to repeatedly use a PIR scheme

that can retrieve one record (we refer this as a single-message scheme) multiple

times. PIR schemes that can retrieve multiple records at a time are called multi-

message PIR (MPIR) schemes.

An important problem in DSSs using erasure codes is what happens during

a server failure. This is called a repair problem. For example, in the Facebook

warehouse, approximately 1% of servers are unavailable per day, and 10-20% of

the total average of 2 PB/day network tra�c is for the repair. The database in

the Facebook warehouse is encoded by [14,10] Reed-Solomon codes [17]. When an

[n, k] MDS code (of which Reed-Solomon codes are an example) is used in DSSs,

a conventional method to repair a failed server requires a connection to some set

of k servers to download all data for the reconstruction of the entire database, so

we can extract the data that was stored in the failed server. Downloading these

amounts of data to only repair a single server is extravagant, paving the way for

a new concept of regenerating codes introduced by Dimakis et al. [18], which is a

class of codes that provides reliability of data and e�cient repair of failed servers

in DSSs. (See more literature on regenerating codes in this survey [19].)
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In recent literature, the repair problem in DSSs using erasure codes and PIR in

DSSs using erasure codes are considered separately. This motivates our work in this

thesis by addressing these problems in an integral manner. We aim to investigate

the repair problem on code-based PIR. We introduce a new metric called repair

ratio to measure the e�ciency of repair. We construct single-message PIR schemes

using regenerating codes in order to minimise the repair ratio when a server failure

occurs in the system. Then, we explore a multi-message PIR problem. We propose

a general model for MPIR in DSSs using regenerating codes, and analyse a trade-o↵

between download cost and repair ratio under this model. Afterwards, we construct

MPIR schemes using regenerating codes that attain the trade-o↵ between download

cost and repair ratio in this model. Furthermore, we discuss an averaging technique,

which is first introduced by Blackburn et al. [20] for replication-based PIR. This

technique is used to transform a PIR scheme into a new scheme with an improved

download cost. Our contribution is the first application of the averaging technique

on code-based PIR.

1.2 Thesis Structure

We summarise the contents of the thesis in this section. Our original contributions

appear in Chapters 3, 5, 6, 7 with the main contributions on PIR constructions and

analyses in Chapters 5, 6 and 7. This thesis is structured as follows.

An overview of codes for DSSs is given in Chapter 2. We recall basic knowledge

in coding theory including linear codes and MDS codes, and discuss how to use

these codes in DSSs. We explain the concept of regenerating codes, and introduce

minimum bandwidth regenerating (MBR) codes and minimum storage regenerating

(MSR) codes, which are classes of regenerating codes that are optimal in terms of the

storage and repair bandwidth trade-o↵. We also present the explicit constructions
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of product-matrix regenerating codes from [21], which are practical regenerating

codes as they use a compact matrix presentation of codes with e�cient encoding

and decoding algorithms.

In Chapter 3, we formally explain the setting for code-based PIR schemes. We

contribute a general model that explains the encoding of the database in code-based

PIR, so we can compare the e�ciency of schemes in related works under the same

encoding model. We present e�ciency metrics to measure storage cost and retrieval

cost of PIR schemes. We also define a new metric to measure the e�ciency of repair.

We subsequently discuss related literature in code-based PIR with non-colluding

servers in Chapter 4.

In Chapter 5, we propose various single-message PIR schemes using the product-

matrix minimum bandwidth regenerating (PM-MBR) codes and product-matrix

minimum storage regenerating (PM-MSR) codes from [21] in the DSSs. The use of

regenerating codes reduces the repair cost; hence our schemes obtain more e�cient

repair compared to schemes using MDS codes.

Chapter 6 is concerned with the multi-message scenario. We present a general

MPIR model where the product-matrix regenerating codes are used for storage.

We discover a trade-o↵ between download cost and repair ratio under the proposed

model. After that, we modify our single-message PIR schemes from Chapter 5 to

multi-message PIR schemes that lie on the trade-o↵ curve between download cost

and repair cost. Note that our work is the first to explore multi-message PIR with

regenerating codes.

In Chapter 7, we answer the open question (Q8) of [20] by introducing the

application of an averaging technique from [20] on coded databases. We detail

how to apply the technique to our MPIR scheme using PM-MBR codes to

improve retrieval rates. We then provide an improvement factor in general when

the technique is applied to other existing PIR schemes in code-based PIR in a

12



similar way. We construct a PIR scheme using [2k, k] MDS codes that achieves

the highest improvement factor after applying the averaging technique.

Lastly, we summarise our contributions and propose possible future research

directions in Chapter 8.
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Chapter 2

An Overview of Codes for

Distributed Storage

It is important to be able to communicate reliably through noisy communication

channels. Coding theory was first studied to deal with this problem. The key

idea is to add some redundancy to the encoded message to enable the recovery of

the sent message in the presence of errors. An interesting application of coding

theory is in data storage. Distributed storage systems (DSSs) are infrastructure

that can store a large amount of information on a network of servers in which

redundancy is introduced to ensure reliability and availability of data when server

failures inevitably occur. Data can be stored in DSSs with replication, however

erasure codes can be used in DSSs to improve storage overhead. In this chapter,

we briefly present an overview of codes for distributed storage, including important

definitions and properties of relevant classes of codes that will be used in this thesis.
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2.1 Fundamentals

In this section, we review fundamentals on coding theory. Most of the material of

this section can be found in greater detail in [22].

Definition 2.1. An alphabet A is a finite set of symbols. A code C of length n is a

nonempty subset of An. A column vector in C is called a codeword. A dimension

of a code C, denoted by dim(C), is log|A| |C|, and a code rate Rc is
dim(C)

n
.

Definition 2.2. An array code over an alphabet A is defined as a set of nonempty

subset of Mn⇥↵(A), where Mn⇥↵(A) is the set of n⇥ ↵ matrices over A. Hence, a

codeword of an array code is an n⇥ ↵ matrix over A.

Two common models of communication channels that have been used in coding

theory are the q-ary symmetric channel and q-ary erasure channel.

Definition 2.3. The q-ary symmetric channel (q-SC) is a communication channel

where the set of inputs and outputs in the channel are an alphabet of size q with

the probability of error p. That is, when each transmitted symbol is considered

independently, the probability that the transmitted symbol is correct is 1� p, and

the probability that the transmitted symbol is one of the other q � 1 symbols is

p

q�1
.

Definition 2.4. The q-ary erasure channel (q-EC) is a communication channel

where a transmitted symbol has probability p of not being received (“erased”) and

probability 1�p of being received correctly. The set of inputs is an alphabet of size

q and the set of outputs is the set of inputs with the extra symbol e for the erasure

symbol. Each symbol is erased independently with probability p. The receiver is

aware when a symbol is erased, and hence the positions of the errors are known.

A code can be considered as a set of possible transmitted messages that can

circumvent errors or erasures in noisy channels. We usually refer to a code that
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can detect and correct errors in a q-SC as an error-correcting code, and a code

that can manage with erasure symbols in a q-EC as an erasure code. In DSSs, it is

possible to have errors in the information stored on the servers, so here we regard

server failures as erasures. Erasure codes could be used in DSSs by considering each

position in a codeword as a content of a server. This ensures the reliability of data

while decreasing the storage overhead of replicated servers.

Next, we introduce the Hamming distance, which is the measurement of distance

between codewords.

Definition 2.5. The Hamming distance dH(·, ·) between two vectors of length n is

the number of positions where they are di↵erent.

We use the Hamming distance to measure the minimum distance of a code,

which is the smallest distance between di↵erent codewords. The minimum distance

can be used to determine the capability of the code of detecting or correcting the

errors during data transmission.

Definition 2.6. The minimum distance d of a code C is defined as

d = minx,y2C,x6=y dH(x, y).

Theorem 2.7. A code C can detect t errors if and only if d � t + 1, and C can

correct t errors if and only if d � 2t+ 1.

Note that if there are s erasure symbols in a transmitted message, then the set

of codewords restricted to unerased coordinates has the minimum distance at least

d � s, so by Theorem 2.7, it can correct up to bd�s�1

2
c errors. Hence, we have the

following corollaries.

Corollary 2.8. A code C can correct any combination of t errors and s erasure

symbols if d � 2t+ s+ 1.
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Corollary 2.9. A code C can correct s erasure symbols if d � s+ 1.

The main work in coding theory is to construct “good” codes that have high

rate and large minimum distance, so they correct many errors while using as little

redundancy as possible. There are various bounds on parameters of codes, and we

give an example of bounds, namely the Singleton bound, in next section.

2.1.1 Linear Codes

In this thesis, we only consider linear codes which is an important class of codes

that is e↵ective for practical applications. The alphabet in linear codes is a finite

field Fq of size q where q is a prime power. Let Fn

q
be the vector space of column

vectors of length n over Fq.

Definition 2.10. A code C is a linear code if any linear combination of two

codewords is also a codeword, that is, if x, y 2 C ⇢ Fn

q
, then ↵x + �y 2 C for any

↵, � 2 Fq.

By definition, a linear code is a subspace of Fn

q
, thus there always exists a basis

for a linear code. Note that a basis of a linear code is not unique, but the size of

a basis is, and that is the dimension of the code C. We refer to a linear code C

over a finite field Fq of length n with dimension k and minimum distance d as an

[n, k, d]q code. We sometimes omit parameters d or q.

Theorem 2.11. For a linear code C, dim(C) = k if and only if |C| = q
k.

There are two ways to represent a linear code. The first is by a generator matrix.

Definition 2.12. Let C be an [n, k]q linear code. A generator matrix G is an n⇥k

matrix such that its k columns form a basis for the code C.

17



By this definition, each codeword in C can be written as a linear combination

of columns from a generator matrix G, so a linear code C can be described as

C = {Gx | x 2 Fk

q
}.

Notice that a code C provides an encoding function via a generator matrix G

which transforms a message x of length k to a codeword Gx 2 C of length n. The

redundancy of the code C is defined as n � k. A code is said to be systematic

if an encoded message contains the original data in an uncoded form. This also

indicates how a linear code is used in a DSS as a large amount of information can

be divided to k packets to be encoded via its generator matrix into n packets stored

in n di↵erent servers.

Since the columns of a generator matrix G form a basis for C, we can use

elementary column operations to transform G to

G
0 =

2

4Ik
A

3

5 ,

where Ik is the k⇥ k identity matrix, and A is an (n� k)⇥ k matrix. This is called

a generator matrix in the standard form. Note that a code C is systematic when

a generator matrix in the standard form is used in the encoding since the original

message is the first k symbols in the encoded message.

Definition 2.13. Let C ⇢ Fn

q
be a linear code. Its dual code C

? is the set of all

vectors which are orthogonal to every vector in C; that is,

C
? = {v 2 Fn

q
| vcT = 0, 8c 2 C}.

Next we define a parity-check matrix, the second way to describe a linear code.

18



Definition 2.14. A parity-check matrix H of an [n, k]q linear code C is an n⇥(n�k)

generator matrix for the dual code C
?.

Therefore, we can define a linear code C via a parity check matrix H as

C =
n
c 2 Fn

q
| cT ·H = 01⇥(n�k)

o
,

and it is then obvious that GT ·H = 0. Furthermore, it can be shown that if

G =

2

4Ik
A

3

5

is a generator matrix in the standard form of an [n, k]q linear code C, then

H =

2

4�A
T

In�k

3

5 ,

is a parity-check matrix of C (in the standard form). The parity-check matrix in

the standard form also provides another way to encode a message x = (x1, . . . , xk)T

of length k to a codeword c = (c1, . . . , cn)T of length n as

0 = c
T ·H = (c1, . . . , cn) ·

2

4�A
T

In�k

3

5

implying that the redundancy bits are (ck+1, . . . , cn) = (c1, . . . , ck) · AT = x
T
A

T .

Theorem 2.15. For a linear code C with a parity-check matrix H, the minimum

distance of C is d if and only if every d� 1 rows of H are linearly independent and

there exist d linearly dependent rows in H.

From this theorem, since rank(H) = n � k, which means that the maximum

number of linearly independent rows is n� k, we have a bound for linear codes.
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Theorem 2.16. (Singleton bound for linear codes) An [n, k, d]q linear code satisfies

n� k � d� 1.

Remark that there is also a general version of the Singleton bound.

Theorem 2.17. (Singleton bound) For a code C of length n with minimum distance

d over an alphabet of size q, we have

|C|  q
n�d+1

.

2.1.2 MDS Codes

Definition 2.18. Maximum distance separable (MDS) codes are codes that attain

the Singleton bound.

In this thesis, we only deal with linear MDS codes, which are linear codes that

attain the Singleton bound in Theorem 2.16. We simply refer to linear MDS codes

as MDS codes. MDS codes have the greatest capability of error correcting since

the minimum distance is d = n � k + 1, reaching the upper bound. By Theorem

2.7 and Corollary 2.9, MDS codes can correct up to bn�k

2
c errors, and up to n� k

erasures. Therefore, DSSs using MDS codes can tolerate up to n�k server failures.

It is shown in [22] that [n, 1, n], [n, n � 1, 2] and [n, n, 1] MDS codes exist over

any Fq, and we call these trivial MDS codes.

Theorem 2.19. The only binary MDS codes are the trivial MDS codes.

Theorem 2.20. The dual code of an MDS code is also an MDS code.

Combined Theorem 2.20 with Theorem 2.15, we have a characterisation of the

MDS codes.
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Corollary 2.21. Let C be an [n, k, d]q linear code. The following are equivalent:

(i) C is an MDS code,

(ii) Any n� k rows of a parity-check matrix H are linearly independent,

(iii) Any k rows of a generator matrix G are linearly independent,

(iv) C
? is an MDS code.

This corollary shows that when an MDS code is used in DSSs, the data stored

in any k out of n servers su�ces to recover the original information. This gives

reassurance that the system can tolerate up to n � k server failures as previously

mentioned. However, in order to maintain the level of reliability when a server fails,

we need to regenerate lost data at a new server. In order to do this in DSSs using

MDS codes, we would need to connect to any k remaining servers to reconstruct

the whole data and extract data that was stored in the failed server. This means

that we need to download the information from k servers (essentially the entire

database) in order to repair one server, and this is expensive.

In [18], a new class of array codes called regenerating codes is pioneered by

Dimakis et al. in order to deal with the repair problem in DSSs, so single server

failures can be repaired more cheaply. Dimakis et al. [18] use an information flow

graph to derive a trade-o↵ between storage and repair bandwidth (the amount of

information to be downloaded for repair). Two interesting extremal points on the

trade-o↵ curve are called the minimum storage regeneration (MSR) and the

minimum bandwidth regeneration (MBR) points, and codes with parameters

meeting these points are called MSR and MBR codes. Since the repair problem in

coded-PIR is our focus in this thesis, we are interested in exploring PIR in MBR

and MSR codes. In the next section, we formally define regenerating codes, and

discuss MBR and MSR codes.
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2.2 Regenerating Codes

An (n, k, r,↵, �, B) regenerating code is an array code that can store a database of

size B over a finite field Fq among n servers where each server stores ↵ symbols

satisfying two properties:

(i) (recovery) the database can be recovered from the data from any k servers,

(ii) (repair) if a server fails, then a replacement server connects to some r helper

servers, denoted by h1, . . . , hr, where k  r < n, and downloads � symbols

from each server in order to regenerate the ↵ lost symbols.

Figure 2.1 illustrates the recovery and repair properties. The total amount of

downloaded data in the repair process is � = r� symbols. This is called the repair

bandwidth, and typically the repair bandwidth is smaller than the size of the whole

database.

Figure 2.1: The recovery and repair properties of regenerating codes.

22



2.2.1 MBR and MSR Codes

In [23], the parameters of regenerating codes are shown to necessarily satisfy

B 
k�1X

i=0

min{↵, (r � i)�}, (2.1)

and the achievable trade-o↵ between storage and repair bandwidth is

characterised by fixing the repair bandwidth, and then deriving the minimum ↵

which satisfies Inequality (2.1). Two interesting extremal points on the optimal

trade-o↵ curve are the minimum bandwidth regeneration (MBR) point which

minimises repair bandwidth first and then minimises storage overhead, and the

minimum storage regeneration (MSR) point which minimises in the reverse order.

It can be shown that the MBR point is achieved by

(↵MBR, �MBR) =

✓
2Br

k(2r � k + 1)
,

2Br

k(2r � k + 1)

◆
, (2.2)

and MBR codes are (n, k, r,↵, �, B) regenerating codes that satisfy Equation (2.2).

Notice that repair bandwidth for MBR codes is equal to the amount of information

stored in the failed server. For the MSR point, it is achieved by

(↵MSR, �MSR) =

✓
B

k
,

Br

k(r � k + 1)

◆
, (2.3)

and MSR codes are (n, k, r,↵, �, B) regenerating codes that satisfy Equation (2.3).

Since a database of size B can be recovered from any k servers and each server

stores B

k
symbols for the MSR codes, the amount of information downloaded for the

recovery is exactly the size of database; i.e., it is optimal in terms of redundancy

and reliability. Hence, MSR codes are equivalent to standard MDS codes, while

MBR codes are not.
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Note that for MBR and MSR codes the parameters ↵ and B are multiples of �,

and it has been proved that if there exists an MBR or MSR code with � = 1, then

we can use it to construct an MBR or MSR codes with any higher value of �.

There have been many constructions of MBR and MSR codes (for example [21,

24–27]). In this thesis we are interested in the product-matrix constructions of

MBR and MSR codes with � = 1 by Rashmi et al. [21] since they use a compact

matrix presentation of regenerating codes with e�cient reconstruction and repair

algorithms. Next, we present the details of these product-matrix constructions.

2.2.2 Product-Matrix MBR Codes [21]

In this section, we explain an explicit construction of the product-matrix MBR

(PM-MBR) codes by Rashmi et al. [21]. This construction is designed to have

� = 1, so by Equation 2.2, r = r� = � = ↵. Consequently, we can calculate

B = ↵k(2r�k+1)

2r
= k(2r�k+1)

2
. Hence, the parameters of this construction are

(n, k, r,↵, �, B) =

✓
n, k, r, r, 1,

k(2r � k + 1)

2

◆

over a finite field Fq where q � n. Under the product-matrix framework, each

codeword is represented by an (n⇥ ↵) matrix C which is the product

C =  · M

of an (n⇥ r) encoding matrix  and an (r⇥ ↵) message matrix M. In the matrix

C, row i consists of the ↵ encoded symbols stored by server i for each i 2 [n]. The

encoding matrix  is given by an (n⇥ r) matrix

 =
h
� �

i
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where � is an (n⇥ k) matrix and � is an (n⇥ (r � k)) matrix such that

(i) any r rows of  are linearly independent,

(ii) any k rows of � are linearly independent.

The property (i) is designed for repair and (ii) is for recovery. We will give choices

of suitable encoding matrices at the end of this chapter. The row i of  is denoted

by  i for i 2 [n]. The (r⇥ r) message matrix M contains B message symbols over

Fq. Here M is defined to be a symmetric matrix as

M =

2

4S1 S2

S
T

2
0

3

5

where S1 is a (k ⇥ k) matrix constructed such that
�
k+1

2

�
entries in the upper-

triangular part of each matrix are filled up by
�
k+1

2

�
distinct message symbols and

entries in the strictly lower-triangular are chosen to make the matrix symmetric,

and the (k ⇥ (r � k)) matrix S2 are filled up by the remaining k(r � k) message

symbols. This is the PM-MBR codes we will use in our PIR constructions.

2.2.3 Product-Matrix MSR Codes [21]

Rashmi et al. [21] also give an explicit construction of the product-matrix MSR

(PM-MSR) codes when r = 2k�2. Also, this construction is designed to have � = 1.

By Equation 2.3, r = � = Br

k(r�k+1)
, so B = k(r�k+1) = k(2k�2�k+1) = k(k�1),

and ↵ = B

k
= k � 1. Hence, the parameters of this construction are

(n, k, r,↵, �, B) = (n, k, 2k � 2, k � 1, 1, k(k � 1))
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over a finite field Fq where q � n↵. First, the encoding matrix  is given by an

(n⇥ r) matrix

 =
h
� ⇤�

i

where � is an (n⇥ ↵) matrix and ⇤ is an (n⇥ n) diagonal matrix such that

(i) any r rows of  are linearly independent,

(ii) any k � 1 rows of � are linearly independent,

(iii) the n diagonal elements of ⇤ are all distinct.

The property (i) is designed for repair and (ii),(iii) are for recovery. The row i of

 is denoted by  i for i 2 [n]. Next, the (r ⇥ ↵) message matrix M is defined as

M =

2

4S1

S2

3

5

where S1 and S2 are (↵⇥ ↵) symmetric matrices constructed such that
�
k

2

�
entries

in the upper-triangular part of each matrix are filled up by
�
k

2

�
distinct message

symbols and entries in the strictly lower-triangular are chosen to make the matrices

symmetric. This is the PM-MSR code we will use in our PIR constructions.

2.2.4 Choices of Encoding Matrices for PM-MBR and PM-

MSR codes

In the construction of product-matrix regenerating codes from Rashmi et al. [21],

the choices of encoding matrices for PM-MBR codes can be any (n ⇥ r) matrices

with full rank. However, for PM-MSR codes, full-rank encoding matrices need to

be carefully chosen to satisfy the condition of the diagonal matrix ⇤ such that the

n diagonal elements of ⇤ are all distinct. In this section, we present some possible

choices of the encoding matrices.
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Definition 2.22. [28] A Vandermonde matrix is an m⇥ n matrix V such that

Vi,j = ↵
j�1

i

where ↵i 2 Fq, i.e.,

V =

2

6666664

1 ↵1 ↵
2

1
· · · ↵

n�1

1

1 ↵2 ↵
2

2
· · · ↵

n�1

2

...
...

...
. . .

...

1 ↵m ↵
2

m
· · · ↵

n�1

m

3

7777775
.

Remark 2.23. Any (n⇥ r) Vandermonde matrix such that all ↵i are distinct has

full rank. Hence, it could be used as an encoding matrix for PM-MBR codes. For

PM-MSR codes, consider an (n⇥ r) Vandermonde matrix

V =

2

6666664

1 ↵1 ↵
2

1
· · · ↵

2↵�1

1

1 ↵2 ↵
2

2
· · · ↵

2↵�1

2

...
...

...
. . .

...

1 ↵n ↵
2

n
· · · ↵

2↵�1

n

3

7777775
,

where ↵i are all distinct, we can write V in the form
h
V

0 ⇤V 0
i
where

V
0 =

2

6666664

1 ↵1 ↵
2

1
· · · ↵

↵�1

1

1 ↵2 ↵
2

2
· · · ↵

↵�1

2

...
...

...
. . .

...

1 ↵n ↵
2

n
· · · ↵

↵�1

n

3

7777775
,
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and

⇤ =

2

6666664

↵
↵

1

↵
↵

2

. . .

↵
↵

n

3

7777775
.

Hence, the Vandermonde matrix V can be used as an encoding matrix for PM-MSR

codes if the diagonal elements ↵↵

1
, . . . ,↵

↵

n
in the matrix ⇤ are all distinct. One way

to achieve this is to choose ↵i = g
i�1 where g is the generator of the multiplicative

group of a finite field Fq of size at least n↵.

Definition 2.24. [28] A Cauchy matrix is an m⇥ n matrix V such that

Vi,j =
1

↵i � �j

where ↵i, �j 2 Fq such that ↵i are all distinct, �j are all distinct, and ↵i � �j 6= 0

for all i 2 [m], j 2 [n]; i.e.,

V =

2

6666664

1

↵1��1

1

↵1��2
· · · 1

↵1��n

1

↵2��1

1

↵2��2
· · · 1

↵2��n

...
...

. . .
...

1

↵m��1

1

↵m��2
· · · 1

↵m��n

3

7777775
.

Remark 2.25. To construct a systematic PM-MBR code, an encoding matrix could

be chosen as

 =

2

4 Ik⇥k 0k⇥(r�k)

�̄(n�k)⇥k �̄(n�k)⇥(r�k)

3

5 ,

where
h
�̄ �̄

i
is a Cauchy matrix.
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Chapter 3

Code-based PIR Settings

In this chapter, we describe the settings of code-based PIR, which consists of an

encoding step and a retrieval step. In Section 3.1, we present a general encoding

model, and contribute an encoding function that explains the encoding of the

database in DSSs using erasure codes. We make explicit the two types of encoding

models that are used in the literature: mixed coding architecture and separate

coding architecture. In Section 3.2, we define the privacy of retrieval using

entropy. Lastly, we discuss e�ciency metrics to measure the cost of storage and

retrieval, and define a new metric to measure the cost of repair in Section 3.3.

3.1 Encoding Step

Suppose that a database X consists of m records, each of length `, denoted by

X
1
, X

2
, . . . , X

m 2 F`

q
. Let X be the sample space of records of length `. All

m records are encoded and distributed across n non-colluding servers, where each

server stores ↵ symbols via an encoding function

Em,n,↵ : Xm ! Mn⇥↵(Fq).
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Therefore, Em,n,↵(X1
, . . . , X

m) is an n⇥↵ matrix over Fq where row i, denoted by

Ci, consists of ↵ encoded symbols of X1
, . . . , X

m stored in server i for i 2 [n].

We also consider a special case of encoding where each record is encoded by an

erasure code independently and separately, so it can be written as

Em,n,↵(X
1
, . . . , X

m) =
h
E1,n,↵̄(X1) E1,n,↵̄(X2) · · · E1,n,↵̄(Xm)

i
,

where E1,n,↵̄ : X ! Mn⇥↵̄(Fq) is an encoding function that encodes each record

separately to distribute across n servers, and each record stores ↵̄ symbols where

m↵̄ = ↵. We refer to this encoding as separate coding architecture. Here each server

stores an encoded part of each record; that is, server i stores row i of E1,n,↵̄(Xj) for

all i 2 [n], j 2 [m]. Otherwise, when more than one record (usually all records) are

jointly encoded by an erasure code, we refer to this as mixed coding architecture.

Remark that replicated databases follow the separate coding architecture where

E1,n,`(X
j) =

2

6664

1
...

1

3

7775

n⇥1

·Xj

1⇥`
=

2

6664

���� X
j ����
...

���� X
j ����

3

7775

n⇥`

.

The encoding model in this section includes existing approaches in the literature,

so we can compare PIR schemes in the literature under the same terminology. In the

literature, most existing works in code-based PIR (for example [11–14, 16, 29–35])

implicitly assume the separate coding architecture, while others ([36, 37]) assume

mixed coding architecture. It is important to be aware of these implicit assumptions

so that we may compare PIR schemes correctly (or something with more emphasis

on results that only apply under the same assumptions). This is the reason we

divide the encoding into two types: separate coding architecture and mixed coding

architecture to clearly explain what assumption is made in the encoding.
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3.2 Retrieval Step

Entropy is used to measure the average amount of information in a random variable.

Here it is used to define privacy of the retrieval step. We will give the standard

definitions first.

Definition 3.1. Let X, Y be random variables. Let p(xi) be the probability of the

event X = xi, and p(yi|xi) be the conditional probability of the event Y = yi given

that X = xi. The entropy of X is defined as

H(X) = �
X

i

p(xi) log p(xi),

the entropy of Y conditioned on X = xi is defined as

H(Y |X = xi) = �
X

i

p(yi|xi) log p(yi|xi),

and the conditional entropy of Y given X is the average of H(Y |X = xi) over all

possible value xi, which is

H(Y |X) =
X

i

p(xi)H(Y |X = xi).

We have that H(Y |X) = 0 implies that the value of the random variable Y

is completely determined by the value of random variable X, while H(Y |X) = Y

implies that the random variables Y and X are independent.

In the retrieval step we assume that a user wants to download a record X
f . The

user submits a query matrix Q
i over Fq to server i, where i 2 [n]. Then the server

i computes and responds with an answer Ai.

Definition 3.2. A PIR scheme is said to be information-theoretically perfect if

(i) (privacy) H(f |Qi) = H(f) for every i 2 [n];
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(ii) (decodability) H(Xf |A1
, . . . , A

n) = 0.

We can see that (i) implies that server i does not obtain any information about

which record is being downloaded by the user, and (ii) ensures that the user can

recover the desired record X
f with no errors from all responses Ai

, i 2 [n].

3.3 E�ciency Metrics

We introduce metrics to measure the e�ciency of PIR schemes. First, we measure

the storage cost by storage overhead (SO), which is defined to be the ratio of the

total storage used in the scheme to the total size of the whole database.

For the retrieval cost, we follow the approach from [29] by assuming that the

size of each record is arbitrarily large, so we can divide the database to be many

chunks and each chunk is operated independently and identically by the same PIR

scheme (see Figure 3.1). Since we can use the same set of queries to perform PIR

on each chunk, we can neglect the upload cost and only focus on the download

cost. We use communication Price of Privacy (cPoP) which is defined as the ratio

of the total amount of downloaded data to the total size of the desired record [30]

to measure the download cost for PIR schemes. The retrieval rate (RPIR) is the

multiplicative inverse of the cPoP. The capacity of PIR is the maximum achievable

retrieval rate over all PIR schemes for some fixed parameters.

Lastly, as the repair problem is a primary concern in this thesis, we define repair

ratio (RR) as the ratio of the total amount of symbols downloaded for repairing a

failed server to the size of the failed server. In general we would like SO, cPoP and

RR to be small. However, when we operate PIR, these metrics might compete with

each other: for example, there is a trade-o↵ between SO and cPoP derived in [29],

and a trade-o↵ between cPoP and RR in our work on MPIR in Chapter 6.
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Chunk 1

Record 1

Record 2

...

Record f

...

Record m

Chunk 2

...

...

· · ·

Chunk s

...

...

Each chunk is operated independently and identically by the same PIR scheme

RETRIEVED RETRIEVED RETRIEVEDRecord f · · ·

Figure 3.1: Dividing each record into s chunks where each chunk is operated independently and

identically by the same PIR scheme.
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Chapter 4

Literature Review

In this chapter, we review relevant literature on code-based PIR with non-colluding

servers, which mean that a server does not know the content of other servers, and it

also does not see queries sent to or replies from another server. Code-based PIR has

emerged as an area of recent interest since it provides better storage overhead than

replication-based PIR given the same level of redundancy. Indeed, in code-based

PIR, if we use a (k + c, k) linear code to build PIR schemes with redundancy c,

then storage overhead is 1 + c

k
, while in replication-based PIR, storage overhead of

PIR schemes with redundancy c is 1 + c.

4.1 The First Work on Code-Based PIR

Shah et al. [36] pioneer the work of code-based PIR providing bounds on download

cost (the total number of bits downloaded) at the expense of storage overhead, and

they also show a compromise of the download cost for more reasonable storage cost.

In this paper, they prove that for m � 3 records, each of ` bits, any PIR

scheme must download at least ` + 1 bits in the worst case. For a PIR scheme

that achieves this lower bound, in almost every PIR operation, ` + 1 bits must be
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downloaded individually from distinct `+ 1 servers, one from each server, and the

storage overhead must be super-linear in `, that is, storage overhead approaches

infinity as ` goes to infinity. An explicit PIR scheme that meets the lower bound

on download for PIR, which is only one extra bit of download, is given which

means that the cPoP is 1 + 1

`
. The encoding in this construction follows the mixed

coding architecture. However, this construction requires the number of servers n

in a system to be exponential in the number of records m, which is n = (`+ 1)m�1

servers.

As a result of trying to reduce the storage cost from the lower-bound-achieving

construction, Shah et al. provide another PIR scheme with the cPoP between 2 and

4 which is a small factor away from optimality, which is 1+ 1

`
. This is the first and

only PIR scheme that uses regenerating codes in the literature. This scheme also

assumes the mixed coding architecture. Next, we give some details of this scheme

since we will apply the technique from this scheme to construct a new PIR scheme

using PM-MSR codes in Section 5.1.2.

Encoding Step

In this scheme, the database is encoded by using the PM-MBR code in Section

2.2.2, which is a regenerating code with parameters

(n, k, r,↵, �, B) =

✓
n, k, r, r, 1,

k(2r � k + 1)

2

◆
,

with n � 2r (as in the retrieval process we need to perform PIR on 2r servers).

For the encoding step, we suppose that each record has ` = 2r�m+1

2
symbols over

a finite field Fq. Hence, the whole database has m(2r�m+1)

2
symbols in total, which

can be fitted in the PM-MBR code with k = m. Note that in this scheme the

PM-MBR code is required to be systematic, which implies that the first m servers
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contain the original m(2r�m+1)

2
symbols. Together with special arrangement of the

message matrix, we can have that the data stored in server i contains record X
i in

an uncoded form for the first m servers. By Remark 2.25, we can choose

 =

2

4Im⇥m 0

�̄ �̄

3

5

n⇥r

where
h
�̄ �̄

i
is a Cauchy matrix to satisfy the systematic condition.

Next, we recall that the message matrix for PM-MBR codes in Section 2.2.2 is

M(X1
, . . . , X

m) =

2

4S1 S2

S
T

2
0

3

5

r⇥r

where S1 is a symmetric (m ⇥ m) matrix where the upper-triangular half of the

matrix are filled up by distinct message symbols, and S2 is an (m⇥ (r�m)) matrix

filled up by the remaining message symbols, and for notation simplicity, we will

write M(X1
, . . . , X

m) as M. It requires some manipulation of how the message

symbols should be arranged in the message matrix to have that server i contains

record X
i. Note that these details of the arrangement are not included in the

original paper. In this scheme, the message matrix M is rearranged as follows:

(i) Write X
j = {xj

1
, x

j

2
, . . . , x

j

`
}.

(ii) Put the first m+1

2
symbols of record j into row j of the matrix S1, starting

from the (j, j) position and shifting circularly to the beginning of that row if

necessary for every j 2 [m].

(iii) Fill up the remaining position in the matrix S1 to make the matrix symmetric.

(iv) Put the remaining r �m symbols of record j into row j of the matrix S2.
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For example, let m = 5, r = 6, so ` = 2r�m+1

2
= 4. We have

S1 =

2

66666666666664

x
1

1
x
1

2
x
1

3
x
4

3
x
5

2

x
1

2
x
2

1
x
2

2
x
2

3
x
5

3

x
1

3
x
2

2
x
3

1
x
3

2
x
3

3

x
4

3
x
2

3
x
3

2
x
4

1
x
4

2

x
5

2
x
5

3
x
3

3
x
4

2
x
5

1

3

77777777777775

, S2 =

2

66666666666664

x
1

4

x
2

4

x
3

4

x
4

4

x
5

4

3

77777777777775

.

Therefore, the encoding function for this scheme is the product

Em,n,r(X
1
, . . . , X

m) =  · M,

and for the first m servers, server i contains record X
i as required.

Retrieval Step

Let  i denote the i
th row of  . Then, we pick u 2 Fr

q
randomly. For the first r

servers, we download

{ h1Mu, . . . , hrMu},

and for the other r servers, we download

{ hr+1M(u+  f ), . . . , h2rM(u+  f )}.

Since any r rows of  are linearly independent, we obtain Mu and M(u +  
T

f
),

respectively, and finally have M 
T

f
=  fM which contains record X

f as desired.

Notice that the idea of the retrieval is similar to the repair of a failed server in the

PM-MBR codes in Section 2.2.2 with the additional random vector u in order to

confuse the server.
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Analysis

In this PIR scheme, SO is

n↵

m`
=

nr

m(2r�m+1

2
)
=

2r

2r �m+ 1
· n
m
,

and when n = 2r = 2m, SO is less than 4. The cPoP is

⇣ nX

i=1

|Ai|
⌘
/` =

2r

`
=

4r

2r �m+ 1
 4,

while RR is the smallest possible which is r

↵
= 1 as the PM-MBR code is used in

the storage system.

4.2 Subsequent Works under the Separate

Coding Architecture

After the first work by Shah et al. [36], there are two general directions of research

in the study of code-based PIR schemes. The first direction is to consider the

relationship between SO and cPoP when we encode the database and retrieve

record(s) in a specific way, and construct concrete schemes that have good storage

overhead and cPoP. Another direction is to consider the problem of PIR capacity,

defined as the maximum of retrieval rate over all possible PIR schemes for some

fixed parameters, without assuming any conditions on the retrieval technique.

4.2.1 The First Direction

Here we will review three important papers of particular relevance to our research

in this direction. The Chan et al. paper [29] proposes a general model for PIR

schemes using linear storage codes, and studies fundamental limits on the costs of
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storage and retrieval by deriving the trade-o↵ between SO and cPoP in the context

of their proposed PIR model. Subsequently, the Tajeddine et al. paper [30] gives

an explicit PIR scheme which attains the trade-o↵ between SO and cPoP using

MDS codes in the storage. Afterwards, the Kumar et al. paper [31] presents a PIR

scheme using an arbitrary systematic linear storage code of rate > 1/2.

4.2.1.1 The Work of Chan et al. [29]

In [29], Chan et al. set up a general encoding model for PIR schemes using linear

codes assuming the separate coding architecture, which has been subsequently used

by many works on code-based PIR. Suppose that the size of each record X
j is large,

which is of length ` = ↵k over Fq. We can interpret that X
j has ↵ stripes, and

each stripe of length k is encoded independently via an (n⇥ k) generator matrix G

of an [n, k] linear code. It can be formally written as

Em,n,m↵(X
1
, . . . , X

m) =
h
E1,n,↵(X1) E1,n,↵(X2) · · · E1,n,↵(Xm)

i
,

where

E1,n,↵(X
j) = Gn⇥k ·

2

6664

x
j

1,1
x
j

1,2
· · · x

j

1,↵

...
...

. . .
...

x
j

k,1
x
j

k,2
· · · x

j

k,↵

3

7775

k⇥↵

,

for all j 2 [m] (see Figure 4.1). Therefore, each server stores m↵ symbols in total

consisting of all the i
th position of encoded stripes of the record j for all j 2 [m].

They also provide a corresponding retrieval scheme where server i is given a

d⇥m↵ query matrix Q
i and then asked to return A

i = Q
i
C

T

i
. This query matrix

Q
i is the sum of a uniformly random matrix and a deterministic matrix that is

designed to access certain symbols stored to server i. Note that the parameter d

corresponds to the number of subqueries and may be adjusted for di↵erent schemes.
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Record Xj

1

2

...

↵

↵ stripes

k

Each stripe is encoded by

an (n, k) linear code

1 2 i n

Stored in server i

Figure 4.1: Coding process for record X
j
for [29]

By studying the conditions under which PIR as well as database reconstruction may

be achieved, the following trade-o↵ between SO and cPoP is obtained (see Figure

4.2):

1  cPoP
⇣
1� 1

SO

⌘
. (4.1)

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

SO

cP
oP

1 = cPoP
�
1� 1

SO

�

Figure 4.2: The trade-o↵ curve between SO and cPoP derived by Chan et al. [29] for PIR in DSSs using

erasure codes under the separate coding architecture.
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4.2.1.2 The Work of Tajeddine et al. [30]

Tajeddine et al. present a PIR scheme that attains the trade-o↵ between SO and

cPoP (4.1). This is the first explicit PIR scheme that follows the approach proposed

by Chan et al. [29] providing an interesting retrieval technique. We describe this

scheme in detail since we modify and generalise this retrieval technique to our works

in Chapters 5 and 6. The encoding part of the model in [29] is instantiated with an

[n, k] MDS code, with the additional requirement that ↵ = n�k. Write ↵ = �k+ r

where �, r are integers such that 0  r < k using the Euclidean division algorithm.

The retrieval steps are as follows:

(i) (Initialisation) The user generates a random matrix U of dimensions k ⇥m↵

whose elements are chosen independently and uniformly at random over Fq,

(ii) (Query Generation) The query matrix Q
i is defined as

Q
i =

8
><

>:

U + V
i
, if i = 1, . . . , n� r

U, if i = n� r + 1, . . . , n

where V i is a deterministic matrix designed to access desired symbols. Recall

that server i stores m↵ symbols. If the entry (j, b) of V i is 1, then it implies

that the b
th symbols that stored in server i is privately retrieved by the j

th

subquery of Qi. We choose

V
1 =

2

4 0k⇥(f�1)↵

Ir⇥r

0(k�r)⇥r

0k⇥�k 0k⇥(m�f)↵

3

5 ,

and V
i
, i = 2, . . . , k is defined by a single downward cyclic shift on its row

vectors of the matrix V
i�1. For i = sk+1, . . . , sk+ k, s = 1, . . . ,�, we define

V
i =

h
0k⇥(f�1)↵+r+(s�1)k Ik⇥k 0k⇥(��s)k+(m�f)↵

i
,
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(iii) (Response Mappings) Each server i returns a vector Ai = Q
i
C

T

i
.

In this scheme, each record consists of ↵ = �k + r stripes. The queries submitted

to servers 1, . . . , k are designed to retrieve the first r stripes of the record X
f . The

queries submitted to servers sk+ 1, . . . , sk+ k, where s = 1, . . . ,�, are designed to

retrieve the s
th set of k stripes of the record X

f .

For the analysis of this scheme, the storage overhead is n

k
. Each query is carefully

designed to complete the retrieval process, and the resulting cPoP is 1

1�Rc
where

Rc =
k

n
is the code rate of the [n, k] MDS code. Hence,

cPoP
⇣
1� 1

SO

⌘
=

1

1�Rc

(1�Rc) = 1,

implying that this scheme attains the trade-o↵ curve between SO and cPoP (4.1).

4.2.1.3 The Work of Kumar et al. [31]

Later, Kumar et al. [31] use an arbitrary systematic linear storage code of rate

Rc > 1/2 in the encoding model by Chan et al. [29]. They provide an algorithm

to search for the protocol with optimum cPoP. Interestingly, the numerical results

show that the optimal trade-o↵ in [29] can be attained by using locally repairable

codes (LRCs) [38] or Pyramid codes [39], which have more e�cient repair property,

in the storage. Indeed, [n, k] LRCs and Pyramid codes have the locality c < k

which means that each code block is a function of at most c other code blocks.

Hence, when one server fails, we can connect to only c other surviving servers, and

download ↵ symbols from each server in order to reconstruct the failed server. This

improves repair ratio from k to be c < k. Our research continues along this lines

by considering PIR in regenerating codes which emphasises repair ratio.
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4.2.2 The Second Direction

The second direction of research focuses on the PIR capacity which is the maximum

retrieval rate independent of retrieval techniques. Sun and Jafar [40] first show that

the capacity of the replication-based PIR is

Crep =
1� 1

n

1� 1

nm

. (4.2)

The retrieval technique to obtain capacity-achieving is based on the principle that a

user retrieves symbols, both desired and undesired, symmetrically across all servers,

and uses the undesired symbols as side information to reveal the desired symbols.

In [32], Banawan and Ukulus investigate the capacity of the PIR scheme using

MDS codes, which is shown to be

CMDS =
1� k

n

1� ( k
n
)m

=
1�Rc

1�Rm
c

(4.3)

where Rc is the rate of the [n, k] code used in the PIR scheme. The encoding in this

work is the same as in [30] following the separate coding architecture where each

stripe of each record is encoded by an MDS code. We can see that the retrieval rate

1�Rc achieved by [30] asymptotically reaches the MDS capacity (3.3) when m goes

to infinity. Note that in the capacity-achieving scheme [32], the length of each record

is set to be ` = kn
m, which could be very large and a↵ect the practicality of the

scheme. In [34], Xu and Zhang show that the record size of schemes achieving the

MDS capacity (3.3) must satisfy ` � k(n/gcd(n, k))m�1 under the assumption that

all answers from every server have the same length. They also provide a capacity-

achieving scheme with ` = k(n/gcd(n, k))m�1. Lately, it is shown by Zhou et al.

[33] that the minimum length of each record could be as low as ` = lcm(n � k, k)

for m > k/gcd(n, k) when answers from each server are of di↵erent lengths.
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In the multi-message PIR (MPIR) problem, where a user wants to retrieve p

records, Banawan and Ulukus [41] analyse the capacity of MPIR schemes with

replicated database which is

CMPIR-L =
1

1 + m�p

pn

(4.4)

when p � m

2
or

CMPIR-S =
1� 1

n

1� ( 1
n
)m/p

(4.5)

when p  m

2
, and m

p
2 N. In the example schemes that achieve capacity, there is a

requirement of ` to be n
2 for the case p � m

2
, but there is no explicit formula for `

in case p  m

2
.

Later, Zhang and Ge [35] explore MPIR using [n, k] MDS coded database and

prove that when p � m

2
, the exact capacity is

CMDS-MPIR =
1

1 + k(m�p)

pn

(4.6)

which agrees with the result on replicated databases in [41] when k = 1. As far as

we know, this is the only paper on code-based MPIR capacity.

4.3 Other Related Works

After our early works [42, 43] where we construct PIR and MPIR schemes using

PM-MSR and PM-MBR codes (the details of these constructions are in Sections

5.2.3 and 6.3), Lavauzelle et al. [44] propose PIR schemes that also use product-

matrix regenerating codes in the single-message PIR scheme. This work improves

our result by setting each record to have many stripes, and each stripe is encoded

by an PM-MSR or PM-MBR code. They exploit the symmetry of message matrix

in the construction from [21] as side information in the retrieval step, while ours
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exploit the structure of the regenerating codes designed for e�cient repair.

As most existing works on code-based PIR schemes have followed the separate

coding architecture introduced by [29], which means that each stripe of each record

is assumed to be separately encoded using the same erasure code. Sun and Tian

[37] propose PIR schemes following the mixed coding architecture using an MDS

code, and demonstrate that the retrieval rate in this scheme can break the capacity

on MDS codes [32]. This leads to an open question whether the mixed coding

architecture can be applied to other variations of code-based PIR to improve the

retrieval rate.

Notice that in the communication cost, following the approach from [29], we

only focus on the download cost because we assume that the size of each record is

arbitrarily large, and we can divide each record to be many chunks and operate PIR

independently with each chunk of all records using the same set of queries, so we

can neglect the upload cost. Blackburn et al. [20] propose an averaging technique to

applied with replicated databases by setting each record to be large, and instead of

processing PIR with the same query set for each chunk, they vary randomness that

is used for query generation through all possible random vectors for each chunk.

Hence for each server there must be a query which is an all-zero vector, so the

server does not need to reply in this case, resulting in better download cost. Note

that queries for each chunk can be calculated from just one query, so the upload

cost is still low. In Chapter 7, we give an application of the average technique on

code-based PIR schemes.

Table 4.1 summarises related works in code-based PIR with non-colluding

servers discussed in this chapter.
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Chapter 5

PIR using PM-MSR and

PM-MBR codes

In this chapter we are interested to investigate how we can construct PIR schemes

using regenerating codes in order to achieve e�cient repair. In particular, we use

the product-matrix regenerating codes from Rashmi et al. in Sections 2.2.2 and

2.2.3 in our constructions since they use a compact matrix presentation of codes

that provides convenience in the encoding step of PIR. In Section 5.1, we apply the

technique in the construction of the PIR scheme using PM-MBR codes under the

mixed coding architecture from Shah et al. (Section 4.1) to construct a new PIR

scheme using PM-MSR codes under the mixed coding architecture. In Section 5.2,

we apply the technique in the construction of the PIR scheme using MDS codes

from Tajeddine et al. (Section 4.2.1.2) to construct various PIR schemes under the

separate coding architecture using both PM-MBR and PM-MSR codes. To the best

of our knowledge, these are the first PIR schemes using regenerating codes under

the separate coding architecture.
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5.1 Schemes with Mixed Coding Architecture

In [36], Shah et al. propose the first PIR scheme using PM-MBR codes from [21]

following the mixed coding architecture. In this section, we construct a new PIR

scheme using PM-MSR codes from [21] applying their technique. In the encoding

step, we use the systematic PM-MSR codes. It has been proved in [21] that every

PM-MSR code can be made systematic via the message-symbol remapping. We

first give more explicit details on how to do the process with a small example.

5.1.1 The Systematic Version of the PM-MSR Codes [21]

First, we recall the construction of the PM-MSR codes from [21] with parameters

(n, k, r,↵, �, B) = (n, k, 2k � 2, k � 1, 1, k(k � 1)).

Let the encoding matrix  be an (n⇥ r) matrix given by

 =
h
� ⇤�

i

where � is an (n⇥↵) matrix and ⇤ is an (n⇥n) diagonal matrix such that (i) any

r rows of  are linearly independent, (ii) any ↵ rows of � are linearly independent,

(iii) the n diagonal elements of ⇤ are all distinct. Write the ith row of  as

 i =
h
�i �i�i

i
. Next, the (r ⇥ ↵) message matrix M is defined as

M =

2

4S1

S2

3

5

where S1 and S2 are (↵ ⇥ ↵) symmetric matrices constructed such that the
�
k

2

�

entries in the upper-triangular part of each of the two matrices are filled up by
�
k

2

�

48



distinct message symbols and the entries in the strictly lower-triangular are chosen

to make the matrices symmetric. For i 2 [n], the k � 1 symbols stored in server i

are

 iM =
h
�i �i�i

i
M = �iS1 + �i�iS2.

Next, for the systematic version of the PM-MSR code, we want to ensure that the

first k servers contain all original B = k↵ symbols. Let

 k =
h
�k ⇤k�k

i

be the (k⇥r) submatrix of  with the first k rows of  , thus the k↵ symbols stored

in the first k servers are given by  kM. Let U be a (k ⇥ ↵) matrix containing the

original B = k↵ symbols. Hence, we need to solve for the entries of M in terms of

the symbols in U in the equation

 kM = U

in order to use M to obtain the systematic MSR code C =  · M. Define the

matrices P and Q to be

P = �kS1�
T

k
,

and

Q = �kS2�
T

k
,
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which are both symmetric as S1 and S2 are. Notice that

P + ⇤kQ = �kS1�
T

k
+ ⇤k�kS2�

T

k

=
h
�kS1 + ⇤k�kS2

i
�T

k

=
h
�k ⇤k�k

i
2

4S1

S2

3

5�T

k

=  kM�T

k

= U�T

k
,

which we have access to. The (i, j)th, 1  i, j  k, element of this matrix is

Pij + �iQij

while the (j, i)th element is

Pji + �jQji = Pij + �jQij.

As �i,�j are di↵erent, we can solve for Pij, Qij in terms of symbols in U for every

i 6= j. Consider first the matrix P . Say

�k =

2

6664

�1

...

�↵+1

3

7775
.

It can be seen that the i
th row of P excluding the diagonal element is

�iS1

h
�
T

1
· · · �

T

i�1
�
T

i+1
· · · �

T

↵+1

i
.
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By the construction of  , the right matrix in the above equation is invertible, thus

we can obtain �iS1 for every i = 1, . . . ,↵ + 1. Hence, we have access to

2

6664

�1

...

�↵

3

7775
S1

where the left matrix above is again invertible by the construction. We finally get

the entries of S1 in terms of the symbols in U . By repeating the same process with

the matrix Q, we are able to solve for the entries of S2 in terms of the symbols in

U and obtain the desired matrix M.

The following example will illustrate how to arrange the message matrix M to

make the PM-MSR code systematic.

Example 5.1. Suppose we have a PM-MSR code with parameters

(n, k, r,↵, �, B) = (6, 3, 4, 2, 1, 6)

over F13, and we set

S1 =

2

4s1 s2

s2 s3

3

5 , S2 =

2

4s4 s5

s5 s6

3

5 .
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Assume that the encoding matrix is the Vandermonde matrix

 =

2

6666666666664

1 1 1 1

1 2 4 8

1 3 9 1

1 4 3 12

1 5 12 8

1 6 10 8

3

7777777777775

where � =

2

6666666666664

1 1

1 2

1 3

1 4

1 5

1 6

3

7777777777775

, ⇤ =

2

6666666666664

1

4

9

3

12

10

3

7777777777775

.

Thus we have,

 3 =

2

6664

1 1 1 1

1 2 4 8

1 3 9 1

3

7775
.

This code can encode B = 6 symbols. We write those symbols in the matrix

U =

2

6664

x11 x12

x21 x22

x31 x32

3

7775
.

Then

P + ⇤3Q =

2

6664

x11 x12

x21 x22

x31 x32

3

7775
·

2

41 1 1

1 2 3

3

5

=

2

6664

x11 + x12 x11 + 2x12 x11 + 3x12

x21 + x22 x21 + 2x22 x21 + 3x22

x31 + x32 x31 + 2x32 x31 + 3x32

3

7775
.
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By considering the (1, 2)th and (2, 1)th elements, we have the following system of

equations:

P12 +Q12 = x11 + 2x12,

P12 + 4Q12 = x21 + x22.

We can solve that

P12 = 4x21 + 4x22 + 10x11 + 7x12,

Q12 = 9x21 + 9x22 + 4x11 + 8x12.

By considering the (1, 3)th and (3, 1)th elements, we have the following system of

equations:

P13 +Q13 = x11 + 3x12,

P13 + 9Q13 = x31 + x32.

We can solve that

P13 = 8x31 + 8x32 + 6x11 + 5x12,

Q13 = 5x31 + 5x32 + 8x11 + 11x12.

By considering the (2, 3)th and (3, 2)th elements, we have the following system of

equations:

P23 + 4Q23 = x21 + 3x22,

P23 + 9Q23 = x31 + 2x32.
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We can solve that

P23 = 7x31 + x32 + 7x21 + 8x22,

Q23 = 8x31 + 3x32 + 5x21 + 2x22.

Consider the first row of the matrix P excluding the diagonal element,

h
4x21 + 4x22 + 10x11 + 7x12 8x31 + 8x32 + 6x11 + 5x12

i
=
h
1 1

i
S1

2

41 1

2 3

3

5 .

As

2

41 1

2 3

3

5
�1

=

2

4 3 12

11 1

3

5,

h
1 1

i
S1 =

2

43(4x21 + 4x22 + 10x11 + 7x12) + 11(8x31 + 8x32 + 6x11 + 5x12)

12(4x21 + 4x22 + 10x11 + 7x12) + (8x31 + 8x32 + 6x11 + 5x12)

3

5
T

=

2

45x11 + 11x12 + 12x21 + 12x22 + 10x31 + 10x32

9x11 + 11x12 + 9x21 + 9x22 + 8x31 + 8x32

3

5
T

.

Consider the second row of the matrix P excluding the diagonal element,

h
4x21 + 4x22 + 10x11 + 7x12 7x31 + x32 + 7x21 + 8x22

i
=
h
1 2

i
S1

2

41 1

1 3

3

5 .
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As

2

41 1

1 3

3

5
�1

=

2

48 6

6 7

3

5,

h
1 2

i
S1 =

2

48(4x21 + 4x22 + 10x11 + 7x12) + 6(7x31 + x32 + 7x21 + 8x22)

6(4x21 + 4x22 + 10x11 + 7x12) + 7(7x31 + x32 + 7x21 + 8x22)

3

5
T

=

2

4 2x11 + 4x12 + 9x21 + 2x22 + 3x31 + 6x32

8x11 + 3x12 + 8x21 + 2x22 + 10x31 + 7x32

3

5
T

.

Therefore, we obtain

2

41 1

1 2

3

5S1 =

2

41 1

1 2

3

5

2

4s1 s2

s2 s3

3

5 , which is

2

45x11 + 11x12 + 12x21 + 12x22 + 10x31 + 10x32 9x11 + 11x12 + 9x21 + 9x22 + 8x31 + 8x32

2x11 + 4x12 + 9x21 + 2x22 + 3x31 + 6x32 8x11 + 3x12 + 8x21 + 2x22 + 10x31 + 7x32

3

5.

Since

2

41 1

1 2

3

5
�1

=

2

4 2 12

12 1

3

5, we can calculate that

s1 = 8x11 + 5x12 + 2x21 + 9x22 + 4x31 + x32,

s2 = 10x11 + 6x12 + 10x21 + 3x22 + 6x31 + 9x32,

s3 = 12x11 + 5x12 + 12x21 + 6x22 + 2x31 + 12x32.

And we can repeat the process with the matrix Q to get s4, s5, s6.
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5.1.2 Construction 1 (PM-MSR-mixed)

The technique in Shah’s PM-MBR-mixed PIR scheme [36] is to exploit the repair

process of the regenerating codes. Here we construct a new PIR scheme with PM-

MSR codes, so we first discuss the repair process for PM-MSR codes [21] which

have parameters

(n, k, r,↵, �, B) = (n, k, 2k � 2, k � 1, 1, k(k � 1)).

When a server f fails, we contact r = 2k � 2 helper servers, say h1, . . . , h2k�2 and

request for

 h1M�
T

f
, . . . , h2m�2M�

T

f
,

so we obtain 2

6664

����  h1 ����
...

����  h2k�2
����

3

7775
M�

T

f
.

The left matrix is invertible by the construction, so we get

M�
T

f
=

2

4S1�
T

f

S2�
T

f

3

5 .

As S1, S2 are symmetric, we can get �fS1+�f�fS2 =  fM which contains the lost

↵ symbols in server f .

Since a PM-MSR code can store k(k� 1) symbols, we let the number of records

m = k, each of length ` = ↵ = k � 1. We need a PM-MSR code to be systematic,

so we can have that record i is stored in server i in uncoded form for all i 2 [k].

Therefore, we can use the process of repair to retrieve the desired record. The

technique for hiding the identity of the desired record is to mix the vector �f in the

repair process with a random vector. Next we present the detail of the construction.
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Encoding Step

Suppose we have a database consisting of m records X1
, X

2
, . . . , X

m 2 F`

q
, each of

length ` = m� 1. The database is stored using a PM-MSR code with parameters

(n, k, r,↵, �, B) = (n,m, 2m� 2,m� 1, 1,m(m� 1)),

and the encoding matrix  , where n � 4m � 4. To ensure that the code is

systematic, we write all records in a matrix

U =

2

6664

���� X
1 ����
...

���� X
m ����

3

7775
,

and use the process in Section 5.1.1 to obtain the message matrix M that makes

the code systematic. With this arrangement of U , we also have that server i stores

X
i in uncoded form for i 2 [m]. Hence the encoding function in this scheme is

Em,n,m�1(X
1
, . . . , X

m) =  · M.

Note that if we have longer records, we can divide each record to be many chunks,

each of length m� 1, and then operate them independently and identically.

Retrieval Step

Suppose that Xf where f 2 [m] is the desired record.

(i) Generate a column vector u 2 Fm�1

q
uniformly at random.

(ii) Connect to some 4m � 4 arbitrary servers. Recall that �f is the f
th row of

the matrix �. Then, pass the vector u to any 2m � 2 of these servers, and

pass the vector u+ �
T

f
to any 2m� 2 remaining servers.
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(iii) For the first group of 2m� 2 servers, they are requested to return

 h1Mu, . . . , h2m�2Mu,

and for the other 2m� 2 servers, they are requested to return

 h2m�1M(u+ �
T

f
), . . . , h4m�4M(u+ �

T

f
).

To prove decodability, since any r = 2m� 2 rows of  are linearly independent, we

obtain Mu and M(u+ �
T

f
) respectively, and hence obtain

M�
T

f
=

2

4S1�
T

f

S2�
T

f

3

5 .

As in the repair process, since S1, S2 are symmetric, we finally obtain

�fS1 + �f�fS2 =  fM

which is the desired record X
f .

Analysis

The storage overhead is

SO =
n↵

m`
=

n(m� 1)

m(m� 1)
=

n

m
.

In particular, when n = 2r = 4m � 4, SO = 4m�4

m
< 4. During the retrieval, we

download 4m� 4 symbols to get a record of size m� 1, thus

cPoP =
4m� 4

m� 1
= 4.
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Table 5.1 shows the comparison between SO and cPoP of Construction 1 (PM-

MSR-mixed) and Shah’s scheme [36] using PM-MBR codes. Both constructions

use the repair property of the regenerating codes in the retrieval, and require the

connection to n � 2r servers. Therefore, we compare the highest e�ciency case

when n = 2r. Recall that the Shah’s scheme [36] has

SO =
2r

2r �m+ 1
· 2r
m

and

cPoP =
4r

2r �m+ 1
< 4

where m  r  n� 1. From Table 5.1, we can see that for the Shah’s scheme [36],

when r is the lowest possible (r = m), the scheme has lower SO for fixed m but it is

still higher than the SO of Construction 1 (PM-MSR-mixed). However, the Shah’s

scheme [36] when r = m has higher cPoP for fixed m but it is still lower than the

cPoP of Construction 1 (PM-MSR-mixed). The repair ratio is

r

↵
=

2m� 2

m� 1
= 2,

which is worse than the Shah’s scheme [36] that has the least repair ratio RR = 1.

Construction 1 (PM-MSR-mixed) Shah’s scheme (PM-MBR-mixed) [36]

when r = 2m� 2 when r = m when r = m+ 1

m SO cPoP SO cPoP SO cPoP

2 2 4 2.67 2.67 3.6 2.4

3 2.67 4 3 3 3.56 2.67

4 3 4 3.2 3.2 3.57 2.86

5 3.2 4 3.33 3.33 3.6 3

6 3.33 4 3.43 3.43 3.63 3.11

Table 5.1: The comparison between SO and cPoP of Construction 1 and Shah’s scheme [36].
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5.2 Schemes with Separate Coding Architecture

Chan et al. initiate the work on code-based PIR with the separate coding

architecture in [29] by proposing a general model for encoding a database where

each record is divided into ↵ stripes, each of length k, and then each stripe is

encoded with an (n, k) linear code. Tajeddine et al. [30] subsequently present a

PIR scheme that uses MDS codes in the encoding (Section 4.2.1.2). The retrieval

technique exploits the recovery property of [n, k] MDS codes; that is, any k out of

n symbols can be used to reconstruct the original k symbols.

We consider PIR schemes using product-matrix regenerating codes with the

separate coding architecture in this section. Indeed, for a database consisting of m

records X
1
, . . . , X

m, each record X
j of size B is encoded via the (n, k, r,↵, �, B)

regenerating code by the product  · Mj where Mj is the corresponding message

matrix of Xj. Hence the encoding function is

Em,n,m↵(X
1
, . . . , X

m) =  · M,

whereM =
h
M1 · · · Mm

i
. Thus, each server i stores the vector  i·M which has

m↵ symbols in total. We apply the idea of retrieval technique in Section 4.2.1.2 by

using the recovery property of the regenerating codes; that is, the originalB symbols

can be reconstructed from any k servers, each with ↵ symbols. The di↵erence is

that in the MDS scheme, for ↵ stripes of the desired record, we can secretly retrieve

k symbols of each stripe from any di↵erent set of k servers. However, in the case

of our schemes using regenerating codes, we need to secretly retrieve ↵ symbols of

the desired record that are stored in each server from one set of k servers.

Suppose we have a random column vector u 2 Fm↵

q
. A common technique in

PIR for generating a query to have access to the t
th symbol stored in server i,

denoted by Cit, is to mix the random vector u with a unit vector et of length m↵
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with 1 at the t
th position. Notice that if we project the vector u to server i1, we

get a symbol

( i1 · M) · u,

and if we project the vector u+ et to server i2, we get a symbol

( i2 · M) · (u+ et) = ( i2 · M) · u+ Ci2,t.

We know that any r rows of  are linearly independent. Therefore, for a set of

queries that is sent to n servers, the number of servers that receive only the random

vector u needs to be at least r servers, so we have ( i1 · M) · u, . . . , ( ir · M) · u

to solve for M · u. Hence, we can have at most n � r servers that receive a query

as the sum of the random vector u and some unit vector, which means that we can

access at most n� r desired symbols per one set of queries.

In this section, we propose three PIR constructions. The first two constructions

use PM-MBR and PM-MSR codes from Sections 2.2.2 and 2.2.3 respectively with

n = k + r. Since we can access at most n � r = k desired symbols per set of

queries, we need ↵ sets of queries. So we can secretly retrieve k↵ symbols in total

to reconstruct the desired record using the recovery property of the regenerating

codes. The last construction uses PM-MSR codes from Section 2.2.3 with n = ↵+r,

so we can secretly retrieve k↵ symbols in total by requesting k sets of queries.

Note that in Chapter 6 we propose three multi-message PIR schemes using

PM-MSR and PM-MBR codes which are generalisations of the three constructions

in this section. We will give a general MPIR model where the product-matrix

regenerating codes are used for storage, and derive a trade-o↵ between cPoP and

RR. Hence, we omit the trade-o↵ analysis of the following three constructions since

it is a special case of the trade-o↵ analysis in Chapter 6 when the number of records

being retrieved is p = 1.
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5.2.1 Construction 2 (PM-MBR-sep)

In this construction, we use a PM-MBR code from Section 2.2.2 with n = k + r

over the finite field Fq with parameters

(n, k, r,↵, r, B) =

✓
k + r, k, r, r, 1,

k(2r � k + 1)

2

◆

to store each record of size ` = k(2r�k+1)

2
. Note that if the size of records are longer

than k(2r�k+1)

2
, we divide each record of size ` to be chunks of size k(2r�k+1)

2
, and

we can operate each chunk independently and identically as discussed in Section

3.3. In this scheme, the queries submitted to the first k servers are designed to

access symbols of the desired record that are stored in those k servers, so the

desired record can be reconstructed by the property of the regenerating codes. The

following example will illustrate how this scheme works.

Example 5.2. Suppose that we have 3 records, each of length 5. We write

X
1 = {x11, x12, x13, x14, x15},

X
2 = {x21, x22, x23, x24, x25},

X
3 = {x31, x32, x33, x34, x35}.

Each record is encoded by a (5, 2, 3, 3, 1, 5) MBR code over F7 where the encoding

matrix  is the Vandermonde matrix

 =

2

6666666664

1 1 1

1 2 4

1 3 2

1 4 2

1 5 4

3

7777777775

,
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server 1 server 2 server 3 server 4 server 5

x11 + x12 + x14 x11 + 2x12 + 4x14 x11 + 3x12 + 2x14 x11 + 4x12 + 2x14 x11 + 5x12 + 4x14

x12 + x13 + x15 x12 + 2x13 + 4x15 x12 + 3x13 + 2x15 x12 + 4x13 + 2x15 x12 + 5x13 + 4x15

x14 + x15 x14 + 2x15 x14 + 3x15 x14 + 4x15 x14 + 5x15

x21 + x22 + x24 x21 + 2x22 + 4x24 x21 + 3x22 + 2x24 x21 + 4x22 + 2x24 x21 + 5x22 + 4x24

x22 + x23 + x25 x22 + 2x23 + 4x25 x22 + 3x23 + 2x25 x22 + 4x23 + 2x25 x22 + 5x23 + 4x25

x24 + x25 x24 + 2x25 x24 + 3x25 x24 + 4x25 x24 + 5x25

x31 + x32 + x34 x31 + 2x32 + 4x34 x31 + 3x32 + 2x34 x31 + 4x32 + 2x34 x31 + 5x32 + 4x34

x32 + x33 + x35 x32 + 2x33 + 4x35 x32 + 3x33 + 2x35 x32 + 4x33 + 2x35 x32 + 5x33 + 4x35

x34 + x35 x34 + 2x35 x34 + 3x35 x34 + 4x35 x34 + 5x35

Table 5.2: The storage of records X
1
, X

2
, X

3
in the servers

and the message matrix Mj for the record j, j 2 {1, 2, 3} is as described in Section

2.2.2

Mj =

2

6664

xj1 xj2 xj4

xj2 xj3 xj5

xj4 xj5 0

3

7775
.

Hence, each server stores  · M as shown in Table 5.2. Denote C
j

ib
to be the b

th

symbol stored in server i of the record j.

In the retrieval step, suppose the user wants record X
1. The query Q

i is an

(↵ ⇥ m↵) = (3 ⇥ 9) matrix which we can interpret as 3 subqueries submitted to

server i for each i 2 [5]. To form the query matrices, the user generates a (3 ⇥ 9)

random matrix U = [uij] whose elements are chosen uniformly at random from F7.

Let

V
1 = V

2 =

2

6664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

3

7775
.

For server i = 1, 2, the query matrix is Qi = U +V
i and Q

3 = Q
4 = Q

5 = U . Then

each server computes and returns the length-3 vector A
i = Q

i
C

T

i
where C

T

i
is a
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length-9 vector of symbols stored in server i. Write A
i = (Ai

1
, A

i

2
, A

i

3
)T . Let

M1 = (x11, x12, x14, x21, x22, x24, x31, x32, x34),

M2 = (x12, x13, x15, x22, x23, x25, x32, x33, x35),

M3 = (x14, x15, 0, x24, x25, 0, x34, x35, 0).

Consider first the subquery 1; we obtain

C
1

11
+ I

1

1
+ I

1

2
+ I

1

3
= A

1

1
, (1)

C
1

21
+ I

1

1
+ 2I1

2
+ 4I1

3
= A

2

1
, (2)

I
1

1
+ 3I1

2
+ 2I1

3
= A

3

1
, (3)

I
1

1
+ 4I1

2
+ 2I1

3
= A

4

1
, (4)

I
1

1
+ 5I1

2
+ 4I1

3
= A

5

1
, (5)

where I
1

h
= Mh · UT

1
, h = 1, 2, 3, and U1 is the first row of U . The user can solve

for I1
1
, I

1

2
, I

1

3
from (3), (4), (5) as they form the equation

2

6664

1 3 2

1 4 2

1 5 4

3

7775
·

2

6664

I
1

1

I
1

2

I
1

3

3

7775
=

2

6664

A
3

1

A
4

1

A
5

1

3

7775
,

where the left matrix is a (3⇥ 3) submatrix of  which is invertible. Therefore, the

user gets C
1

11
, C

1

21
, which are all the symbols with label 1 in Table 5.3. Similarly,

from subqueries 2 and 3, the user obtains C1

12
, C

1

22
and C

1

13
, C

1

23
, respectively. Hence,

the user has all the symbols of X1 which are stored in the first 2 servers. From the

property of the regenerating codes, the user can reconstruct X1 as desired.

Next we formally give the details of this construction.
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Encoding Step

For Construction 2, we use a
�
k + r, k, r, r, 1, k(2r�k+1)

2

�
MBR code over Fq to store

each record X
1
, . . . , X

m. This means that the encoding function is

E1,k+r,r(X
j) =  · Mj

,

where Mj is the message matrix corresponding to X
j as described in Section 2.2.2.

Write

M =
h
M1 · · · Mm

i
,

and denote by Mi the row i of M, so

Em,k+r,mr(X
1
, . . . , X

m) =
h
 · M1 · · ·  · Mm

i
=  · M.

We denote by Ci the i
th row of Em,k+r,mr(X1

, . . . , X
m) which consists of all m↵

symbols stored in server i.

Retrieval Step

Suppose that the user wants record X
f . In the retrieval step, the user sends an

(↵⇥m↵) query matrix Q
i, which we can interpret as ↵ subqueries, to each server

i, i = 1, . . . , n. To form the query matrices, the user generates an (↵⇥m↵) random

matrix U = [uij] whose elements are chosen uniformly at random from Fq. Then

server 1 server 2 server 3 server 4 server 5
1 1
2 2
3 3

Table 5.3: Retrieval pattern for a (5,2,3,3,1,5) MBR code. The 3⇥ 5 entries correspond to the first

three rows in Table 5.2, which are symbols of X
1
stored in the system. The entries labelled by the

same number, say d, are privately retrieved by subquery d.
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the query matrices are generated as Q
i = U + V

i when i = 1, . . . , k and Q
i = U

when i = k + 1, . . . , n, where V
i is a deterministic binary matrix. The matrix V

i

is designed to have access to all the symbols of the requested record X
f that are

stored in the first k servers. We choose

V
i =

2

4 0↵⇥(f�1)↵ I↵⇥↵ 0↵⇥(m�f)↵

3

5

for i = 1, . . . , k. Then, each server returns the length-r vector Ai = Q
i
C

T

i
, and we

write A
i = (Ai

1
, A

i

2
, . . . , A

i

↵
)T .

Theorem 5.3. Construction 2 (PM-MBR-sep) is information-theoretically perfect.

Proof. Decodability: We can see that for i = 1, . . . , n,

Ci =  i · M

=  i ·

2

6666664

���� M1 ����

���� M2 ����
...

���� Mr ����

3

7777775
=

rX

h=1

 ihMh.

Thus,

C
T

i
=

rX

h=1

 ihMT

h
.

Denote et to be the length-m↵ binary unit vector with 1 at the tth position. Consider
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first the subquery 1; we obtain

C
f

11
+

rX

h=1

 1hI
1

h
= (U1 + e(f�1)↵+1)C

T

1
= A

1

1
, (1)

C
f

21
+

rX

h=1

 2hI
1

h
= (U1 + e(f�1)↵+1)C

T

2
= A

2

1
, (2)

...
...

C
f

k,1
+

rX

h=1

 k,hI
1

h
= (U1 + e(f�1)↵+1)C

T

k
= A

k

1
, (k)

rX

h=1

 k+1,hI
1

h
= U1C

T

k+1
= A

k+1

1
, (k+1)

...
...

rX

h=1

 n,hI
1

h
= U1C

T

n
= A

n

1
, (n)

where I
1

h
= Mh · UT

1
, h = 1, 2, . . . , r, and U1 is the first row of U . The user can

solve for I1
1
, . . . , I

1

r
from (k + 1), . . . , (n) as they form the equation

2

6664

����  k+1 ����
...

����  n ����

3

7775
·

2

6664

I
1

1

...

I
1

r

3

7775
=

2

6664

A
k+1

1

...

A
n

1

3

7775
,

where, since n = k + r, the left matrix is an (r ⇥ r) square submatrix of  which

is invertible. Therefore, the user gets C1

11
, C

1

21
, . . . , C

1

k,1
, which are all the symbols

with label 1 in Table 5.4. Similarly, from subqueries h = 2, . . . ,↵, the user obtains

C
1

1h
, C

1

2h
, . . . , C

1

k,h
. Hence, the user has all the k↵ symbols of Xf which are stored

in the first k servers. From the property of the regenerating codes, the user can

reconstruct Xf as desired.

Privacy: To prove the privacy of the scheme, as we construct the query matrices
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server 1 server 2 server 3 · · · server k server k + 1 · · · server n
1 1 1 · · · 1
2 2 2 · · · 2
...

...
...

...
...

↵ ↵ ↵ · · · ↵

Table 5.4: Retrieval pattern for a
�
k+r, k, r, r, 1,

k(2r�k+1)
2

�
MBR code. The ↵⇥n entries correspond

to the symbols of X
f

stored in the system. The entries labelled by the same number, say d, are

privately retrieved by subquery d.

Q
i via the random matrix U , Qi is independent from f which implies that this

scheme achieves perfect privacy.

Analysis

The storage overhead is

n(m↵)

mB
=

(k + r)r
(k+1)k

2
+ k(r � k)

,

and the cPoP is equal to

n↵

B
=

(k + r)r
(k+1)k

2
+ k(r � k)

.

The smallest SO and cPoP occur when r = k which are both equal to

4k

k + 1
< 4

which are exactly the same as the SO and cPoP of the Shah’s scheme (PM-MBR-

mixed) in [36] when n = 2r = 2m (as the number of records m is fixed to be k).

However, the advantage of this construction is that the number of records m is

independent from the parameter k.
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As the capacity of PIR using regenerating codes is unknown, we now compare

the retrieval rate of our schemes with the capacity of the PIR using MDS codes in

order to identify the gap. Recall that the capacity of PIR with MDS coded database

is

CMDS =
1� k

n

1� ( k
n
)m

.

Table 5.5 shows the comparison between retrieval rate of Construction 2 (PM-MBR-

sep) and the capacity of PIR using MDS codes for the same parameters m, k, n. We

can see that our retrieval rate is not as good as the MDS capacity, but it is closer

to the capacity when the number of records m is larger. For example, when k = 3,

the percentage di↵erence is asymptotically 33.33% as m approaches infinity. The

advantage of the use of PM-MBR codes is that the repair ratio of this scheme is

mr

m↵
= 1

which is the lowest possible, while the MDS schemes give a repair ratio of k > 1.

k n RPIR of Construction 2 CMDS (4.3) % di↵erence
m = 3 3 6 0.3333 0.5714 41.6667

5 10 0.3000 0.5714 47.5
8 16 0.2813 0.5714 50.7813
10 20 0.2750 0.5714 51.8750

m = 5 3 6 0.3333 0.5161 35.4167
5 10 0.3000 0.5161 41.8750
8 16 0.2813 0.5161 45.5078
10 20 0.2750 0.5161 46.7188

m = 7 3 6 0.3333 0.5039 33.8542
5 10 0.3000 0.5039 40.4688
8 16 0.2813 0.5039 44.1895
10 20 0.2750 0.5039 45.4297

Table 5.5: The comparison between retrieval rate of Construction 2 and the capacity of PIR using MDS codes
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5.2.2 Construction 3 (PM-MSR-sep)

Our idea of this construction is to modify Construction 2 (PM-MBR-sep) by using

the PM-MSR code from Section 2.2.3 with n = k + r over the finite field Fq with

parameters

(3k � 2, k, 2k � 2, k � 1, 1, k(k � 1))

to store each record of size ` = k(k�1). In this scheme, the queries submitted to the

first k servers are designed to access symbols of the desired record that are stored

in those k servers, so the desired record can be reconstructed by the property of the

regenerating codes. The retrieval pattern in this scheme is similar to Construction

2 (PM-MBR-sep). The following example will give an illustration of this scheme.

Example 5.4. Suppose that we have 3 records, each of length 6. We write

X
1 = {x11, x12, x13, x14, x15, x16},

X
2 = {x21, x22, x23, x24, x25, x26},

X
3 = {x31, x32, x33, x34, x35, x36}.

Each record is encoded by a (7, 3, 4, 2, 1, 6) MSR code over F13 where the encoding

matrix  is the Vandermonde matrix

 =

2

6666666666666664

1 1 1 1

1 2 4 8

1 3 9 1

1 4 3 12

1 5 12 8

1 6 10 8

1 7 10 5

3

7777777777777775

,
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server 1 server 2 server 3 server 4

x11 + x12 + x14 + x15 x11 + 2x12 + 4x14 + 8x15 x11 + 3x12 + 9x14 + x15 x11 + 4x12 + 3x14 + 12x15

x12 + x13 + x15 + x16 x12 + 2x13 + 4x15 + 8x16 x12 + 3x13 + 9x15 + x16 x12 + 4x13 + 3x15 + 12x16

x21 + x22 + x24 + x25 x21 + 2x22 + 4x24 + 8x25 x21 + 3x22 + 9x24 + x25 x21 + 4x22 + 3x24 + 12x25

x22 + x23 + x25 + x26 x22 + 2x23 + 4x25 + 8x26 x22 + 3x23 + 9x25 + x26 x22 + 4x23 + 3x25 + 12x26

x31 + x32 + x34 + x35 x31 + 2x32 + 4x34 + 8x35 x31 + 3x32 + 9x34 + x35 x31 + 4x32 + 3x34 + 12x35

x32 + x33 + x35 + x36 x32 + 2x33 + 4x35 + 8x36 x32 + 3x33 + 9x35 + x36 x32 + 4x33 + 3x35 + 12x36

server 5 server 6 server 7

x11 + 5x12 + 12x14 + 8x15 x11 + 6x12 + 10x14 + 8x15 x11 + 7x12 + 10x14 + 5x15

x12 + 5x13 + 12x15 + 8x16 x12 + 6x13 + 10x15 + 8x16 x12 + 7x13 + 10x15 + 5x16

x21 + 5x22 + 12x24 + 8x25 x21 + 6x22 + 10x24 + 8x25 x21 + 7x22 + 10x24 + 5x25

x22 + 5x23 + 12x25 + 8x26 x22 + 6x23 + 10x25 + 8x26 x22 + 7x23 + 10x25 + 5x26

x31 + 5x32 + 12x34 + 8x35 x31 + 6x32 + 10x34 + 8x35 x31 + 7x32 + 10x34 + 5x35

x32 + 5x33 + 12x35 + 8x36 x32 + 6x33 + 10x35 + 8x36 x32 + 7x33 + 10x35 + 5x36

Table 5.6: The storage of records X
1
, X

2
, X

3
in the servers

and the message matrix Mj for the record j, j 2 {1, 2, 3} is as described in Section

2.2.3

Mj =

2

6666664

xj1 xj2

xj2 xj3

xj4 xj5

xj5 xj6

3

7777775
.

Hence, each server stores  · M as shown in Table 5.6. Denote C
j

ib
to be the b

th

symbol stored in server i of the record j.

In the retrieval step, suppose the user wants record X
1. The query Q

i is an

(↵ ⇥ m↵) = (2 ⇥ 6) matrix which we can interpret as 2 subqueries submitted to

server i for each i 2 [7]. To form the query matrices, the user generates a (2 ⇥ 6)

random matrix U = [uij] whose elements are chosen uniformly at a random from

F13. Let

V
1 = V

2 = V
3 =

2

41 0 0 0 0 0

0 1 0 0 0 0

3

5 .

For server i = 1, 2, 3, the query matrix is Qi = U+V
i and Q

4 = Q
5 = Q

6 = Q
7 = U .
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Then each server computes and returns the length-2 vector Ai = Q
i
C

T

i
where C

T

i

is a length-6 vector of symbols stored in server i. Write A
i = (Ai

1
, A

i

2
)T . Let

M1 = (x11, x12, x21, x22, x31, x32),

M2 = (x12, x13, x22, x23, x32, x33),

M3 = (x14, x15, x24, x25, x34, x35),

M4 = (x15, x16, x25, x26, x35, x36).

Consider first the subquery 1; we obtain

C
1

11
+ I

1

1
+ I

1

2
+ I

1

3
+ I

1

4
= A

1

1
, (1)

C
1

21
+ I

1

1
+ 2I1

2
+ 4I1

3
+ 8I1

4
= A

2

1
, (2)

C
1

31
+ I

1

1
+ 3I1

2
+ 9I1

3
+ I

1

4
= A

3

1
, (3)

I
1

1
+ 4I1

2
+ 3I1

3
+ 12I1

4
= A

4

1
, (4)

I
1

1
+ 5I1

2
+ 12I1

3
+ 8I1

4
= A

5

1
, (5)

I
1

1
+ 6I1

2
+ 10I1

3
+ 8I1

4
= A

6

1
, (6)

I
1

1
+ 7I1

2
+ 10I1

3
+ 5I1

4
= A

7

1
, (7)

where I
1

h
= Mh · UT

1
, h = 1, 2, 3, 4, and U1 is the first row of U . The user can solve

for I1
1
, I

1

2
, I

1

3
, I

1

4
from (4), (5), (6), (7) as they form the equation

2

6666664

1 4 3 12

1 5 12 8

1 6 10 8

1 7 10 5

3

7777775
·

2

6666664

I
1

1

I
1

2

I
1

3

I
1

4

3

7777775
=

2

6666664

A
4

1

A
5

1

A
6

1

A
7

1

3

7777775
,

where the left matrix is a (4 ⇥ 4) submatrix of  which is invertible. Therefore,
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the user gets C
1

11
, C

1

21
, C

1

31
, which are all the symbols with label 1 in Table 5.7.

Similarly, from subquery 2, the user obtains C1

12
, C

1

22
, C

1

32
. Hence, the user has all

the symbols of X1 which are stored in the first 3 servers. From the property of the

regenerating codes, the user can reconstruct X1 as desired.

server 1 server 2 server 3 server 4 server 5 server 6 server 7
1 1 1
2 2 2

Table 5.7: Retrieval pattern for a (7,3,4,2,1,6) MSR code. The 2⇥ 7 entries correspond to the first

two rows in Table 5.6, which are symbols of X
1
stored in the system. The entries labelled by the

same number, say d, are privately retrieved by subquery d.

Next we formally give the details of this construction.

Encoding Step

For Construction 3, we use a (3k � 2, k, 2k � 2, k � 1, 1, k(k � 1)) MSR code over

Fq to store each record X
1
, . . . , X

m. This means that the encoding function is

E1,3k�2,k�1(X
j) =  · Mj

,

where Mj is the message matrix corresponding to X
j as described in Section 2.2.3.

Write

M =
h
M1 · · · Mm

i
,

and denote by Mi the row i of M, so

Em,3k�2,m(k�1)(X
1
, . . . , X

m) =
h
 · M1 · · ·  · Mm

i
=  · M.

We denote by Ci the ith row of Em,3k�2,m(k�1)(X1
, . . . , X

m) which consists of all m↵

symbols stored in server i.
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Retrieval Step

Suppose that the user wants record X
f . In the retrieval step, the user sends an

(↵⇥m↵) query matrix Q
i, which we can interpret as ↵ = k� 1 subqueries, to each

server i, i = 1, . . . , n. To form the query matrices, the user generates an (↵ ⇥m↵)

random matrix U = [uij] whose elements are chosen uniformly at random from

Fq. Then the query matrices are generated as Qi = U + V
i when i = 1, . . . , k and

Q
i = U when i = k + 1, . . . , n, where V

i is a deterministic binary matrix. The

matrix V
i is designed to have access to all the symbols of the requested record X

f

that are stored in the first k servers. We choose

V
i =

2

4 0↵⇥(f�1)↵ I↵⇥↵ 0↵⇥(m�f)↵

3

5

for i = 1, . . . , k. Then, each server returns the length-(k � 1) vector A
i = Q

i
C

T

i
,

and we write A
i = (Ai

1
, A

i

2
, . . . , A

i

↵
)T .

Theorem 5.5. Construction 3 (PM-MSR-sep) is information-theoretically perfect.

Proof. Decodability: We can see that for i = 1, . . . , n,

Ci =  i · M

=  i ·

2

6666664

���� M1 ����

���� M2 ����
...

���� M2k�2 ����

3

7777775
=

2k�2X

h=1

 ihMh.

Thus,

C
T

i
=

2k�2X

h=1

 ihMT

h
.

Denote et to be the length-m↵ binary unit vector with 1 at the tth position. Consider
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first the subquery 1; we obtain

C
f

11
+

2k�2X

h=1

 1hI
1

h
= (U1 + e(f�1)↵+1)C

T

1
= A

1

1
, (1)

C
f

21
+

2k�2X

h=1

 2hI
1

h
= (U1 + e(f�1)↵+1)C

T

2
= A

2

1
, (2)

...
...

C
f

k,1
+

2k�2X

h=1

 k,hI
1

h
= (U1 + e(f�1)↵+1)C

T

k
= A

k

1
, (k)

2k�2X

h=1

 k+1,hI
1

h
= U1C

T

k+1
= A

k+1

1
, (k+1)

...
...

2k�2X

h=1

 n,hI
1

h
= U1C

T

n
= A

n

1
, (n)

where I
1

h
= Mh · UT

1
, h = 1, 2, . . . , 2k � 2, and U1 is the first row of U . The user

can solve for I1
1
, . . . , I

1

2k�2
from (k + 1), . . . , (n) as they form the equation

2

6664

����  k+1 ����
...

����  n ����

3

7775
·

2

6664

I
1

1

...

I
1

2k�2

3

7775
=

2

6664

A
k+1

1

...

A
n

1

3

7775
,

where, since n = 3k� 2, the left matrix is a ((2k� 2)⇥ (2k� 2)) square submatrix

of  which is invertible. Therefore, the user gets C1

11
, C

1

21
, . . . , C

1

k,1
, i.e., get all the

symbols with label 1 in Table 5.8. Similarly, from subqueries h = 2, . . . ,↵, the user

obtains C1

1h
, C

1

2h
, . . . , C

1

k,h
. Hence, the user has all the k↵ symbols of Xf which are

stored in the first k servers. From the property of the regenerating codes, the user

can reconstruct Xf as desired.

Privacy: To prove the privacy of the scheme, as we construct the query matrices
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server 1 server 2 server 3 · · · server k server k + 1 · · · server n
1 1 1 · · · 1
2 2 2 · · · 2
...

...
...

...
...

↵ ↵ ↵ · · · ↵

Table 5.8: Retrieval pattern for a (3k � 2, k, 2k � 2, k � 1, 1, k(k � 1)) MSR code. The ↵⇥ n entries

correspond to the symbols of X
f

stored in the system. The entries labelled by the same number,

say d, are privately retrieved by subquery d.

Q
i via the random matrix U , Qi is independent from f which implies that this

scheme achieves perfect privacy.

Analysis

In this scheme, storage overhead is

n(m↵)

mB
=

(3k � 2)(k � 1)

k(k � 1)
=

3k � 2

k
< 3,

and cPoP equals
n↵

B
=

(3k � 2)(k � 1)

k(k � 1)
=

3k � 2

k
< 3,

which are both better than Construction 1 (PM-MSR-mixed), and Construction 2

(PM-MBR-sep).
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k n RPIR of Construction 3 CMDS (4.3) % di↵erence
m = 3 3 7 0.4286 0.6203 30.9038

5 13 0.3846 0.6525 41.0560
8 22 0.3636 0.6685 45.6048
10 28 0.3571 0.6735 46.9752

m = 5 3 7 0.4286 0.5798 26.0844
5 13 0.3846 0.6206 38.0260
8 22 0.3636 0.6404 43.2205
10 28 0.3571 0.6466 44.7672

m = 7 3 7 0.4286 0.5730 25.1992
5 13 0.3846 0.6162 37.5778
8 22 0.3636 0.6369 42.9052
10 28 0.3571 0.6433 44.4856

Table 5.9: The comparison between the retrieval rate of Construction 3 and the capacity of PIR

using MDS codes.

Table 5.9 shows the comparison between the retrieval rate of Construction 3

(PM-MSR-sep) and the capacity of PIR using MDS codes for the same parameters

m, k, n. The retrieval rate of Construction 3 is closer to the MDS capacity when the

number of records m is larger. For example, when k = 3, the percentage di↵erence

is asymptotically 25% as m approaches infinity. The repair ratio for this scheme is

mr

m↵
=

(2k � 2)

k � 1
= 2,

which is higher than Construction 2 (PM-MBR-sep). However it is still smaller

than PIR schemes using MDS codes (for example, in Section 4.2.1.2), where the

repair ratio is k, when k > 2.
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5.2.3 Construction 4 (PM-MSR-sep)

In this construction, we also use the PM-MSR codes from Section 2.2.3. Here we

assume that the number of servers is n = ↵ + r over the finite field Fq, so the

parameters of the PM-MSR codes are

(n, k, r,↵, �, B) = (3k � 3, k, 2k � 2, k � 1, 1, k(k � 1)).

In this scheme, the queries submitted to the first k servers are designed to access

symbols of the desired record that are stored in those k servers. However, the

retrieval pattern in this construction is di↵erent from Constructions 2 and 3, and

the number of subqueries is k instead of ↵. We first start with an example to

motivate our scheme.

Example 5.6. Suppose that we have 3 records, each of length 6. We write

X
1 = {x11, x12, x13, x14, x15, x16},

X
2 = {x21, x22, x23, x24, x25, x26},

X
3 = {x31, x32, x33, x34, x35, x36}.

Each record is encoded by a (6, 3, 4, 2, 1, 6) MSR code over F13 where the encoding

matrix  is the Vandermonde matrix

 =

2

6666666666664

1 1 1 1

1 2 4 8

1 3 9 1

1 4 3 12

1 5 12 8

1 6 10 8

3

7777777777775

,
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server 1 server 2 server 3

x11 + x12 + x14 + x15 x11 + 2x12 + 4x14 + 8x15 x11 + 3x12 + 9x14 + x15

x12 + x13 + x15 + x16 x12 + 2x13 + 4x15 + 8x16 x12 + 3x13 + 9x15 + x16

x21 + x22 + x24 + x25 x21 + 2x22 + 4x24 + 8x25 x21 + 3x22 + 9x24 + x25

x22 + x23 + x25 + x26 x22 + 2x23 + 4x25 + 8x26 x22 + 3x23 + 9x25 + x26

x31 + x32 + x34 + x35 x31 + 2x32 + 4x34 + 8x35 x31 + 3x32 + 9x34 + x35

x32 + x33 + x35 + x36 x32 + 2x33 + 4x35 + 8x36 x32 + 3x33 + 9x35 + x36

server 4 server 5 server 6

x11 + 4x12 + 3x14 + 12x15 x11 + 5x12 + 12x14 + 8x15 x11 + 6x12 + 10x14 + 8x15

x12 + 4x13 + 3x15 + 12x16 x12 + 5x13 + 12x15 + 8x16 x12 + 6x13 + 10x15 + 8x16

x21 + 4x22 + 3x24 + 12x25 x21 + 5x22 + 12x24 + 8x25 x21 + 6x22 + 10x24 + 8x25

x22 + 4x23 + 3x25 + 12x26 x22 + 5x23 + 12x25 + 8x26 x22 + 6x23 + 10x25 + 8x26

x31 + 4x32 + 3x34 + 12x35 x31 + 5x32 + 12x34 + 8x35 x31 + 6x32 + 10x34 + 8x35

x32 + 4x33 + 3x35 + 12x36 x32 + 5x33 + 12x35 + 8x36 x32 + 6x33 + 10x35 + 8x36

Table 5.10: The storage of records X
1
, X

2
, X

3
in the servers

and the message matrix Mj for the record j, j 2 {1, 2, 3} is as described in Section

2.2.3

Mj =

2

6666664

xj1 xj2

xj2 xj3

xj4 xj5

xj5 xj6

3

7777775
.

Hence, each server stores  · M as shown in Table 5.10. Denote C
j

ib
to be the b

th

symbol stored in server i of the record j.

In the retrieval step, suppose the user wants record X
1. The query Q

i is a

(k ⇥m↵) = (3 ⇥ 6) matrix which we can interpret as k = 3 subqueries submitted

to server i for each i 2 [6]. To form the query matrices, the user generates a (3⇥ 6)

random matrix U = [uij] whose elements are chosen uniformly at random from F13.

Let

V
1 =

2

6664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

3

7775
, V

2 =

2

6664

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

3

7775
,
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V
3 =

2

6664

0 1 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

3

7775
.

For server i = 1, 2, 3, the query matrix is Q
i = U + V

i, and Q
4 = Q

5 = Q
6 = U .

Then each server computes and returns the length-3 vector Ai = Q
i
C

T

i
where C

T

i

is a length-6 vector of symbols stored in server i. Write A
i = (Ai

1
, A

i

2
, A

i

3
)T . Let

M1 = (x11, x12, x21, x22, x31, x32)
T
,

M2 = (x12, x13, x22, x23, x32, x33)
T
,

M3 = (x14, x15, x24, x25, x34, x35)
T
,

M4 = (x15, x16, x25, x26, x35, x36)
T
.

Consider first the subquery 1; we obtain

C
1

11
+ I

1

1
+ I

1

2
+ I

1

3
+ I

1

4
= A

1

1
, (1)

I
1

1
+ 2I1

2
+ 4I1

3
+ 8I1

4
= A

2

1
, (2)

C
1

32
+ I

1

1
+ 3I1

2
+ 9I1

3
+ I

1

4
= A

3

1
, (3)

I
1

1
+ 4I1

2
+ 3I1

3
+ 12I1

4
= A

4

1
, (4)

I
1

1
+ 5I1

2
+ 12I1

3
+ 8I1

4
= A

5

1
, (5)

I
1

1
+ 6I1

2
+ 10I1

3
+ 8I1

4
= A

6

1
, (6)

where I
1

h
= Mh · UT

1
, h = 1, 2, 3, 4, and U1 is the first row of U . The user can solve
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for I1
1
, I

1

2
, I

1

3
, I

1

4
from (2), (4), (5), (6) as they form the equation

2

6666664

1 2 4 8

1 4 3 12

1 5 12 8

1 6 10 8

3

7777775
·

2

6666664

I
1

1

I
1

2

I
1

3

I
1

4

3

7777775
=

2

6666664

A
2

1

A
4

1

A
5

1

A
6

1

3

7777775
,

where the left matrix is a (4 ⇥ 4) submatrix of  which is invertible. Therefore,

the user gets C
1

11
and C

1

32
, which are all the symbols with label 1 in Table 5.11.

Similarly, from subqueries 2, 3, the user obtains C1

12
, C

1

21
and C

1

22
, C

1

31
, respectively.

Hence, the user has all the symbols of X1 which are stored in the first 3 servers.

From the property of the regenerating codes, the user can reconstructX1 as desired.

server 1 server 2 server 3 server 4 server 5 server 6
1 2 3
2 3 1

Table 5.11: Retrieval pattern for a (6,3,4,2,1,6) MSR code. The 2⇥ 6 entries correspond to the first

two rows in Table 5.10, which are symbols of X
1
stored in the system. The entries labelled by the

same number, say d, are privately retrieved by subquery d.

Next we formally give the details of this construction.

Encoding Step

Recall that we use a (3k� 3, k, 2k� 2, k� 1, 1, k(k� 1)) MSR code over Fq to store

each record X
1
, . . . , X

m. This means that the encoding function is

E1,3k�3,k�1(X
j) =  · Mj

,

where Mj is the message matrix corresponding to X
j as described in Section 2.2.3.

Write

M =
h
M1 · · · Mm

i
,
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and denote by Mi the row i of M, so

Em,3k�3,m(k�1)(X
1
, . . . , X

m) =
h
 · M1 · · ·  · Mm

i
=  · M.

We denote by Ci the ith row of Em,3k�3,m(k�1)(X1
, . . . , X

m) which consists of all m↵

symbols stored in server i.

Retrieval Step

Suppose that the user wants record X
f . In the retrieval step, the user sends a

(k ⇥m↵) query matrix Q
i, which we can interpret as k subqueries, to each server

i, i = 1, . . . , n. To form the query matrices, the user generates a (k ⇥m↵) random

matrix U = [uij] whose elements are chosen uniformly at a random from Fq. Then

the query matrices are generated as Q
i = U + V

i when i = 1, . . . , k and Q
i = U

when i = k + 1, . . . , n, where V
i is a deterministic binary matrix. The matrix V

i

is designed to have access to all the symbols of the requested record X
f that are

stored in the first k servers. We choose

V
1 =

2

4 0k⇥(f�1)↵

I(k�1)⇥(k�1)

01⇥(k�1)

0k⇥(m�f)↵

3

5

and V
i
, i = 2, . . . , k is obtained from the matrix V

i�1 by a single downward cyclic

shift of its row vectors. Then, each server computes and returns the length-k vector

A
i = Q

i
C

T

i
, and we write A

i = (Ai

1
, A

i

2
, . . . , A

i

k
)T .
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Theorem 5.7. Construction 4 (PM-MSR-sep) is information-theoretically perfect.

Proof. Decodability: We can see that for i = 1, . . . , n,

Ci =  i · M

=  i ·

2

6666664

���� M1 ����

���� M2 ����
...

���� M2k�2 ����

3

7777775
=

2k�2X

h=1

 ihMh.

Thus,

C
T

i
=

2k�2X

h=1

 ihMT

h
.

Denote et to be the length-m↵ binary unit vector with 1 at the tth position. Consider
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first the subquery 1; we obtain

C
f

11
+

2k�2X

h=1

 1hI
1

h
= (U1 + e(f�1)↵+1)C

T

1
= A

1

1
, (1)

2k�2X

h=1

 2hI
1

h
= U1C

T

2
= A

2

1
, (2)

C
f

3,k�1
+

2k�2X

h=1

 3hI
1

h
= (U1 + e(f�1)↵+(k�1))C

T

3
= A

3

1
, (3)

C
f

4,k�2
+

2k�2X

h=1

 4hI
1

h
= (U1 + e(f�1)↵+(k�2))C

T

4
= A

4

1
, (4)

...
...

C
f

k,2
+

2k�2X

h=1

 k,hI
1

h
= (U1 + e(f�1)↵+2)C

T

k
= A

k

1
, (k)

2k�2X

h=1

 k+1,hI
1

h
= U1C

T

k+1
= A

k+1

1
, (k+1)

...
...

2k�2X

h=1

 n,hI
1

h
= U1C

T

n
= A

n

1
, (n)

where I
1

h
= Mh · UT

1
, h = 1, 2, . . . , 2k � 2, and U1 is the first row of U . The user

can solve for I1
1
, . . . , I

1

2k�2
from (2), (k + 1), . . . , (n) as they form the equation

2

6666664

����  2 ����

����  k+1 ����
...

����  n ����

3

7777775
·

2

6666664

I
1

1

I
1

2

...

I
1

2k�2

3

7777775
=

2

6666664

A
2

1

A
k+1

1

...

A
n

1

3

7777775
,

where, since n = 3k�3, the left matrix is a ((2k�2)⇥(2k�2)) square submatrix of

 which is invertible. Therefore, the user gets C1

11
, C

1

3,k�1
, C

1

4,k�2
, . . . , C

1

k,2
, i.e., get
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server 1 server 2 server 3 · · · server k � 1 server k server k + 1 · · · server n
1 2 3 · · · k � 1 k

2 3 4 · · · k 1
...

...
...

...
...

...
k � 2 k � 1 k · · · k � 4 k � 3
k � 1 k 1 · · · k � 3 k � 2

Table 5.12: Retrieval pattern for a (3k� 3, k, 2k� 2, k� 1, 1, k(k� 1)) MSR code. The ↵⇥n entries

correspond to the symbols of X
f

stored in the system. The entries labelled by the same number,

say d, are privately retrieved by subquery d.

all the symbols with label 1 in Table 5.12. Similarly, from subqueries h = 2, . . . , k,

the user obtains all the symbols with label h in Table 5.12. Hence, the user has all

the symbols of Xf which are stored in the first k servers. From the property of the

regenerating codes, the user can reconstruct Xf as desired.

Privacy: To prove the privacy of the scheme, as we construct the query matrices

Q
i via the random matrix U , Qi is independent from f which implies that this

scheme achieves perfect privacy.

Analysis

The storage overhead is

n(m↵)

mB
=

(3k � 3)(k � 1)

k(k � 1)
=

3k � 3

k
< 3,

and cPoP is equal to
nk

B
=

(3k � 3)k

k(k � 1)
= 3,

which are both better than Construction 1 (PM-MSR-mixed), and Construction 2

(PM-MBR-sep) when k � 3. With di↵erent retrieval pattern between Constructions

3 and 4 (PM-MSR-sep), we can see that in this construction, storage overhead is

lower than Construction 3 while cPoP is slightly higher.
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k n RPIR of Construction 4 CMDS (4.3) % di↵erence
m = 3 3 6 0.3333 0.5714 41.6667

5 12 0.3333 0.6288 46.9907
8 21 0.3333 0.6553 49.1308
10 27 0.3333 0.6633 49.7485

m = 5 3 6 0.3333 0.5161 35.4167
5 12 0.3333 0.5908 43.5748
8 21 0.3333 0.6241 46.5859
10 27 0.3333 0.6340 47.4278

m = 7 3 6 0.3333 0.5039 33.8542
5 12 0.3333 0.5846 42.9817
8 21 0.3333 0.6198 46.2165
10 27 0.3333 0.6302 47.1094

Table 5.13: The comparison between the retrieval rate of Construction 4 and the capacity of PIR

using MDS codes.

Table 5.13 shows the comparison between the retrieval rate of Construction 4

(PM-MSR-sep) and the capacity of PIR using MDS codes for the same parameters

m, k, n. Similar to Construction 3 (PM-MSR-sep), the repair ratio is RR = 2, and

the retrieval rate of Construction 4 (PM-MSR-sep) is closer to the capacity for

MDS codes when the number of records m is larger. For example, when k = 3, the

percentage di↵erence is asymptotically 33.33% as m approaches infinity.

Chapter Summary

To sum up, we apply the technique from Shah’s scheme (PM-MBR-mixed) to build

Construction 1 (PM-MSR-mixed), which has better SO, but worse cPoP and RR.

Afterwards, we construct three PIR schemes under the separate coding architecture.

Construction 2 (PM-MBR-sep) has the same SO, cPoP and RR with Shah’s scheme

(PM-MBR-mixed) with more flexibility that allows the number of records m being

independent from the parameter k of the underlying code. Constructions 3 and 4

(PM-MSR-sep) have better SO and cPoP, but worse RR than Construction 2 (PM-

MBR-sep). Compared with Construction 1 that uses the same PM-MSR codes,
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Constructions 3 and 4 also have better SO and cPoP. Hence, our schemes under

the separate coding architecture (Constructions 2, 3, and 4) are more e�cient than

schemes under the mixed coding architecture (Shah’s scheme and Construction 1),

so we continue to investigate further on PIR using product-matrix regenerating

codes under the separate coding architecture in Chapters 6 and 7.
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Chapter 6

Multi-Message PIR using

PM-MSR and PM-MBR codes

We discuss a multi-message scenario in this chapter, where a user wants to retrieve

more than one record. Trivially, a single-message PIR scheme can be repeatedly

operated to retrieve multiple records. However, we wish for a more e�cient way.

We notice that during the retrieval step of PIR, we obtain some undesired symbols

in order to obtain the desired record. Thus, we investigate how we can exploit

those undesired symbols to retrieve more records. In Section 6.1, we propose the

storage model using product-matrix regenerating codes under the separate coding

architecture, and the retrieval scheme of MPIR under this storage model. In Section

6.2, we derive decodability condition of MPIR under this model. We also analyse

relationships between SO, cPoP and RR, and obtain a trade-o↵ curve between

cPoP and RR. In Section 6.3, we modify Constructions 2, 3, and 4 to be able to

retrieve multiple records, and show that these constructions attain the trade-o↵

curve between cPoP and RR. To the best of our knowledge, these are the first

MPIR schemes using regenerating codes.
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6.1 System Model

In this section, we formally present the storage model and its retrieval scheme of

MPIR using product-matrix regenerating codes under the separate coding

architecture. Suppose there are n non-communicating servers in the system that

store a database X which consists of m records, each of length `, denoted by

X
1
, X

2
, . . . , X

m 2 F`

q
. Each record is encoded and distributed across n servers by

the same product-matrix regenerating code with parameters (n, k, r,↵, �, `) with

the encoding matrix  . Hence,

E1,n,↵(X
j) =  n⇥r · Mj

r⇥↵

where Mj is the corresponding message matrix of Xj. We denote E1,n,↵(Xj) by C
j.

Note that the constraint of q here is the constraint of the underlying code. Write

M =
h
M1 · · · Mm

i
,

and denote by Mi the row i of M. Hence, we can see the entire system as

Em,n,m↵(X
1
, . . . , X

m) =
h
 · M1 · · ·  · Mm

i
=  · M,

and each server stores m↵ symbols in total. We simply write Em,n,m↵(X1
, . . . , X

m)

as C. We denote by Ci the row i of C which is all symbols stored in server i, and

C
j

i
the row i of Cj which is all symbols of Xj stored in server i.

We assume that in the retrieval step the user wants to download p records when

p  m, denoted by X
f1 , . . . , X

fp . The user submits a d⇥m↵ query matrix Q
i over

Fq to server i. We can interpret d rows of Qi as d subqueries, which depend on

how we design the query to access desired symbols. Finally, server i computes and

responds with an answer Ai = Q
i
C

T

i
. The retrieval steps are as follows:
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(i) (Initialisation) The user generates a d ⇥ m↵ matrix U whose elements are

chosen uniformly at random over Fq. Let Uj be row j of U .

(ii) (Query Generation) The query matrix Q
i is defined by d⇥↵ binary matrices

V
if1 , . . . , V

ifp ,

as

Q
i = U + V

if1E
f1 + · · ·+ V

ifpE
fp

where

E
fu =

h
0↵⇥(fu�1)↵ I↵⇥↵ 0↵⇥(m�fu)↵

i
.

In other words, Efu is an ↵ ⇥ m↵ matrix such that Ci(Efu)T = C
fu
i

which

is a coded data piece of a desired record X
fu stored in server i. If the entry

(j, b) of V ifu is 1, then it implies that the entry C
fu

ib
is privately retrieved by

the j
th subquery of Qi.

(iii) (Response Mappings) Each server i returns a d⇥1 column vector Ai = Q
i
C

T

i
.

This extends the general framework in [11, 14, 29–31] to retrieve multiple records.

An MPIR scheme is said to be information-theoretically perfect if

(i) (privacy) H(f1, . . . , fp|Qi) = H(f1, . . . , fp) for every i 2 [n];

(ii) (decodability) H(Xf1 , . . . , X
fp |A1

, . . . , A
n) = 0.

According to our definition, (i) implies that a server i does not obtain any

information about which records are being downloaded by the user, and (ii)

ensures that the user can recover the desired records X
f1 , . . . , X

fp with no errors

from all responses A
i for i 2 [n]. In this model, three metrics to measure the
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e�ciency of the scheme can be calculated as follows: first, storage overhead equals

SO = n(m↵)/m` = n↵/`,

then cPoP is

cPoP = dn/p`,

and lastly, repair ratio is equal to

RR = mr�/m↵ = r�/↵.

6.2 Decodability Condition and Trade-o↵

Analysis

From the retrieval scheme, the response from server i can be written as a 1⇥ d row

vector

(Ai)T = Ci(Q
i)T

= Ci[U
T + (Ef1)T (V if1 )T + · · ·+ (Efp)T (V ifp )T ]

= CiU
T + Ci(E

f1)T (V if1 )T + · · ·+ Ci(E
fp)T (V ifp )T

= CiU
T + (Cf1

i
)(V if1 )T + · · ·+ (Cfp

i
)(V ifp )T .

Then, the j
th response in A

i is A
i

j
= Ci(Uj)T + (Cf1

i
)(V

if1
j

)T + · · · + (Cfp

i
)(V

ifp

j
)T

where V
ifu
j

is the row j of V ifu , u 2 [p]. Hence, records X
f1 , . . . , X

fp should be

decoded by solving the system of linear equations

A
i

j
= Ci(Uj)

T + (Cf1
i
)(V

if1
j

)T + · · ·+ (Cfp

i
)(V

ifp

j
)T ,
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for all i 2 [n], j 2 [d] where the unknowns are

�
Ci(Uj)

T : i 2 [n], j 2 [d]
 
and

n
C

fu

ib
: u 2 [p], i 2 [n], b 2 [↵]

o
.

Consider first the set of unknowns
�
Ci(Uj)T , i 2 [n], j 2 [d]

 
, for each j 2 [d],

C(Uj)
T =  · M · (Uj)

T

=  ·
h
I
j

1
· · · I

j

r

iT

where I
j

h
= Mh · (Uj)T , for every row h 2 [r] of the matrix M. For the set of

unknowns
n
C

fu

ib
, u 2 [p], i 2 [n], b 2 [↵]

o
, we know that

C
fu

ib
= the entry (i, b) of  · Mfu , 8u 2 [p], i 2 [n], b 2 [↵].

Hence, the retrieval scheme is decodable if the following system of linear equations

8
>>>><

>>>>:

A
i

j
= Ci(Uj)

T + (Cf1
i
)(V

if1
j

)T + · · ·+ (Cfp

i
)(V

ifp

j
)T , i 2 [n], j 2 [d]

Ci(Uj)
T =  i ·

h
I
j

1
· · · I

j

r

iT
, i 2 [n], j 2 [d]

C
fu

ib
= the entry (i, b) of Cfu , u 2 [p], i 2 [n], b 2 [↵]

has a unique solution, where the unknowns are

�
Ci(Uj)

T : i 2 [n], j 2 [d]
 
and

n
C

fu

ib
: u 2 [p], i 2 [n], b 2 [↵]

o
.

This condition is called decodability condition.

Next, we analyse the relationship between storage overhead, cPoP, and repair

ratio. First, we count the number of unknowns in the system of linear equations in

the decodability condition which is equal to nd+ pn↵. Next, we count the number
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of linearly independent equations in the system. Consider

Ci(Uj)
T =  i ·

h
I
j

1
· · · I

j

r

iT
, 8i 2 [n], j 2 [d],

so we have, for each j 2 [d],

C(Uj)
T =  ·

h
I
j

1
· · · I

j

r

iT
.

Since  is of rank r, it has a parity check matrix P of rank n�r such that P · = 0.

So we have

P · C(Uj)
T = P · ·

h
I
j

1
· · · I

j

r

iT
= 0.

This gives us n� r linearly independent equations for each j 2 [d]. Then, for

C
fu

ib
= the entry (i, b) of Cfu , 8u 2 [p], i 2 [n], b 2 [↵],

since any k rows of Cfu would give us Mfu , the remaining n� k rows must be able

to be written in terms of linear combinations of those k rows of Cfu . This give us

(n � k)↵ equations in C
fu

ib
. Hence, there are at most nd + (n � r)d + p(n � k)↵

linearly independent equations in the system. If the retrieval scheme meets the

decodability condition, then

nd+ pn↵  nd+ (n� r)d+ p(n� k)↵,

which implies that

pk↵  (n� r)d.

Therefore,

1  dn

p`
· `

n↵
· n� r

k
.
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In terms of storage overhead and cPoP we have

1  cPoP

✓
n� r

k(SO)

◆
. (6.1)

This shows that cPoP is bounded below by storage overhead.

Next, we recall that the trade-o↵ between storage overhead and repair

bandwidth of regenerating codes is given by [23] which is

k�1X

i=0

min{↵, (r � i)�} � `,

for the regenerating code with parameters (n, k, r,↵, �, `). So, we have

k�1X

i=0

min

⇢
1,

✓
1� i

r

◆
r�

↵

�
� `

↵
,

which can be written in terms of storage overhead and repair ratio as

k�1X

i=0

min

⇢
1,

✓
1� i

r

◆
RR

�
� n

SO
.

From the inequality (6.1), we have

n

SO
�
✓

nk

n� r

◆
1

cPoP
,

therefore, the relationship between repair ratio and cPoP is obtained as

k�1X

i=0

min

⇢
1,

✓
1� i

r

◆
RR

�
�
✓

nk

n� r

◆
1

cPoP
, (6.2)

which shows that there is a trade-o↵ between cPoP and RR.

94



6.3 MPIR Schemes

In this section, we generalise Constructions 2, 3, 4 in Section 5.2 to be able to

retrieve multiple records. The idea is that, in those constructions, the number of

servers n is fixed to be either k + r or ↵+ r. Two possible responses of server i for

subquery j are

A
i

j
=

rX

h=1

 i,hI
j

h

and

A
i

j
= C

f

i,a
+

rX

h=1

 i,hI
j

h
,

for some a 2 [↵]. The subqueries in those constructions are designed to have r

responses in the former possibility, so the undesired symbols Ij
1
, . . . , I

j

r
can be solved.

Then we can obtain n � r desired symbol from the others n � r responses in the

latter possibility. Hence, if we allow the number of servers n to be higher than the

fixed value k + r or ↵ + r, then we will be able to obtain more desired symbols.

From this idea, we modify Constructions 2, 3, 4 to new MPIR schemes, and we can

prove that these MPIR schemes attain the trade-o↵ curve between cPoP and RR

(6.2) with equality.

6.3.1 Construction 5 (PM-MBR-sep)

This construction is the generalisation of Construction 2. We use the PM-MBR

code in Section 2.2.2 over the finite field Fq. Here, we assume that the number of

servers is

n � k + r,
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so the parameters of the PM-MBR code are

(n, k, r,↵, �, `) =

✓
n, k, r, r, 1,

k(2r � k + 1)

2

◆
.

The number of records that can be retrieved in this scheme is

p 
j
n� r

k

k
.

Hence, a su�ciently large value of n � k+r guarantees that this scheme can retrieve

at least 1 record. In this scheme, the queries submitted to servers (u�1)k+1, . . . , uk,

where u 2 [p], are designed to access symbols of the uth desired record that are stored

in those k servers, so the u
th desired record can be reconstructed by the property

of regenerating codes. We first start with an example to motivate our scheme.

Example 6.1. Suppose that we have 3 records over the finite field F13, each with

size 5, which can be written as

X
j = {xj1, xj2, xj3, xj4, xj5}, for j = 1, 2, 3.

Each record is encoded by a (7, 2, 3, 3, 1, 5) PM-MBR code over F13 where the

encoding matrix  is the Vandermonde matrix

 =

2

6666666666666664

1 1 1

1 2 4

1 3 9

1 4 3

1 5 12

1 6 10

1 7 10

3

7777777777777775

,
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server 1 server 2 server 3 server 4

x11 + x12 + x14 x11 + 2x12 + 4x14 x11 + 3x12 + 9x14 x11 + 4x12 + 3x14

x12 + x13 + x15 x12 + 2x13 + 4x15 x12 + 3x13 + 9x15 x12 + 4x13 + 3x15

x14 + x15 x14 + 2x15 x14 + 3x15 x14 + 4x15

x21 + x22 + x24 x21 + 2x22 + 4x24 x21 + 3x22 + 9x24 x21 + 4x22 + 3x24

x22 + x23 + x25 x22 + 2x23 + 4x25 x22 + 3x23 + 9x25 x22 + 4x23 + 3x25

x24 + x25 x24 + 2x25 x24 + 3x25 x24 + 4x25

x31 + x32 + x34 x31 + 2x32 + 4x34 x31 + 3x32 + 9x34 x31 + 4x32 + 3x34

x32 + x33 + x35 x32 + 2x33 + 4x35 x32 + 3x33 + 9x35 x32 + 4x33 + 3x35

x34 + x35 x34 + 2x35 x34 + 3x35 x34 + 4x35

server 5 server 6 server 7

x11 + 5x12 + 12x14 x11 + 6x12 + 10x14 x11 + 7x12 + 10x14

x12 + 5x13 + 12x15 x12 + 6x13 + 10x15 x12 + 7x13 + 10x15

x14 + 5x15 x14 + 6x15 x14 + 7x15

x21 + 5x22 + 12x24 x21 + 6x22 + 10x24 x21 + 7x22 + 10x24

x22 + 5x23 + 12x25 x22 + 6x23 + 10x25 x22 + 7x23 + 10x25

x24 + 5x25 x24 + 6x25 x24 + 7x25

x31 + 5x32 + 12x34 x31 + 6x32 + 10x34 x31 + 7x32 + 10x34

x32 + 5x33 + 12x35 x32 + 6x33 + 10x35 x32 + 7x33 + 10x35

x34 + 5x35 x34 + 6x35 x34 + 7x35

Table 6.1: The storage of records X
1
, X

2
, X

3
in the servers

and the message matrix Mj for the record j, j 2 {1, 2, 3} is as described in Section

2.2.2

Mj =

2

6664

xj1 xj2 xj4

xj2 xj3 xj5

xj4 xj5 0

3

7775
.

Hence, each server stores  · M as shown in Table 6.1.

Recall that Cj

ib
is the b

th symbol of record j, stored in server i. Here the entire

database can be recovered from the content of any 2 servers, and if any one server

failed, it can be repaired by downloading one symbol each from 3 of the remaining

servers. In the retrieval step, we see that this scheme can retrieve p  b7�3

2
c = 2

records. Suppose the user wants record X
1 and X

2. The query Q
i is a (3 ⇥ 9)

matrix which we can interpret as 3 subqueries submitted to server i for each i 2 [7].

To form the query matrices, the user generates a (3⇥ 9) random matrix U = [uij]
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whose entries are chosen uniformly at random from F13. Recall that V ij is a matrix

which is part of the query submitted to server i, attempting to retrieve information

about record X
j. Choose

V
11 = V

21 = V
32 = V

42 =

2

6664

1 0 0

0 1 0

0 0 1

3

7775
,

and

V
12 = V

22 = V
31 = V

41 = V
51 = V

52 = V
61 = V

62 = V
71 = V

72 = 03⇥3.

Here, for example, the entry (3, 3) of V 42 is 1 which implies that the 3rd symbol of

X
2 stored in server 4 is accessed by subquery 3 of Q4. As

E
1 =

2

6664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

3

7775

E
2 =

2

6664

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

3

7775
,

we have

V
11E

1 = V
21E

1 =

2

6664

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

3

7775
,
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V
32E

2 = V
42E

2 =

2

6664

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

3

7775
,

and

V
12E

2 = V
22E

2 = V
31E

1 = V
41E

1 =

V
51E

1 = V
52E

2 = V
61E

1 = V
62E

2 = V
71E

1 = V
72E

2 = 03⇥9.

The query matrices are Qi = U+V
i1E

1+V
i2E

2
, i 2 [7]. Then each server computes

and returns the length-3 vector A
i = Q

i
C

T

i
. Write (Ai)T = (Ai

1
, A

i

2
, A

i

3
). Recall

that

M1 = (x11, x12, x14, x21, x22, x24, x31, x32, x34),

M2 = (x12, x13, x15, x22, x23, x35, x32, x33, x35),

M3 = (x14, x15, 0, x24, x25, 0, x34, x35, 0).

Consider first subquery 1; we obtain

C
1

11
+ I

1

1
+ I

1

2
+ I

1

3
= A

1

1
, (1.1)

C
1

21
+ I

1

1
+ 2I1

2
+ 4I1

3
= A

2

1
, (1.2)

C
2

34
+ I

1

1
+ 3I1

2
+ 9I1

3
= A

3

1
, (1.3)

C
2

44
+ I

1

1
+ 4I1

2
+ 3I1

3
= A

4

1
, (1.4)

I
1

1
+ 5I1

2
+ 12I1

3
= A

5

1
, (1.5)

I
1

1
+ 6I1

2
+ 10I1

3
= A

6

1
, (1.6)

I
1

1
+ 7I1

2
+ 10I1

3
= A

7

1
, (1.7)

where I
1

h
= Mh · UT

1
, h = 1, 2, 3, and U1 is the first row of U . The user can solve
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for I1
1
, I

1

2
, I

1

3
from (1.5),(1.6),(1.7) as they form the equation

2

6664

1 5 12

1 6 10

1 7 10

3

7775
·

2

6664

I
1

1

I
1

2

I
1

3

3

7775
=

2

6664

A
5

1

A
6

1

A
7

1

3

7775
,

where the left matrix is the (3⇥3) submatrix of  which is invertible by the design

of the encoding matrix. Therefore, the user gets C1

11
and C

1

31
for record 1 and C

2

34

and C
2

44
for record 2, which are all the symbols with label 1 in Table 6.2. Similarly,

from subquery 2, the user obtains C
1

12
and C

1

22
for record 1 and C

2

35
and C

2

45
for

record 2. Lastly, from subquery 3, the user obtains C1

13
and C

1

23
for record 1 and C

2

36

and C
2

46
for record 2. Hence, the user has all the symbols of X1 which are stored in

the server 1, 2 and all the symbols of X2 which are stored in the server 3, 4. From

the recovery property of regenerating codes, the user can reconstruct X
1 and X

2

as desired.

server 1 server 2 server 3 server 4 server 5 server 6 server 7
1 1
2 2
3 3

1 1
2 2
3 3

Table 6.2: Retrieval pattern for a (7, 2, 3, 3, 1, 5) MBR code. The m↵⇥ n entries correspond to C
T

and the entries labelled by the same number, say d, are privately retrieved by subquery d.

Next we formally give the details of this construction.
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Encoding Step

Recall that we use the MBR code with parameters

(n, k, r,↵, �, B) =

✓
n, k, r, r, 1,

k(2r � k + 1)

2

◆

over Fq with n � k + r to store each record X
1
, . . . , X

m, which means that

C
j =  · Mj

where Mj is the message matrix corresponding to X
j as described in Section 2.2.2,

so

C =
h
 · M1 · · ·  · Mm

i
.

Retrieval Step

Suppose that the user wants to retrieve p  bn�r

k
c records Xf1 , X

f2 , . . . , X
fp . In the

retrieval step, the user sends an (↵⇥m↵) query matrix Q
i, which we can interpret

as ↵ subqueries, to each server i, i = 1, . . . , n. To form the query matrices, the user

generates an (↵⇥m↵) random matrix U = [uij] whose entries are chosen uniformly

at a random from Fq. We choose, for u 2 [p], w 2 [k],

V
(w+(u�1)k)fu = I↵⇥↵,

and for others V st which are not defined above, we choose V
st = 0↵⇥↵. As

E
fu =

h
0↵⇥(fu�1)↵ I↵⇥↵ 0↵⇥(m�fu)↵

i
,

we have

V
(w+(u�1)k)fuE

fu =
h
0↵⇥(fu�1)↵ I↵⇥↵ 0↵⇥(m�fu)↵

i
.
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For the rest, we have V
stE

ft = 0↵⇥m↵. The query matrices are

Q
i = U + V

if1E
f1 + · · ·+ V

ifpE
fp , i 2 [n].

Then, each server computes and returns the length-↵ A
i = Q

i
C

T

i
, and we write

(Ai)T = (Ai

1
, A

i

2
, . . . , A

i

↵
).

Theorem 6.2. Construction 5 (PM-MBR-sep) is information-theoretically perfect.

Proof. Decodability: We can see that for i = 1, . . . , n,

Ci =  i · M

=  i ·

2

6666664

���� M1 ����

���� M2 ����
...

���� Mr ����

3

7777775

=
rX

h=1

 ihMh.

Thus,

C
T

i
=

rX

h=1

 ihMT

h
.

Denote et to be the length-m↵ binary unit vector with 1 at the tth position. Consider
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first subquery 1; we obtain

C
f1
1,1

+
rX

h=1

 1hI
1

h
= (U1 + e(f1�1)↵+1)C

T

1
= A

1

1
,

...
...

C
f1
k,1

+
rX

h=1

 k,hI
1

h
= (U1 + e(f1�1)↵+1)C

T

k
= A

k

1
,

...
...

C
fp

(p�1)k+1,1
+

rX

h=1

 (p�1)k+1,hI
1

h
= (U1 + e(fp�1)↵+1)C

T

(p�1)k+1
= A

(p�1)k+1

1
,

...
...

C
fp

pk,1
+

rX

h=1

 pk,hI
1

h
= (U1 + e(fp�1)↵+1)C

T

pk
= A

pk

1
,

rX

h=1

 pk+1,h, I
1

h
= U1C

T

pk+1
= A

pk+1

1
,

...
...

rX

h=1

 n,h, I
1

h
= U1C

T

n
= A

n

1
,

where I
1

h
= U1 · MT

h
, h = 1, 2, . . . , r, and U1 is the first row of U . Since p  bn�r

k
c,

we can see that n�pk � r, which means we can choose any r responses from server

pk + 1 to server n to solve for I
1

1
, . . . , I

1

r
. Without loss of generality, we choose

responses from server pk + 1 to server pk + r as they form the equation

2

6664

����  pk+1 ����
...

����  pk+r ����

3

7775
·

2

6666664

I
1

1

I
1

2

...

I
1

r

3

7777775
=

2

6664

A
pk+1

1

...

A
pk+r

1

3

7775
,
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where the left matrix is an (r⇥ r) square submatrix of  which is invertible by the

construction. Note that here we in fact make use of the repair property of the code,

which requires r ⇥ r submatrices to be invertible. Therefore, the user gets

C
fu

(u�1)k+1,1
, . . . , C

fu

uk,1
,

i.e., all the symbols of record fu with label 1 in Table 6.3 for every u 2 [p]. Combined

with responses from subqueries 2, . . . ,↵, the user has all the symbols of Xfu which

are stored in server (u � 1)k + 1 to server uk for all u 2 [p]. From the recovery

property of the regenerating code, the user can finally reconstruct Xf1 , . . . , X
fp as

desired.

Privacy: As we construct the query matrices Q
i via the random matrix U ,

Q
i is independent from f1, . . . , fp which implies that this scheme achieves perfect

privacy.

server 1 · · · server (u� 1)k server (u� 1)k + 1 · · · server uk server uk + 1 · · · server n
1 · · · 1
2 · · · 2
...

. . .
...

↵ · · · ↵

Table 6.3: Retrieval pattern for an

✓
n, k, r, r, 1,

k(2r�k+1)
2

◆
MBR code. The ↵ ⇥ n entries correspond to

(C
fu )T and the entries labelled by the same number, say d, are privately retrieved by subquery d.

Analysis

We analyse the e�ciency of Construction 5 (PM-MBR-sep). As the capacity of

MPIR using product-matrix regenerating codes is still unknown, we compare the

best case of our schemes with the capacity of the worst case of MPIR using MDS

codes just to give us an idea of the gap and what we might expect the capacity
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for MPIR using product-matrix regenerating codes to be. We notice that in our

scheme, the number of desired records p is independent from the number of all

records m. From the capacity of MPIR with MDS coded database (4.6) [35], we

see that when p = m

2
, we have the worst-case capacity of MDS-MPIR which is

CMDS-MPIR =
1

1 + k

n

. (6.3)

Recall that our scheme can retrieve up to bn�r

k
c records, however, when we retrieve

less than bn�r

k
c records we have more responses that have not been involved in the

reconstruction of desired records. We will give an analysis when p = bn�r

k
c when

the scheme has highest e�ciency. In this scheme,

SO =
n↵

`
=

nr

k(2r�k+1)

2

=
2nr

k(2r � k + 1)
,

and

cPoP =
dn

p`
=

rn

p
k(2r�k+1)

2

=
2nr

pk(2r � k + 1)
.

We can see that cPoP is decreasing in p. Hence, the download cost is lower when

the user retrieves multiple records compared to the repeated use of our scheme

when p = 1. We notice that the smallest SO and cPoP occur when r = k, and since

p = bn�k

k
c, we have p+ 1 >

n�k

k
, i.e., n < (p+ 2)k. Then

SO =
2n

k + 1
<

2(p+ 2)k

k + 1
< 2(p+ 2)

and

cPoP =
2n

p(k + 1)
<

2(p+ 2)k

p(k + 1)
⇡ 2,
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so the retrieval rate of this scheme when r = k and p = bn�k

k
c is

RPIR =
1

cPoP
=

p(k + 1)

2n
. (6.4)

For a larger p, storage overhead is higher as it is bounded by 2(p + 2), however,

RPIR is approximately 0.5 which gives flexibility to the scheme for achieving this

download cost regardless of parameters of PM-MBR codes used in the system.

Table 6.4 shows the comparison between the retrieval rate of Construction 5

(PM-MBR-sep) when r = k (equation (6.4)) with p = n�r

k
and the capacity of

MPIR using MDS codes with p = m

2
(equation (6.3)) for the same parameters

n, k. We can see that our retrieval rate is not as good as capacity of MDS-MPIR.

However, the advantage of using MBR codes is that the repair ratio is

r�

↵
= 1,

which is best possible, while the MDS schemes give a repair ratio of k > 1. Note

k n RPIR of Construction 5 (6.4) CMDS-MPIR (6.3) % di↵erence
p = 2 3 9 0.4444 0.75 40.7407

5 15 0.4 0.75 46.6667
8 24 0.375 0.75 50
10 30 0.3667 0.75 51.1111

p = 4 3 15 0.5333 0.8333 36
5 25 0.48 0.8333 42.4
8 40 0.45 0.8333 46
10 50 0.44 0.8333 47.2

p = 7 3 24 0.5833 0.8889 34.375
5 40 0.525 0.8889 40.9375
8 64 0.4922 0.8889 44.6289
10 80 0.4813 0.8889 45.8594

Table 6.4: The comparison between the retrieval rate of Construction 5 when r = k with p =
n�r
k

and the capacity of MPIR using MDS codes with p =
m
2 .
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that when RR = 1, we have

k�1X

i=0

min

⇢
1,

✓
1� i

r

◆
RR

�
=

k�1X

i=0

✓
1� i

r

◆
= k � k(k � 1)

2r
=

k(2r � k + 1)

2r
,

and if p = n�r

k
2 N, then

✓
nk

n� r

◆
1

cPoP
=

n

p
· pk(2r � k + 1)

2nr
=

k(2r � k + 1)

2r
,

which implies that this scheme lies on the trade-o↵ curve between cPoP and RR

(the inequality (6.2)) derived in Section 6.2 when k|(n� r) and p = n�r

k
. Note that

if p <
n�r

k
then we download more than we need in the retrieval step, therefore the

relationships (6.1) and (6.2) are strict inequalities.

6.3.2 Construction 6 (PM-MSR-sep)

This construction is the generalisation of Construction 3. We use the PM-MSR

codes in Section 2.2.3 over Fq to store each record. Here, we assume that the

number of servers is

n � k + r = 3k � 2.

This scheme can retrieve up to

p  bn� r

k
c = bn� 2k + 2

k
c

records, and the su�cient condition that n � 3k � 2 ensures that this scheme

can retrieve at least 1 record. In this scheme, the queries submitted to servers

(u � 1)k + 1, . . . , uk, where u 2 [p], are designed to access symbols of the u
th

desired record that are stored in those k servers, so the u
th desired record can be

reconstructed by the property of regenerating codes.
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Encoding Step

We construct an MPIR scheme using a PM-MSR code with parameters

(n, k, r,↵, �, `) = (n, k, 2k � 2, k � 1, 1, k(k � 1))

over Fq with n � 3k � 2 to store each record X
1
, . . . , X

m, i.e., Cj =  · Mj where

Mj is the message matrix corresponding to X
j as described in Section 2.2.3, so

C =
h
 · M1 · · ·  · Mm

i
.

Retrieval Step

Suppose that the user wants to retrieve p  bn�2k+2

k
c records

X
f1 , X

f2 , . . . , X
fp .

In the retrieval step, the user sends an (↵ ⇥ m↵) query matrix Q
i, which we can

interpret as ↵ subqueries, to each server i, i = 1, . . . , n. To form the query matrices,

the user generates an (↵⇥m↵) random matrix U = [uij] whose entries are chosen

uniformly at a random from Fq. We choose, for u 2 [p], w 2 [k],

V
(w+(u�1)k)fu = I↵⇥↵,

and for others V st which are not defined above, we choose V
st = 0↵⇥↵. As

E
fu =

h
0↵⇥(fu�1)↵ I↵⇥↵ 0↵⇥(m�fu)↵

i
,

we have

V
(w+(u�1)k)fuE

fu =
h
0↵⇥(fu�1)↵ I↵⇥↵ 0↵⇥(m�fu)↵

i
.

108



For the rest, we have V
stE

ft = 0↵⇥m↵. The query matrices are

Q
i = U + V

if1E
f1 + · · ·+ V

ifpE
fp , i 2 [n].

Then, each server computes and returns the length-↵ A
i = Q

i
C

T

i
, and we write

(Ai)T = (Ai

1
, A

i

2
, . . . , A

i

↵
).

Note that the retrieval pattern in this construction is similar to Construction 5

(PM-MBR-sep), hence the proof of decodability and privacy is omitted here.

Analysis

Similar to the analysis of Construction 5 (PM-MBR-sep), here we only analyse this

construction for the case p = bn�2k+2

k
c. When p = bn�2k+2

k
c, we have p+1 >

n�2k+2

k
,

that is, n < pk + 3k � 2. Hence, storage overhead is

SO =
n↵

`
=

n(k � 1)

k(k � 1)
=

n

k
< p+ 3� 2

k
< p+ 3,

and

cPoP =
dn

p`
=

(k � 1)n

pk(k � 1)
=

n

pk
< 1 +

3k � 2

pk
,

so the retrieval rate is

RPIR =
pk

n
. (6.5)

The cPoP here is also decreasing in p for fixed k. Therefore, the download cost

when the user retrieves multiple records is lower compared to the repeated use of

our scheme when p = 1.
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Table 6.5 shows the comparison between the retrieval rate of Construction 6

(PM-MSR-sep) (equation (6.5)) with p = n�2k+2

k
and the capacity of MPIR using

MDS codes with p = m

2
(equation (6.3)) for the same parameters n, k. We can

see that for higher p, retrieval rate in this scheme is getting closer to capacity of

MDS-MPIR. Note that repair ratio in this scheme is

r�

↵
=

(2k � 2)

k � 1
= 2,

which is higher than Construction 5 (PM-MBR-sep). However it is still smaller

than PIR schemes that use [n, k] MDS codes (for example, in [35]) where repair

ratio is equal to k if k > 2. Since RR = 2, we have

k�1X

i=0

min

⇢
1,

✓
1� i

r

◆
RR

�
=

k�1X

i=0

1 = k

as r = 2k � 2 implying that 1 � i

r
� 1

2
for all i = 0, . . . , k � 1. Interestingly, if

k n RPIR of Construction 6 (6.5) CMDS-MPIR (6.3) % di↵erence
p = 2 3 10 0.6 0.7692 22

5 18 0.5556 0.7826 29.0123
8 30 0.5333 0.7895 32.4444
10 38 0.5263 0.7917 33.518

p = 4 3 16 0.75 0.8421 10.9375
5 28 0.7143 0.8485 15.8163
8 46 0.6957 0.8519 18.3365
10 58 0.6897 0.8529 19.1439

p = 7 3 25 0.84 0.8929 5.92
5 43 0.814 0.8958 9.1401
8 70 0.8 0.8974 10.8571
10 88 0.7955 0.898 11.4153

Table 6.5: The comparison between the retrieval rate of Construction 6 with p =
n�2k+2

k and the

capacity of MPIR using MDS codes with p =
m
2 .
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p = n�r

k
2 N, then ✓

nk

n� r

◆
1

cPoP
=

n

p
· pk
n

= k,

which implies that this scheme lies on the trade-o↵ curve between cPoP and RR

(the inequality (6.2)) derived in Section 6.2 when k|(n � r) and p = n�r

k
. Notice

that when p = n�r

k
2 N the retrieval rate in this scheme is actually

pk

n
=

1

1 + r

n�r

which is the MDS-MPIR capacity of an [n � r, r] MDS code. We lastly see that

cPoP here is lower than our MBR construction while repair ratio is higher which is

as expected by the trade-o↵ (6.2).

6.3.3 Construction 7 (PM-MSR-sep)

This construction is the generalisation of Construction 4. We use the PM-MSR

codes in Section 2.2.3 over the finite field Fq to store each record. Here, we assume

that the number of servers is

n � r + ↵ = 3k � 3.

This scheme can retrieve up to

p 
⌅n� 2k + 2

k � 1

⇧

records when n  (2k � 2)k, or

p 
⌅n
k

⇧

records when n > (2k � 2)k. The su�cient condition that n � 3k � 3 ensures that

this scheme can retrieve at least 1 record. In this scheme, the queries submitted to
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servers (u�1)k+1, . . . , uk, where u 2 [p], are designed to access symbols of the uth

desired record that are stored in those k servers, so the u
th desired record can be

reconstructed by the property of regenerating codes. However, the retrieval pattern

in this construction is di↵erent from Constructions 5 and 6, resulting in lower SO

and higher cPoP.

Encoding Step

In this construction, we use the PM-MSR code in Section 2.2.3 over the finite field

Fq with parameters

(n, k, r,↵, �, `) = (n, k, 2k � 2, k � 1, 1, k(k � 1)),

with n � 3k � 3 to store each record X
1
, . . . , X

m, which means that

C
i =  · Mi

where Mi is the message matrix corresponding to X
i as described in Section 2.2.3,

so

C =
h
 · M1 · · ·  · Mm

i
.

Retrieval Step

Suppose that the user wants to retrieve p 
⌅
n�2k+2

k�1

⇧
records when n  (2k � 2)k,

or p 
⌅
n

k

⇧
records when n > (2k � 2)k. Note that it can be verified in both

cases that n � pk. We say that the desired records are X
f1 , X

f2 , . . . , X
fp . In the

retrieval step, the user sends a (k ⇥m↵) query matrix Q
i, which we can interpret

as k subqueries, to each server i, i 2 [n]. To form the query matrices, the user

generates a (k ⇥m↵) random matrix U = [uij] whose entries are chosen uniformly
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at a random from Fq. We choose, for u 2 [p],

V
(1+(u�1)k)fu =

2

4 I(k�1)⇥(k�1)

01⇥(k�1)

3

5

and V
(w+(u�1)k)fu , w = 2, . . . , k is obtained from the matrix V

((w�1)+(u�1)k)fu by a

single downward cyclic shift of its row vectors. For any V
st which is not defined

above, we choose V
st = 0k⇥(k�1). As

E
fu =

h
0↵⇥(fu�1)↵ I↵⇥↵ 0↵⇥(m�fu)↵

i
,

we have

V
(1+(u�1)k)fuE

fu =

2

4 0k⇥(fu�1)↵

I(k�1)⇥(k�1)

01⇥(k�1)

0k⇥(m�fu)↵

3

5

and V
(w+(u�1)k)fuE

fu , w = 2, . . . , k is obtained from the matrix V
((w�1)+(u�1)k)fuE

fu

by a single downward cyclic shift of its row vectors. For the rest, we have

V
stE

ft = 0k⇥m↵.

The query matrices are

Q
i = U + V

if1E
f1 + · · ·+ V

ifpE
fp , i 2 [n].

Then, each server computes and returns the length-k A
i = Q

i
C

T

i
, and we write

(Ai)T = (Ai

1
, A

i

2
, . . . , A

i

k
).
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Theorem 6.3. Construction 7 (PM-MSR-sep) is information-theoretically perfect.

Proof. Decodability: The following proof will show the decodability of this scheme.

We can see that for i = 1, . . . , n,

Ci =  i · M

=  i ·

2

6666664

���� M1 ����

���� M2 ����
...

���� M2k�2 ����

3

7777775
=

2k�2X

h=1

 ihMh.

Thus, CT

i
=
P

2k�2

h=1
 ihMT

h
. Consider first subquery 1, we obtain
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C
f1
1,1

+
2k�2X

h=1

 1hI
1

h
= (U1 + e(f1�1)↵+1)C

T

1
= A

1

1
,

2k�2X

h=1

 2hI
1

h
= U1C

T

2
= A

2

1
,

C
f1
3,k�1

+
2k�2X

h=1

 3hI
1

h
= (U1 + e(f1�1)↵+k�1)C

T

3
= A

3

1
,

C
f1
4,k�2

+
2k�2X

h=1

 4hI
1

h
= (U1 + e(f1�1)↵+k�2)C

T

4
= A

4

1
,

...
...

C
f1
k,2

+
2k�2X

h=1

 k,hI
1

h
= (U1 + e(f1�1)↵+2)C

T

k
= A

k

1
,

...
...

C
fp

(p�1)k+1,1
+

2k�2X

h=1

 (p�1)k+1,hI
1

h
= (U1 + e(fp�1)↵+1)C

T

(p�1)k+1
= A

(p�1)k+1

1
,

2k�2X

h=1

 (p�1)k+2,hI
1

h
= U1C

T

(p�1)k+2
= A

(p�1)k+2

1
,

C
fp

(p�1)k+3,k�1
+

2k�2X

h=1

 (p�1)k+3,hI
1

h
= (U1 + e(fp�1)↵+k�1)C

T

(p�1)k+3
= A

(p�1)k+3

1
,

C
fp

(p�1)k+4,k�2
+

2k�2X

h=1

 (p�1)k+4,hI
1

h
= (U1 + e(fp�1)↵+k�2)C

T

(p�1)k+4
= A

(p�1)k+4

1
,

...
...

C
fp

pk,2
+

2k�2X

h=1

 pk,hI
1

h
= (U1 + e(fp�1)↵+2)C

T

pk
= A

pk

1
,

2k�2X

h=1

 pk+1,hI
1

h
= U1C

T

pk+1
= A

pk+1

1
,

...
...

2k�2X

h=1

 n,h, I
1

h
= U1C

T

n
= A

n

1
,
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where I
1

h
= U1 · MT

h
, h = 1, 2, . . . , 2k � 2, and U1 is the first row of U .

It can be seen that for the first pk servers, we obtain p linearly independent

equations from servers 2, k + 2, . . . , (p � 1)k + 2 to use for getting rid of the

interferences I1
1
, . . . , I

1

2k�2
.

In case n  (2k� 2)k, since p  bn�2k+2

k�1
c  2k� 2, we have 0 < (2k� 2)� p 

n� pk which means that, apart from p equations we get from the first pk servers,

we are able to choose any (2k � 2) � p responses from servers pk + 1 to n to

solve for I
1

1
, . . . , I

1

2k�2
. Without loss of generality, we use responses from servers

2, k+2, . . . , (p� 1)k+2 and pk+1, . . . , pk+(2k� 2)� p, which form the equation

2

6666666666666664

����  2 ����

����  k+2 ����
...

����  (p�1)k+2 ����

����  pk+1 ����
...

����  (pk+(2k�2)�p) ����

3

7777777777777775

·

2

6666664

I
1

1

I
1

2

...

I
1

2k�2

3

7777775
=

2

6666666666666664

A21

Ak+2,1

...

A(p�1)k+2

Apk+1,1

...

A(pk+(2k�2)�p),1

3

7777777777777775

,

where the left matrix is a ((2k � 2) ⇥ (2k � 2)) square submatrix of  which is

invertible by the construction.

In case n > (2k � 2)k, we have two possibilities: p � 2k � 2 or p < 2k � 2.

If p � 2k � 2, we have enough linearly independent equations from the first pk

servers to get rid of the interference I1
1
, . . . , I

1

2k�2
, that is, we can choose any 2k� 2

responses from servers 2, k + 2, . . . , (p� 1)k + 2 to solve for I1
1
, . . . , I

1

2k�2
. Without

loss of generality, we use responses from servers 2, k + 2, . . . , (2k � 3)k + 2 which

116



form the equation

2

6666664

����  2 ����

����  k+2 ����
...

����  (2k�3)k+2 ����

3

7777775
·

2

6666664

I
1

1

I
1

2

...

I
1

2k�2

3

7777775
=

2

6666664

A21

Ak+2,1

...

A(2k�3)k+2,1

3

7777775
,

where the left matrix is a ((2k � 2) ⇥ (2k � 2)) square submatrix of  which is

invertible by the construction. However, if p < 2k � 2, then it is similar to the

case n  (2k � 2)k since we can show that 0 < (2k � 2) � p  n � pk. Indeed,

when p = 2k � 3, n � pk � k � 1 = (2k � 2) � p, and when p < 2k � 3,

n � pk � 2k > (2k � 2) � p. Therefore, we also have enough linearly independent

equations for getting rid of the interferences I1
1
, . . . , I

1

2k�2
.

Note that here we make use of the repair property of the code, which requires

any r ⇥ r submatrices to be invertible. After getting rid of interference, the user

obtains

C
fu

(u�1)k+1,1
, C

fu

(u�1)k+3,k�1
, C

fu

(u�1)k+4,k�2
, . . . , C

fu

uk,2
,

i.e., all the symbols of record fu with label 1 in Table 6.6 for all u 2 [p]. Combined

with responses from subqueries 2, . . . , k, the user has all the symbols of Xfu which

are stored in the server (u� 1)k + 1 to server uk for all u 2 [p]. From the recovery

property of the regenerating code, the user can finally reconstruct Xf1 , . . . , X
fp as

desired.

server 1 · · · server (u� 1)k server (u� 1)k + 1 server (u� 1)k + 2 server (u� 1)k + 3 · · · server uk � 1 server uk server uk + 1 · · · server n
1 2 3 · · · k � 1 k

2 3 4 · · · k 1
...

...
...

...
...

...
k � 2 k � 1 k · · · k � 4 k � 3
k � 1 k 1 · · · k � 3 k � 2

Table 6.6: Retrieval pattern for an (n, k, 2k� 2, k� 1, 1, k(k� 1)) MSR code. The ↵⇥ n entries correspond

to (C
fu )T and the entries labelled by the same number, say d, are privately retrieved by subquery d.
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Privacy: As we construct the query matrices Qi via the random matrix U , Qi

is independent from f1, . . . , fp. So this scheme achieves perfect privacy.

Analysis

Here we only analyse the scheme with highest e�ciency when p = bn�2k+2

k�1
c, so we

have p+ 1 >
n�2k+2

k�1
, hence

n < (p+ 3)(k � 1).

In this scheme, storage overhead is

SO =
n↵

`
=

n(k � 1)

k(k � 1)
=

n

k
<

(p+ 3)(k � 1)

k
< p+ 3,

and

cPoP =
dn

p`
=

kn

pk(k � 1)
=

n

p(k � 1)
<

(p+ 3)(k � 1)

p(k � 1)
= 1 +

3

p
,

so retrieval rate in this scheme is

RPIR =
p(k � 1)

n
. (6.6)

Table 6.7 indicates the comparison between the retrieval rate of Construction 7

(PM-MSR-sep) (equation (6.6)) with p = n�r

k�1
and the capacity of MPIR using an

MDS code with p = m

2
(equation (6.3)) for the same parameters n, k. Similar to

Construction 6 (PM-MSR-sep), the retrieval rate here is getting closer to capacity

of MDS-MPIR when p is higher. The di↵erent is the retrieval rate and cPoP here

only depend on the parameter p when n < (2k � 2)k and p = n�r

k�1
2 N. The

download cost when the user retrieves multiple records here is lower compared to

the repeated use of our scheme when p = 1 as cPoP in this scheme is decreasing in
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k n RPIR of Construction 7 (6.6) CMDS-MPIR (6.3) % di↵erence
p = 2 3 8 0.5 0.7273 31.25

5 16 0.5 0.7619 34.375
8 28 0.5 0.7778 35.7143
10 36 0.5 0.7826 36.1111

p = 4 3 12 0.6667 0.8 16.6667
5 24 0.6667 0.8276 19.4444
8 42 0.6667 0.84 20.6349
10 54 0.6667 0.8438 20.9877

p = 7 3 18 0.7778 0.8571 9.2593
5 36 0.7778 0.878 11.4198
8 63 0.7778 0.8873 12.3457
10 81 0.7778 0.8901 12.62

Table 6.7: The comparison between the retrieval rate of Construction 7 with p =
n�r
k�1 and the

capacity of MPIR using an MDS code with p =
m
2 .

p for fixed k. Since RR = 2, we have

k�1X

i=0

min

⇢
1,

✓
1� i

r

◆
RR

�
=

k�1X

i=0

1 = k

as r = 2k�2 implying that 1� i

r
� 1

2
for all i = 0, . . . , k�1. In case n < (2k�2)k,

if p = n�r

k�1
2 N, then

✓
nk

n� r

◆
1

cPoP
=

nk

p(k � 1)
· p(k � 1)

n
= k,

which implies that this scheme lies on the trade-o↵ curve between cPoP and RR

(the inequality (6.2)) derived in Section 6.2 when (k � 1)|(n� r) and p = n�r

k�1
.
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Chapter Summary

In this chapter, we consider MPIR schemes using product-matrix regenerating

codes. We propose the system model for MPIR and discover a trade-o↵ between

cPoP and RR under this model. Then, we generalise our single-message PIR

schemes in Section 5.2 to new MPIR schemes, which attain the trade-o↵ between

cPoP and RR for some parameters. The cPoP of Construction 5 (PM-MBR-sep)

is approximately 2 with the smallest possible RR = 1. The cPoP of Constructions

6 and 7 (PM-MSR-sep) are lower than Construction 5 (PM-MBR-sep) with the

higher RR = 2. This is as expected by the trade-o↵ curve between cPoP and RR.
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Chapter 7

An Averaging Technique

An averaging technique is invented by Blackburn et al. [20] for replication-based

PIR. In this chapter, we contribute an application of the averaging technique to

code-based PIR. The idea behind the technique is that when a query submitted to

a server is the sum between a random vector and a deterministic vector designed

to access desired symbols stored in that server, there is a possibility that the query

is all-zero vector, so the server do not need to reply in this case. Usually when

records are long, we can divide each record to be many chunks and each chunk is

processed independently and identically by the same PIR scheme. In the averaging

technique, instead of using a similar random vector in the query generation, we

vary randomness through all possibilities of the random vector to generate queries

for each chunk. Thus, there must be queries which contain some all-zero rows

where the server does not need to respond, so the retrieval rate is improved. In

Section 7.1, we apply the averaging technique to Construction 5. Furthermore, we

discuss how to apply the averaging technique to existing code-based PIR schemes

in general, and calculate the improvement factor for the retrieval rate. In Section

7.2, we construct a new PIR scheme using [2k, k] MDS codes, which, after applying

the averaging technique, achieves the highest improvement factor.
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7.1 An Application on Code-Based PIR

First, we apply the averaging technique to Construction 5 (PM-MBR-sep) in order

to improve their retrieval rate. Notice that queries in our schemes are matrices

where each row in the matrix can be interpreted as a subquery. When a row in the

matrix is all-zero, a server do not need to reply to that subquery.

Record Xj

X
j,1

X
j,2

...

X
j,s

...

X
j,qmr2

qmr2 chunks

k(2r�k+1)
2

The chunk X
j,s

is

operated independently

by Construction 5

M(s) =
⇥
M1,s · · · Mj,s · · · Mm,s

⇤

(Mj,s
is the message matrix

corresponding to X
j,s

)

Figure 7.1: Coding process for record X
j

7.1.1 Construction 8 (PM-MBR-sep)

We suppose that each record X
j is of length q

mr
2
⇣

k(2r�k+1)

2

⌘
over Fq for all j 2

[m]. Each record is then divided into q
mr

2
chunks of length k(2r�k+1)

2
. Each chunk

is operated independently and identically using Construction 5 (PM-MBR-sep).

The technique is to vary randomness that is used for query generation through

all possible q
mr

2
random matrices for each chunk. Hence, for each server there

must be queries which contain some all-zero rows, so the server does not need to

reply those subqueries, resulting in good download complexity in the worst case.
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Note that queries for each chunk can be calculated from just one query which

means upload complexity here is still low. Each chunk of Xj is indexed by X
j,s for

j 2 [m], s 2 Mr⇥mr(Fq), and encoded as

E1,n,r(X
j,s) =  · Mj,s

,

where Mj,s is the message matrix corresponding to X
j,s as described in Section

2.2.2. We denote E1,n,r(Xj,s) by C
j,s. Write

M(s) =
h
M1,s · · · Mm,s

i
,

and denote by M(s)i the row i of M(s). Hence, we can see the entire system as

Em,n,mr(X
1,s
, . . . , X

m,s) =
h
 · M1,s · · ·  · Mm,s

i
=  · M(s),

We simply write Em,n,mr(X1,s
, . . . , X

m,s) as C(s). We denote by C(s)i the row i

of C(s) which is all symbols of the s
th chunk of the database X stored in server i,

C(s)j
i
the row i of Cj,s which is all symbols of Xj,s stored in server i, and C(s)j

i,a

the a
th symbol of Xj,s that stored in server i. Note that each server stores qmr

2
mr

symbols in total. Suppose that the user wants to retrieve p  bn�r

k
c records

X
f1 , X

f2 , . . . , X
fp .

The retrieval steps are as follows:

(i) (Initialisation) The user generates a random matrix U of dimensions r ⇥mr

whose elements are chosen independently and uniformly at random over Fq.
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(ii) (Query Generation) The query matrix Q
i is defined as

Q
i = U + V

if1E
f1 + · · ·+ V

ifpE
fp ,

where

E
fu =

h
0r⇥(fu�1)r Ir⇥r 0r⇥(m�fu)r

i

and

V
if1 , . . . , V

ifp ,

are r⇥ r deterministic binary matrices defined as follows: for u 2 [p], w 2 [k],

V
(w+(u�1)k)fu = Ir⇥r,

and for others V st which are not defined above, we choose V
st = 0r⇥r.

(iii) (Response Mappings) For i 2 [n], server i returns a symbol

A
i(s) = C(s)i(Q

i + s)T

for every s 2 Mr⇥mr(Fq).

Theorem 7.1. Construction 8 (PM-MBR-sep) is information-theoretically perfect

with retrieval rate
⇣

q
mr

qmr�1

⌘⇣
pk(2r�k+1)

2nr

⌘
.

Proof. Decodability: As each chunk is processed independently using the MPIR

scheme in Construction 5 (PM-MBR-sep), from responses Ai(s), i 2 [n] we obtain

X
f1,s, . . . , X

fp,s for s 2 Mr⇥mr(Fq). Hence a user get Xf1 , X
f2 , . . . , X

fp as desired.

Privacy: Since server i gets a uniformly distributed matrix Q
i 2 Mr⇥mr(Fq) in

all circumstances for every i 2 [n], and the distribution of Qi does not depend on

f1, . . . , fp, server i obtains no information about the desired indices.
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Analysis: We give an analysis when p = bn�r

k
c when the scheme has highest

e�ciency. First, we count the total amount of downloaded data. Since we vary

query matrices submitted to each server i, i 2 [n] through all possibilities in

Mr⇥mr(Fq), the number of elements in Mr⇥mr(Fq) that has exactly h all-zero rows

is ✓
r

h

◆
(qmr � 1)r�h

as the number of possible rows which are not an all-zero row is q
mr � 1. Hence,

server i does not need to reply

rX

h=1

h

✓
r

h

◆
(qmr � 1)r�h = r(qmr)r�1

symbols, and the total download is

q
mr

2
nr � nr(qmr)r�1

.

The size of desired records is pqmr
2
⇣

k(2r�k+1)

2

⌘
, so retrieval rate for the scheme is

pq
mr

2
⇣

k(2r�k+1)

2

⌘

nr(qmr2 � (qmr)r�1)
=

✓
q
mr

2

qmr2 � (qmr)r�1

◆✓
pk(2r � k + 1)

2nr

◆

=

✓
q
mr

qmr � 1

◆✓
pk(2r � k + 1)

2nr

◆
,

where pk(2r�k+1)

2nr
is the retrieval rate of Construction 5 (PM-MBR-sep), so the

retrieval rate is improved by a factor q
mr

qmr�1
.
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7.1.2 Applying the Averaging Technique to Existing Code-

Based PIR Schemes

Remark that the averaging technique can be applied to many existing code-based

PIR schemes where the queries are the sum of random matrices and deterministic

matrices including Construction 1 in Chapter 5 which follows the mixed coding

architecture, and Constructions 2-4 in Chapter 5, Constructions 6, 7 in Chapter

6, and Tajeddine and El Rouayheb’s scheme using MDS codes in Section 4.2.1.2

which follow the separate coding architecture. The following discussion presents

the application of the averaging technique on code-based PIR schemes in general.

Consider that we apply the averaging technique to an existing code-based PIR

scheme. Suppose that each server stores A symbols. Remark that for PIR schemes

following the separate coding architecture, each record is encoded independently

where each server stores ↵ symbols of each record, so A = m↵ in this case. Suppose

that the existing scheme can retrieve records over Fq of length ¯̀. Assume that

this scheme use a random matrix in Md⇥A(Fq) to generate queries where d is the

number of subqueries. Hence, we can modify this scheme to a new scheme that

can retrieve records of length ` = q
dA ¯̀ in the same way as in Construction 8 (PM-

MBR-sep). The number of elements in Md⇥A(Fq) that has exactly h all-zero rows

is
�
d

h

�
(qA � 1)d�h

. Hence, server i does not need to reply

dX

h=1

h

✓
d

h

◆
(qA � 1)d�h = d(qA)d�1

symbols, and the total download is

q
dA
nd� nd(qA)d�1

.
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Therefore, retrieval rate for the new scheme is

pq
dA ¯̀

nd(qdA � (qA)d�1)
=

✓
q
dA

qdA � (qA)d�1

◆✓
p¯̀

nd

◆

=

✓
q
A

qA � 1

◆✓
p¯̀

nd

◆
,

where p¯̀

nd
is the retrieval rate of the existing PIR scheme. Hence, the improvement

factor in general is q
A

qA�1
when we apply an averaging technique to existing code-

based PIR schemes in this way. Note that in the separate coding architecture the

improvement factor is
q
m↵

qm↵ � 1
. (7.1)

7.2 PIR Schemes using [2k, k] MDS codes

In this section, we construct a PIR scheme using [2k, k] MDS codes over Fq. In this

scheme we assume that each record of length k is encoded by a [2k, k] MDS code,

so each server only stores one symbol of each record. Consequently, it achieves

the best improvement factor (7.1) for fixed parameters q and m after applying the

averaging technique. The idea of this construction is to exploit the structure of

the parity check matrix in a standard form of [n, k] linear codes. The parity check

matrix provides n � k parity-check equations. With the design of queries, these

n� k equations can be used to get access for n� k symbols of the desired record.

Since we use [2k, k] MDS codes, we are able to reconstruct the desired record from

k symbols by the property of the MDS codes.
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7.2.1 Construction 9 (MDS-sep)

Suppose there are 2k non-communicating servers in the system that store a database

X which consists of m records, each of length k, denoted by X
1
, X

2
, . . . , X

m 2 Fk

q
.

Each record is encoded and distributed across 2k servers by the same [2k, k] MDS

code which can be written as

E1,2k,1(X
j) = G2k⇥k ·Xj

k⇥1
,

where G is a generator matrix of the [2k, k] MDS code. We simply write

E1,2k,1(Xj) as C
j. We denote by C

j

i
the i

th position of C
j. Since every

non-systematic linear code can be transformed into a systematic code, we assume

that our code is systematic. Then G can be written in the form

G =

2

4Ik
A

3

5 ,

where Ik is the identity matrix of size k, and A 2 Fk⇥k

q
. Write

X =
h
X

1
X

2 · · · X
m

i
,

we can see the entire system as

Em,2k,m(X
1
, . . . , X

m) =
h
C

1
C

2 · · · C
m

i
= G ·X,

and each server stores m symbols in total. We write Em,2k,m(X1
, . . . , X

m) as C,

and denote by Ci the row i of C which is all symbols stored in server i.

We assume that in the retrieval step the user wants to download X
f . The user

submits a vector Qi of length m over Fq to server i. Finally, server i computes and

responds with an answer Ai = Q
i
C

T

i
. The retrieval steps are as follows:
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(i) (Initialisation) The user generates a vector u of length m whose elements are

chosen independently and uniformly at random over Fq.

(ii) (Query Generation) The query vector Qi is defined as

Q
i =

8
><

>:

u, if i = 1, . . . , k

u+ ef , if i = k + 1, . . . , 2k

where ef is a the i
th unit vector of length m.

(iii) (Response Mappings) Each server i returns a symbol Ai = Q
i
C

T

i
.

(iv) (Recovery) Write a vector A = (A1
, . . . , A

2k). Let H be a parity check matrix

of the [2k, k] MDS code in a standard form. The user computes A ·H.

Theorem 7.2. Construction 9 (MDS-sep) is an information-theoretically perfect

PIR scheme with retrieve rate 1

2
achieving asymptotic capacity for MDS codes.

Proof. We have that ef · CT

i
= C

f

i
when i 2 [2k]. As H is a parity check matrix in

a standard form, we can write

H =

2

4B

Ik

3

5 ,

where Ik is the identity matrix of size k, and B 2 Fk⇥k

q
. Hence,

A ·H = (A1
, . . . , A

2k) ·H

=
�
u · CT

1
, . . . , u · CT

k
, (u+ ef ) · CT

k+1
, . . . , (u+ ef ) · CT

2k

�
·H

= u · CT ·H +
h
0 · · · 0 C

f

k+1
C

f

k+2
· · · C

f

2k

i
·H

= 0 +
�
C

f

k+1
, C

f

k+2
, · · · , Cf

2k

�

=
�
C

f

k+1
, C

f

k+2
, · · · , Cf

2k

�
.
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By the property of the MDS codes, a user can reconstruct Xf as desired.

To prove privacy, since server i gets a uniformly distributed vector Qi 2 Fm

q
in

all circumstances for every i 2 [2k], and the distribution of Qi does not depend on

f , server i obtains no information about the index f .

The total amount of downloaded data is 2k symbols, and the size of the desired

record is k, so retrieval rate for Construction 9 (MDS-sep) is 1

2
=
�
1 � k

2k

�
which

means that this scheme achieves asymptotic capacity for MDS codes.

7.2.2 Applying the Averaging Technique to Construction 9

Here we apply the averaging technique to Construction 9 (MDS-sep).

7.2.2.1 Construction 10 (MDS-sep)

We suppose a record X
j is of length q

m
k over Fq for all j 2 [m]. Each record is

then divided into q
m chunks of length k. Each chunk is encoded using the same

systematic [2k, k] MDS code and distributed across 2k non-communicating servers.

The technique is to vary randomness that is used for query generation through all

possible qm random vectors for each chunk. Hence, for each server there must be a

query which is an all-zero vector, so the server does not need to reply in this case,

resulting in good download complexity in the worst case. Note that queries for each

chunk can be calculated from just one query which means upload complexity here

is still low. Indeed, each chunk of Xj is indexed by X
j,s for j 2 [m], s 2 Fm

q
, and is

encoded as

E1,2k,1(X
j,s) = G ·Xj,s

,

where

G =

2

4Ik
A

3

5
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is a generator matrix in standard form of the MDS code. We write E1,2k,1(Xj,s) as

C
j,s, and denote by C

j,s

i
the i

th position of Cj,s. For each chunk s 2 Fm

q
, we write

X(s) =
h
X

1,s
X

2,s · · · X
m,s

i
,

so

Em,n,m(X
1,s
, . . . , X

m,s) =
h
C

1,s
C

2,s · · · C
m,s

i
= G ·X(s),

and each server stores qmm symbols in total. We write Em,2k,m(X1,s
, . . . , X

m,s) as

C(s), and denote by C(s)i the row i of C(s) which is all symbols of X(s) stored in

server i. We assume that the record X
f is demanded. The retrieval steps are

(i) (Initialisation) The user generates a vector u of length m whose elements are

chosen independently and uniformly at random over Fq.

(ii) (Query Generation) The query vector Qi is defined as

Q
i =

8
><

>:

u, if i = 1, . . . , k

u+ ef , if i = k + 1, . . . , 2k

where ef is a the i
th unit vector of length m.

(iii) (Response Mappings) For i 2 [2k], server i returns a symbol

A
i(s) = (Qi + s) · C(s)T

i

for every s 2 Fm

q
.

(iv) (Recovery) For s 2 Fm

q
, write a vector A(s) =

�
A

1(s), . . . , A2k(s)
�
. Let H be

a parity check matrix of the [2k, k] MDS code in a standard form. The user

computes A(s) ·H for every s 2 Fm

q
.
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Theorem 7.3. Construction 10 (MDS-sep) is an information-theoretically perfect

PIR scheme with retrieve rate
1� 1

2

1�(
1
q )

m achieving capacity for MDS codes when q = 2.

Proof. We have that ef · C(s)T
i
= C

f,s

i
when i 2 [2k], s 2 Fm

q
. As H is a parity

check matrix in a standard form, we can write

H =

2

4B

Ik

3

5 ,

where Ik is the identity matrix of size k, and B 2 Fk⇥k

q
. Hence,

A(s) ·H =
�
A

1(s), . . . , A2k(s)
�
·H

= ((Q1 + s)C(s)T
1
, . . . , (Qn + s)C(s)T

2k
) ·H

= ((u+ s)C(s)T
1
, . . . , (u+ s)C(s)T

k
,

(u+ s+ ef )C(s)T
k+1

, . . . , (u+ s+ ef )C(s)T
2k
) ·H

= (u+ s)C(s)T ·H +
h
0 · · · 0 C

f,s

k+1
C

f,s

k+2
· · · C

f,s

2k

i
·H

= 0 +
�
C

f,s

k+1
, C

f,s

k+2
, . . . , C

f,s

2k

�
.

Hence, the user gets

C
f,s

k+1
, C

f,s

k+2
, . . . , C

f,s

2k

for every s 2 Fm

q
. By the property of the MDS code, a user can reconstruct the

chunk X
f,s for every s 2 Fm

q
, and hence obtains Xf as desired.

To prove privacy, since server i gets a uniformly distributed vector Qi 2 Fm

q
in

all circumstances for every i 2 [2k], and the distribution of Qi does not depend on

f , server i obtains no information about the index f .
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The total amount of downloaded data is 2k(qm�1) symbols, and the size of the

desired record is qmk, so the retrieval rate for Construction 10 (MDS-sep) is

q
m
k

2k(qm � 1)
=

1� 1

2

1� (1
q
)m

,

which means that this scheme could achieve the capacity for [2k, k] MDS codes

when q = 2. However, from Theorem 2.19, the only existing [2k, k] MDS code with

q = 2 is the trivial [2, 1] code.

As discussed in Section 7.1.2, the improvement factor when applying the

averaging technique this way to an existing PIR scheme is q
m↵

qm↵�1
and here we

apply the technique to Construction 9 (MDS-sep) which has ↵ = 1, therefore this

gives the most improvement for the separate coding architecture case.

Chapter Summary

To sum up, we introduce the first application of the averaging technique on code-

based PIR in this chapter. We start from applying the technique to transform

Construction 5 into a new MPIR scheme with improved retrieval rate. Then we

derive the improvement factor of the retrieval rate when we apply the averaging

technique to any existing code-based PIR schemes where the queries are the sum

of random matrices and deterministic matrices. Subsequently, we propose a new

PIR scheme using [2k, k] MDS codes, and show that it could achieve the highest

improvement factor after applying the averaging technique.
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Chapter 8

Conclusions

8.1 Summary of Contributions

In this thesis, we focus on the construction of PIR and MPIR schemes using product-

matrix regenerating codes in order to minimise repair ratio in the system. Before

our work, the only PIR scheme that uses regenerating codes is proposed by Shah et

al. [36]. We give a general model to explain the encoding in code-based PIR falling

into two classes of encoding - separate coding and mixed coding architecture. We

propose a new metric to measure the e�ciency of the repair, namely the repair

ratio. We present various schemes for single-message PIR following both mixed

coding and separate coding architecture in the storage.

Then we initiate the work on the multi-message problem with regenerating

codes. We propose an MPIR model where each record is separately encoded by

product-matrix regenerating codes and analyse the relationship between three

metrics under this model. We derive a trade-o↵ between cPoP and RR under this

model, and then exhibit MPIR schemes that lie on the trade-o↵ curve between

cPoP and RR. The MPIR scheme using PM-MBR codes has the smallest possible

repair ratio which benefits the situation where server failures should be taken into
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account. While the retrieval rates of our schemes do not appear to be very good,

they are the first schemes to achieve MPIR in regenerating codes and they give us

a lower bound of what is achievable.

We also present a corresponding scheme using an averaging technique from [20]

to improve the retrieval rate. This is the first application of the averaging technique

on coded databases. We also give the improvement rate in general when applying

the averaging technique to existing code-based PIR schemes in a similar way, and

lastly provide a new PIR scheme using [2k, k] MDS codes following the separate

coding architecture that could achieve the best possible improvement rate after

applying the averaging technique.

Lastly, Table 8.1 indicates the summary of our constructions in PIR/MPIR

showing an underlying code in the encoding step with parameters n,↵ and ` and

the e�ciency metrics SO, cPoP and RR.
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8.2 Future Works

There are several research problems arising from this thesis.

1. All existing schemes with regenerating codes (including [36],[42–44]) store a

database by the product-matrix constructions from Rashmi et al. [21]. Can

we construct PIR or MPIR schemes with other types of regenerating codes

(for example [24–27])?

2. Since MSR codes are MDS codes but MBR codes are not MDS codes, the

capacity results on PIR using MDS codes [32], and MPIR using MDS codes

[35] can only be applied to PIR and MPIR using MSR codes, respectively.

We propose PIR and MPIR schemes using MBR codes, and Lavauzelle et al.

[44] propose a PIR scheme using MBR codes that has better retrieval rate.

However, the capacity of MBR codes is still unknown. Is it possible to derive

the capacity of PIR or MPIR using PM-MBR codes (or even more general

MBR codes)?

3. In this thesis, Construction 1 in Chapter 5 is the only PIR scheme which

follows the mixed coding architecture. Also, most existing code-based PIR

schemes assume the separate coding architecture including the capacity result

on MDS coded database. Sun and Tian [37] present a scheme that can break

the MDS capacity using the mixed coding architecture. Can we apply their

technique to construct better schemes using the mixed coding architecture?

4. All existing works on PIR or MPIR using regenerating codes assume that the

servers are non-colluding. Can we construct schemes using regenerating codes

in other variations of PIR such as PIR with colluding servers, or symmetric

PIR?
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