204 research outputs found

    Observability and Structural Identifiability of Nonlinear Biological Systems

    Full text link
    Observability is a modelling property that describes the possibility of inferring the internal state of a system from observations of its output. A related property, structural identifiability, refers to the theoretical possibility of determining the parameter values from the output. In fact, structural identifiability becomes a particular case of observability if the parameters are considered as constant state variables. It is possible to simultaneously analyse the observability and structural identifiability of a model using the conceptual tools of differential geometry. Many complex biological processes can be described by systems of nonlinear ordinary differential equations, and can therefore be analysed with this approach. The purpose of this review article is threefold: (I) to serve as a tutorial on observability and structural identifiability of nonlinear systems, using the differential geometry approach for their analysis; (II) to review recent advances in the field; and (III) to identify open problems and suggest new avenues for research in this area.Comment: Accepted for publication in the special issue "Computational Methods for Identification and Modelling of Complex Biological Systems" of Complexit

    The Parameter Houlihan: a solution to high-throughput identifiability indeterminacy for brutally ill-posed problems

    Get PDF
    One way to interject knowledge into clinically impactful forecasting is to use data assimilation, a nonlinear regression that projects data onto a mechanistic physiologic model, instead of a set of functions, such as neural networks. Such regressions have an advantage of being useful with particularly sparse, non-stationary clinical data. However, physiological models are often nonlinear and can have many parameters, leading to potential problems with parameter identifiability, or the ability to find a unique set of parameters that minimize forecasting error. The identifiability problems can be minimized or eliminated by reducing the number of parameters estimated, but reducing the number of estimated parameters also reduces the flexibility of the model and hence increases forecasting error. We propose a method, the parameter Houlihan, that combines traditional machine learning techniques with data assimilation, to select the right set of model parameters to minimize forecasting error while reducing identifiability problems. The method worked well: the data assimilation-based glucose forecasts and estimates for our cohort using the Houlihan-selected parameter sets generally also minimize forecasting errors compared to other parameter selection methods such as by-hand parameter selection. Nevertheless, the forecast with the lowest forecast error does not always accurately represent physiology, but further advancements of the algorithm provide a path for improving physiologic fidelity as well. Our hope is that this methodology represents a first step toward combining machine learning with data assimilation and provides a lower-threshold entry point for using data assimilation with clinical data by helping select the right parameters to estimate

    Delineating Parameter Unidentifiabilities in Complex Models

    Full text link
    Scientists use mathematical modelling to understand and predict the properties of complex physical systems. In highly parameterised models there often exist relationships between parameters over which model predictions are identical, or nearly so. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, and the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast timescale subsystems, as well as the regimes in which such approximations are valid. We base our algorithm on a novel quantification of regional parametric sensitivity: multiscale sloppiness. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher Information Matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the Likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm provides a tractable alternative. We finally apply our methods to a large-scale, benchmark Systems Biology model of NF-Îș\kappaB, uncovering previously unknown unidentifiabilities

    Inference of complex biological networks: distinguishability issues and optimization-based solutions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inference of biological networks from high-throughput data has received huge attention during the last decade and can be considered an important problem class in systems biology. However, it has been recognized that reliable network inference remains an unsolved problem. Most authors have identified lack of data and deficiencies in the inference algorithms as the main reasons for this situation.</p> <p>Results</p> <p>We claim that another major difficulty for solving these inference problems is the frequent lack of uniqueness of many of these networks, especially when prior assumptions have not been taken properly into account. Our contributions aid the distinguishability analysis of chemical reaction network (CRN) models with mass action dynamics. The novel methods are based on linear programming (LP), therefore they allow the efficient analysis of CRNs containing several hundred complexes and reactions. Using these new tools and also previously published ones to obtain the network structure of biological systems from the literature, we find that, often, a unique topology cannot be determined, even if the structure of the corresponding mathematical model is assumed to be known and all dynamical variables are measurable. In other words, certain mechanisms may remain undetected (or they are falsely detected) while the inferred model is fully consistent with the measured data. It is also shown that sparsity enforcing approaches for determining 'true' reaction structures are generally not enough without additional prior information.</p> <p>Conclusions</p> <p>The inference of biological networks can be an extremely challenging problem even in the utopian case of perfect experimental information. Unfortunately, the practical situation is often more complex than that, since the measurements are typically incomplete, noisy and sometimes dynamically not rich enough, introducing further obstacles to the structure/parameter estimation process. In this paper, we show how the structural uniqueness and identifiability of the models can be guaranteed by carefully adding extra constraints, and that these important properties can be checked through appropriate computation methods.</p

    Non-linear estimation is easy

    Get PDF
    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint
    • 

    corecore