1,576 research outputs found

    Enabling Visual Action Planning for Object Manipulation through Latent Space Roadmap

    Full text link
    We present a framework for visual action planning of complex manipulation tasks with high-dimensional state spaces, focusing on manipulation of deformable objects. We propose a Latent Space Roadmap (LSR) for task planning, a graph-based structure capturing globally the system dynamics in a low-dimensional latent space. Our framework consists of three parts: (1) a Mapping Module (MM) that maps observations, given in the form of images, into a structured latent space extracting the respective states, that generates observations from the latent states, (2) the LSR which builds and connects clusters containing similar states in order to find the latent plans between start and goal states extracted by MM, and (3) the Action Proposal Module that complements the latent plan found by the LSR with the corresponding actions. We present a thorough investigation of our framework on two simulated box stacking tasks and a folding task executed on a real robot

    Where Does the Density Localize? Convergent Behavior for Global Hybrids, Range Separation, and DFT+U

    Get PDF
    Approximate density functional theory (DFT) suffers from many-electron self- interaction error, otherwise known as delocalization error, that may be diagnosed and then corrected through elimination of the deviation from exact piecewise linear behavior between integer electron numbers. Although paths to correction of energetic delocalization error are well- established, the impact of these corrections on the electron density is less well-studied. Here, we compare the effect on density delocalization of DFT+U, global hybrid tuning, and range- separated hybrid tuning on a diverse test set of 32 transition metal complexes and observe the three methods to have qualitatively equivalent effects on the ground state density. Regardless of valence orbital diffuseness (i.e., from 2p to 5p), ligand electronegativity (i.e., from Al to O), basis set (i.e., plane wave versus localized basis set), metal (i.e., Ti, Fe, Ni) and spin state, or tuning method, we consistently observe substantial charge loss at the metal and gain at ligand atoms (ca. 0.3-0.5 e or more). This charge loss at the metal is preferentially from the minority spin, leading to increasing magnetic moment as well. Using accurate wavefunction theory references, we observe that a minimum error in partial charges and magnetic moments occur at higher tuning parameters than typically employed to eliminate energetic delocalization error. These observations motivate the need to develop multi-faceted approximate-DFT error correction approaches that separately treat density delocalization and energetic errors in order to recover both correct density and magnetization properties.Comment: 34 pages, 11 figure

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review

    Get PDF
    In this contribution, we review and discuss our recent results on the design of optical scattering cancellation devices based on an array of plasmonic nanoparticles. Starting from two different analytical models available to describe its electromagnetic behavior, we show that a properly designed array of plasmonic nanoparticles behaves both as an epsilon-near-zero metamaterial and as a reactive metasurface and, therefore, can be successfully used to reduce the optical scattering of a subwavelength object. Three different typologies of nanoparticle arrays are analyzed: spherical, core-shell, and ellipsoidal nanoparticles. We prove, both theoretically and through full-wave simulations, that such nanostructures can be successfully used as a cloaking device at ultraviolet and optical frequencies
    • …
    corecore