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Abstract

Nonlinear dynamical systems that depend on a parameter can dramatically change their
dynamic behaviour at particular parameter values. Accurately predicting these topological
changes, called bifurcations, in a mathematical model is crucial in many systems. However,
getting a quantitative agreement between the model and the physical reality is extremely
difficult using either a mechanistic or a data-driven model. Omitted physics of the mechanistic
models sometimes causes deterioration in prediction performance. For data-driven models, it is
particularly challenging to capture bifurcation with existing data-driven modelling methods,
which typically focus on fitting time series data.

We combine studies in dynamical systems, invariant manifold and normal form theories with
data-driven modelling to capture the quantitative behaviour of bifurcations in experimental
systems. Moreover, we develop techniques not only for model identification but also for data
collection to provide a comprehensive modelling approach. Therefore, the thesis has two themes:
experimental bifurcation analysis and bifurcation-based model identification.

The first theme, experimental bifurcation analysis, is this thesis’s main data-collecting
method for modelling systems with bifurcations. Control-based continuation (CBC) is the
experimental bifurcation analysis that we focus on and has been successfully used in a wide
range of forced systems from previous studies. However, CBC has not yet been applied to
self-excited systems; developing and implementing a new CBC scheme for self-excited systems
is the main novelty of the first theme.

For the second theme, we first discuss parameter identification methods of ordinary dif-
ferential equations (ODEs) undergoing Hopf bifurcations using linear system identification
techniques and normal form theory to capture the bifurcation structure of the experiment
qualitatively. Then, we use machine learning (ML) techniques to identify ODE models using
the bifurcation structure as domain knowledge to improve the quantitative agreement between
the model and the measured data. Finally, the bifurcation-based ML technique is extended to
harmonically forced systems.

We focus on two types of dynamical systems, self-excited systems with Hopf bifurcations
and harmonically forced systems with an asymptotically stable equilibrium, representing a wide
range of applications in aerospace engineering, biological systems, and mechanical systems.

The primary outcome of the thesis is to develop a bifurcation-based ODE model identification
procedure along with associated experimental techniques. The bifurcation structure is the core
information of the data-driven modelling in this thesis, and we can accurately predict the
response of the system that depends on a parameter. The data efficacy and the accuracy of
the predictions are shown in numerical experiments and data-driven modelling examples using
physical experiments. One potential application of the method is the development of digital
twins that require accurate mathematical models to predict steady-state response depending
on a control parameter.
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Introduction

In the presence of nonlinearity, dynamical systems can exhibit bifurcations, leading to a wide
range of dynamic behaviours. For example, the system can exhibit completely different dynamic
responses depending on a system parameter, such as stability change of equilibrium and periodic
solutions. A mathematical model that can accurately predict the response is crucial in these
systems. The model prediction can be completely wrong when the model does not accurately
capture the stability change of the limit sets depending on a parameter.

Mechanistic models are a common choice for researchers working on systems with bifurcations.
Mechanistic models are derived from physical principles, which makes them interpretable and
also provides physical insights. However, predicting the dynamic response from mechanistic
models can be inaccurate, as the typical model derivation neglects complex nonlinear effects
from the assumptions.

Data-driven modelling, i.e. deriving a mathematical model from data, offers many valuable
tools that remove the limitations of mechanistic models. Model identification of dynamical
systems from data has been studied for decades under the name of system identification [55].
System identification uses statistical methods to identify unknown parameters of dynamical
system models. Much literature on system identification is focused on discrete-time dynamical
systems because of its usefulness with digital control systems. Recently, advanced numerical
solvers [77], auto differentiation packages [58], and machine learning packages [28, 41] have
allowed us to identify differential equation models with a high degree of model flexibility
compared to traditional system identification approach. However, these existing dynamical
system model identification methods focus on fitting measured time series data, making it
challenging to generate a model with the same bifurcation structure as the experiment. Data-
driven modelling of ODEs with multiple time series can easily end at a local minimum of the
data-fitting criteria that do not necessarily have the same bifurcation structure as the physical
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system. It is also challenging to train the model to reproduce unstable limit sets that nonlinear
parameter-dependent systems commonly have, which limits the amount of information provided
during training.

We aim to develop an ordinary differential equation (ODE) identification method that
captures the bifurcation of an experiment to address the limitations of existing dynamical
system model identification methods. Furthermore, we develop a comprehensive modelling
approach, including data collection methods, employing control-based continuation (CBC). The
main idea is to combine dynamical system studies, invariant manifolds and normal form theories
with recent advances in data-driven modelling techniques. Therefore, the thesis has two themes,
experimental bifurcation analysis and bifurcation-based model identification, considering two
types of dynamical systems: self-excited systems with Hopf bifurcation and harmonically forced
mechanical systems with an asymptotically stable equilibrium.

Limit-cycle oscillations (LCOs), periodic responses in self-excited systems, are present in
many engineered systems. For example, the flutter of aircraft wings [1], the shimmy of towed
wheels [12], and the chatter of machine tools [44] are self-excited systems with LCOs. These
systems are typically modelled with autonomous ODEs that contain a control parameter.
The family of LCOs arising from a Hopf bifurcation can be subcritical or supercritical. The
subcritical case is more problematic than the supercritical case as it leads to sudden jumps
to other solution branches from the stable equilibrium under random perturbations. This can
have catastrophic consequences, such as the failure of NASA helios [64] and Facebook’s Aquila
UAV [107], when they are not accurately modelled and understood.

Another fundamental type of dynamical system in engineering systems is harmonically
forced mechanical systems. Harmonically forced systems are ubiquitous as rotating machines
apply harmonic forces to the system, which are the primary excitation source in many engineered
systems. Predicting accurate resonant responses where the excitation frequency is close to one of
the linear modal frequencies is vital to the system’s functionality. Predicting a precise frequency
response of the system by considering forcing amplitude and frequency as control parameters is
especially crucial in lightweight engineering systems such as microelectromechanical systems
(MEMS). However, predicting the system’s frequency response is challenging when the system’s
nonlinearity is not negligible. In this case, the system can have a bistable frequency response
that can cause sudden jumps.

The thesis’s overall structure is as follows. In Chapter 2, the theoretical background of
the thesis and associated literature reviews are presented. For the first theme, experimental
bifurcation analysis, we discuss the scheme for bifurcation analysis in an experiment, control-
based continuation (CBC), in Chapter 3. For the second theme, we introduce three bifurcation-
based ODE model identification methods. One is the model identification method developed to
identify the parameters of the mechanistic models, which is discussed in Chapter 4. The other
two methods are the ML-based approach which uses the invariant manifold and the bifurcation
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structure as domain knowledge. Different ML approaches are applied for a system with Hopf
bifurcation and for harmonically forced systems with an asymptotically stable equilibrium. The
ML-based approach to model the Hopf bifurcation is discussed in Chapter 5, and harmonically
forced systems with an asymptotically stable equilibrium are discussed in Chapter 6.

In previous studies, CBC was studied and applied to various harmonically forced systems
[11, 84–86], which we introduce the scheme with numerical and experimental examples in
Chapter 3. However, CBC was not previously applied to self-excited systems. Therefore, the
development and application of CBC for the bifurcation analysis of self-excited systems with
Hopf bifurcation is the main contribution of Chapter 3. The difference between CBC for the
self-excited system and the forced system is that we parametrise the control target using a
phase angle, whereas the forced system parametrises the control target using the external force.
We provide numerical examples of developed CBC schemes for self-excited systems and an
experimental demonstration applied to a flutter rig in a wind tunnel.

In Chapter 4, we develop a parameter identification method for the system with Hopf
bifurcation that can be applied to mechanistic models. We suggest a three-stage parameter
identification process in which we identify the linearisation of the model in the initial stage
using linear system identification techniques. In the second stage, we parameterise the LCOs
near the Hopf bifurcation point by unknown nonlinear stiffness parameters using centre mani-
fold reduction and normal form analysis. Finally, the parameters are updated using spectral
collocation methods considering the high-amplitude LCOs that were not considered in the
initial optimisation of the nonlinear stiffness parameters. We provide a model identification
example from a CBC experiment result discussed in Chapter 3.

In Chapter 5, we develop data-driven modelling of a system with a centre manifold using
ML. This research is initially motivated by the desire to improve the prediction quality of the
model identification method developed in Chapter 4. A normal from-like equation is the basis
of the model that captures the bifurcation structure of the experimental system. Mapping
between the centre manifold and the measured signals is modelled using a neural network. We
provide data-driven modelling examples from synthetic data of the van der Pol oscillator and
an aeroelastic flutter model. The results of the CBC experiment discussed in Chapter 3 are
also used to train an ML model in Chapter 5.

In Chapter 6, we developed data-driven modelling of harmonically forced mechanical systems
with asymptotically stable equilibrium using ML. The ML approach developed in Chapter 6 also
focuses on capturing the bifurcation of the experimental system. However, the ML modelling
approach developed in Chapter 6 is slightly different from the ML approach in Chapter 5 as the
phase of the external force and the phase-lag of the periodic response give the core information
of the modelling. Moreover, the input-output map is generated from frequency responses of
a harmonically forced system where kernel ridge regression is used for data-driven modelling.
The developed ML approach is demonstrated on synthetic numerical data generated from a
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2-DOF nonlinear oscillator model, which shows good agreement with the ground-truth model.
It is also demonstrated in an experimental CBC result shown in Chapter 3, which also shows
good prediction results in validation data sets and the prediction of the backbone curve.

Finally, the conclusions of the research work presented in this thesis are discussed in
Chapter 7 with further discussions on the limitations of the study and future work suggestions.

Publications

• The contents of Chapters 3 and 4 are in preparation for submission to the journal.

- Title: Analysis of self-excited flutter oscillations with control-based continuation

- Authors: K.H. Lee, I. Tartaruga, D. Rezgui, L. Renson, S.A. Neild, and D.A.W. Barton

• Contents of Chapter 5 is published in a journal.

- Title: Modelling of physical systems with a Hopf bifurcation using mechanistic models
and machine learning

- Authors: K.H. Lee, D.A.W. Barton, and L. Renson

- Journal: Mechanical system and signal processing

• The contents of Chapter 6 are in preparation for submission to the journal.

- Title: Data-driven modelling of the forced system using experimental bifurcation analysis

- Authors: K.H. Lee, D.A.W. Barton, and L. Renson

• Part of Chapter 5 is published in conference proceedings.

- Title: Reduced-order modelling of flutter oscillations using normal forms and scientific
machine learning

- Journal: Advances in Nonlinear Dynamics, Proceedings of the Second International
Nonlinear Dynamics Conference (NODYCON 2021)

- Authors: K.H. Lee, D.A.W. Barton, and L. Renson
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Background and literature review

2.1 Introduction

In this chapter, we review the research and theoretical background of the thesis. The main
subject of the thesis is the mathematical modelling of ODEs with bifurcations using experimental
data. Therefore, we discuss the data-driven modelling of ODEs in Section 2.2. Invariant manifold
theories, centre manifold and spectral submanifolds used throughout the thesis are discussed
in Section 2.3. Topological equivalence is the key idea to define the dynamics of the invariant
manifold in Chapters 4 to 6 using the information on the bifurcation structure. Therefore, we
will explain the topological equivalence in Section 2.4.

2.2 ODE model identification

In this thesis, we consider ODE models depending on a parameter to study data-driven modelling
of systems with bifurcations. The ODE model identification problem in this thesis considers
two equations:

ẋ = F(x; θ),(2.1a)

y = φ(x; θ),(2.1b)

where x ∈ RN is the state space vector, θ ∈ Rp is the model parameters vector, y ∈ Rm is the
vector of observations, F : RN × Rp → RN is the vector field, and φ : RN × Rp → Rm is an
observation function. Note that Eq. (2.1a) does not have a time-dependent term; however, the
time-independent vector field can cover a wide range of dynamic problems, including self-excited
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

systems and harmonically excited systems. We can also consider the control parameter as a
state variable with time derivative zero.

The first step in identifying the model is to choose the functional structure of the vector
field F. Solutions of Eq. (2.1a) uniquely exist given initial condition x(0) = x0 if F is Lipschitz
continuous with respect to x. The identification of the ODE model is to estimate θ from
observed data y1, . . . ,yn at the measured time t = t1, . . . , tn by minimising or maximising
certain data-fitting criteria.

In Section 2.2.1, we review the study of the identifiability of ODE models. Identifiability
of ODE models is still an ongoing field, and theoretical work is limited to ODE models with
particular model classes and may not provide answers to complex structures [99]. However, we
can learn many valuable concepts and conditions that make parameter identification of the
ODE a well-defined problem. The process of data-driven ODE modelling follows by choosing
the vector field’s functional structure and identifying the system’s unknown parameters from
the data. We will discuss the types of functions that are applicable to modelling the vector
field F in Section 2.2.2. In Section 2.2.3, we review the strategy for training ODE models using
data-fitting criteria. Finally, we review recent research on the data-driven modelling of ODEs.

2.2.1 Identifiability of ODE models from data

Here, we will review an important concept for the model identification of ODEs, namely
identifiability. We consider the parameter identification problem of Eqs. (2.1a) and (2.1b) with
a given initial condition x0 with a time-independent parameter θ. The dynamical system given
by Eqs. (2.1a) and (2.1b) is said to be structurally locally identifiable [61] if there exists
a neighbourhood of θp, N (θp) ⊂ Rp, such that the model parameters are one-to-one with the
measured output, i.e. φ(x(t,x0); θ) = φ(x(t,x0); θ̄) if and only if θ̄ = θ for θ, θ̄ ∈ N (θp) where
x(t,x0) is a solution of an initial value problem with a given initial condition x0 in a time
interval t ∈ [0, T ]. Structurally globally identifiable [61] system is when N (θp) covers the
whole parameter space.

Åström [9] used Laplace transform to study the structural identifiability of linear ODE mod-
els. For nonlinear ODE models, the differential algebra approach is widely used by researchers
where F, φ are rational functions in Eqs. (2.1a) and (2.1b). Using the theory of differential
algebra, Eqs. (2.1a) and (2.1b) is transformed into a finite set of a nonlinear algebraic equation,
which is called a characteristic set. The characteristic set gives a summary of the input-output
map generated by Eqs. (2.1a) and (2.1b) where we can analyse the identifiability. However, the
differential-algebra approach has limitations on high-dimensional systems and is only applicable
to systems with rational functions. The general concept of structural identifiability research,
including the differential algebra approach and other identifiability studies, is reviewed in [61].

We do not study identifiability, e.g. Laplace transformation and differential algebra approach,
in this thesis, as the developed schemes for identifiability analysis are only available for limited

6



2.2. ODE MODEL IDENTIFICATION

functions. Structural identifiability makes data-driven modelling a well-defined problem, and
the identified parameters physically meaningful. However, we will assume local structural
identifiability for data-driven modelling problems for the rest of the thesis.

2.2.2 Functional structure of the vector field

Choosing the functional structure of the data-driven model is an essential step in mathematical
modelling. One option is to use a mechanistic model, such as the Lotka-Volterra model, to
model the dynamics of biological systems. We can also use universal approximators, such as
neural networks or kernel functions, which will generally work for smooth dynamical systems.
The universal approximation is a property of a class of functions that can approximate a
bounded continuous function with a given accuracy defined by the maximum norm. Deep neural
networks and kernel functions in reproducing Hilbert kernel spaces (RKHs) (Definition 2.1) can
approximate any bounded continuous function in this sense [37, 63].

Neural networks are functions with free parameters called weight vectors, and kernel
functions are nonparametric functions defined from kernels and the input-output map. Neural
networks are computationally effective compared to kernel methods when there is a large set of
training data. However, neural networks perform poorly when there is a small set of training
data, and it is not easy to control the complexity of the model. Kernel methods that use kernel
functions perform reasonably well with small training data, and it is convenient to control the
complexity of the model using hyperparameters. However, the computational cost increases
when the training data set is large, and it is not easy to use kernel functions when there are no
entire input-output data of a model.

This subsection will review three important classes of functions in this thesis, linear time-
invariant systems, neural networks, and kernel functions. The linear time-invariant system is
one of the essential function classes for modelling the vector field. Neural networks and kernel
functions are important functional structures in data-driven modelling used in Chapters 5
and 6.

Linear time-invariant systems

Linear time-invariant systems are often the first choice for dynamic modelling of scientific
problems. For example, coupled spring-mass systems, LR-electric networks, and pesticide
models in soil and trees can be modelled using linear systems.

(2.2) F(x; θ) = A(θ)x,

where A : Rp → RN×N . Time-invariant linear systems have more options, such as frequency
domain parameter identification methods [59], for parameter identification than nonlinear
systems and time-varying systems, as the solution is a linear superposition of eigenvectors of A.
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Feedforward neural network

The feedforward neural network is a nonlinear function structured with nodes and layers, which
is a powerful function approximator. The nodes are the location where the real number is stored
in each layer. Let an−1 ∈ Rk be the k length vector of the nodes in the n − 1 -th layer. The
weight matrix W ∈ Rj×k connects the vector of length j of the nodes in the n -th layer an ∈ Rj

using the formula

an = σ(Wan−1 + bn),(2.3)

where bn ∈ Rj is a bias and σ is an activation function that passes the scalar stored in each node
in the n-th layer. We employ the following notation for vector input for activation functions:

σ([x1, . . . , xl]) = [σ(x1), . . . , σ(xl)]T , for x1, . . . , xl ∈ R.(2.4)

Hyperbolic tangent, softmax, and rectified linear unit (ReLU) are examples of common activation
functions in machine learning.

The deep neural network is a universal approximator [40] which means that it can approxi-
mate any continuous function defined in a compact domain up to the desired accuracy with a
sufficiently large depth or length. Therefore, we can model the vector field F or an observation
φ using a neural network. For example, neural ODE [23] is the modelling of the vector field
using a neural network as

ẋ = σ(Wlσ(. . . σ(W2σ(W1[x] + b1) + b2) . . .) + bl),(2.5)

θ = [vec(W1); . . . ; vec(Wl); b1; . . . ; bl],(2.6)

where vec(·) denotes the vector that collects the columns of the matrix. For example, vec(I) =
[1, 0, 0, 1]T where I is 2 × 2 identity matrix. The model parameter θ consists of weights and
biases.

In Chapter 4, neural networks are used to model the mapping between the invariant manifold
and the measured signals. Also, neural networks are used to model the oscillation speed of
self-excited systems.

Functions in reproducing kernel Hilbert space (RKHS)

Two popular nonparametric regression approaches use positive definite kernels in machine
learning. One is Bayesian machine learning with a Gaussian process that models problems
producing a posterior distribution as output [81]. Another approach is frequentist kernel
methods, kernel ridge regression, which searches optimised solutions of a regression problem
in reproducing kernel Hilbert space (RKHS) [45]. In this subsection, we review the general
concept of kernel ridge regression.
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RKHS is a Hilbert space of functions with point evaluation and is a linear representation
called a representer (Definition 2.1).

Definition 2.1. Reproducing kernel Hilbert space (RKHS) [106]
A reproducing kernel Hilbert space (RKHS) is a Hilbert space in which ∀x ∈ X , ∃Rx ∈ H such

that all functions in RKHS, f , can be evaluated as f(x) = ⟨Rx, f⟩H where X is a nonempty
feature space which is the space that input data lives and H is a Hilbert space of real-valued
functions on X . That is, function evaluation has a linear representation in the Hilbert space H.
Rx is the representative of the evaluation for x.

Definition 2.2. Positive semi-definite (PSD) Kernels [106]
A function k : X × X → R is a positive semidefinite (PSD) kernel if ∀n ∈ N and xi ∈ X ,

the matrix K ∈ Rn×n with Kij = k(xi, xj) is symmetric and positive semidefinite. A matrix
K ∈ Rn×n is positive semidefinite if ∀a ∈ Rn, aTKa ≥ 0.

Every positive semidefinite (PSD) kernel k produces a unique RKHS, Hk, which means that
RKHS and positive definite kernels are one-to-one. Square-exponential kernels, polynomial
kernels, Matern kernels [45] are popular kernels used in ML applications. We can construct an
RKHS, Hk, for a given positive definite kernel k. First, let H0 be the linear span of representers
as

H0 := span{k(·, x) : x ∈ X}

H0 is a Hilbert space with inner product

⟨f, g⟩H0 =
n∑
i=1

m∑
j=1

aibjk(xi, yj).

RKHS Hk associated with k is defined as Hk = H0 which can be written as

{
f =

∞∑
i=1

cik(·, xi) : ci ∈ R, xi ∈ X , s.t. ∥f∥2
Hk

=
∞∑
i=1

∞∑
j=1

cicjk(xi, xj) < ∞
}
.

RKHS, Hk, gives us a nice function space where we can find a solution to a regression
problem defined by minimising the data fitting criteria. Given a nonempty set X , a positive
definite real-valued kernel k : X × X → R, training samples (x1, y1), . . . , (xm, ym) ∈ X × R,
f ∈ Hk minimising the following

1
m

m∑
i=1

(f(xi) − yi)2 + λ∥f∥2
Hk
,

where λ is a regularisation constant, admits a representation of the form
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f(·) =
m∑
i=1

αik(·, xi).

This result is called the representer theorem [92]. Using the representer theorem, we can solve
a regression problem using functions in RKHS Hk, which minimises the prediction error at
the data points. Moreover, kernel functions provide a smooth function in feature space by
interpolating and extrapolating the input data, as in the following example.

Example 2.1. Kernel ridge regression [106]
We assume a model of the form y = f(x) + ε, where ε is an additive noise. The goal is to

identify f from observed data sets (xi, yi) ∈ (Rd ×R) are observed. Kernel ridge regression seeks
f̂ such that yi = f̂(xi) + wi for i = 1, . . . , n. Given RKHS, Hk, with kernel k, we find f̂ by
solving an optimisation problem:

f̂ = argmin
f∈Hk

1
m

m∑
i=1

(yi − f(xi))2 + λ∥f∥2
Hk

The first term is the data fit term and the second term is a regularisation term. By the representer
theorem, f̂ takes the form

f̂(·) =
n∑
j=1

αjk(·, xj)

let y = [yi, . . . , yn]T ∈ Rn and K ∈ Rn×n with Kij = k(xi, xj). Then, the original problem is
equivalent to

α̂ = argmin
α∈Rn

1
m

∥y − Kα∥2
2 + λαTKα.

Taking the gradient of the loss function and using the symmetric property of K, we have

α̂ = (K + λI)−1y,

which is one solution to the optimisation problem.

We can model the vector field F(x; θ) of an autonomous ODE using functions in RKHS Hk

as shown in Example 2.1 by setting the output vector y as a model parameter [39] as

(2.7) F(x) = K(x,Z)(K(Z,Z) + λI)−1UT,

where Z = [z1, . . . , zM ] is the inducing location and U = [u1, . . . ,uM ] is the inducing vectors.
Inducing vectors, u1, . . . ,uM , define the vector field of the differential equation as in Eq. (2.7).
In this case, the model parameters vector is θ = [θh,U]T where θh is a kernel hyperparameter,
such as a length scale and the scale factor. K(x,Z) in the above equation allows us to evaluate
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the function F(x) at the points x ̸= Z which is called interpolation if the evaluation point is
between the input data and extrapolation if not.

Choosing a type of kernel and optimising the kernel’s hyperparameters is the most important
procedure of data-driven modelling using kernel functions. The interpolation and extrapolation
of the training data sets using the model strongly depend on the hyperparameters of the kernel.
Hyperparameter tuning techniques are discussed in [81].

In this thesis, kernel ridge regression is used to model the dynamics of forced mechanical
systems in Chapter 6, where we can construct an input-output map using the response of forced
mechanical systems.

2.2.3 ODE parameter estimation strategies

Typically, parameter identification of ODE problems is transformed into an optimisation
problem using data-fitting criterion L. For example, we can use the mean squared error (MSE)
as a data-fitting criterion

L(θ) = 1
N

N∑
i=1

∥yi − φ(xi(θ), θ)∥2,(2.8)

where subindex i denote i-th time step of the training data, and xi is the numerical solution of
Eq. (2.1a) at time t = ti. The optimised value θ̂ = argmin

θ
L gives us the parameter of the ODE

model that fits the data best in the sense of a minimum MSE. Once the data fitting criterion L
is defined, we can use standard optimisation packages to identify the unknown parameters of
the model.

The data fitting criterion in Eq. (2.8) typically requires a numerical solution of the ODE
defined in Eq. (2.1a). The classical way of solving this optimisation problem is by using
numerical integration, such as the Runge-Kutta methods [19]. Other strategies estimate unknown
parameters θ of the ODE model, using different approaches such as matching the gradients or
expanding the solution using basis functions. In this section, we will introduce several strategies.

Explicit numerical integration of ODEs

Data fitting by numerical integration is often used to identify parameters of ODE models. Data
fitting criteria are a function of xθ and θ as L = L(xθ, θ). Note that we use the subscript θ
since x(t) depends on the model parameter θ. Differentiating xθ from θ for optimisation is
inefficient since we need differentiation over a numerical integration. Alternatively, we can define
an adjoint problem to compute the gradient of L as (see [23])

dL
dθ

= −
∫ tN

t0
a(t)∂F(x, t; θ)

∂θ
dt(2.9)
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where a(t) = dL
dx . The numerical solution of Eq. (2.9) gives a Jacobian of L, which is much

more efficient than differentiating xθ directly with θ. Julia package DiffEqFlux.jl [75, 76] offers
advanced features of adjoint sensitivity analysis for parameter identification of ODE models.
This scheme is used to identify the speed of the oscillations of self-excited systems in Chapter 5.

Matching time-derivatives

Two-step methods are indirect parameter estimation methods that do not use numerical
integration, as suggested by Varah [103] and developed by Chen [22], Brunel [15]. The first
step identifies the time-dependent function from the measured time series to compute the time
derivatives at the sampling points. Then, the parameters of the ODE model are estimated to fit
the estimated time derivatives to the vector field of the model. Two-step methods are generally
computationally efficient compared to schemes using numerical integration. However, two-step
methods show poor parameter estimation results when the measured data contain relatively
high noise.

Poyton [71] improved two-step methods to address measured noise problems by adding a
model-based roughness penalty. This approach improves the smoothness of the time derivatives
and estimates physically reliable parameters as a result.

Generalised profiling method [80]

The generalised profiling method computes the solution of ODEs by expanding the solution as
a basis function expansion as

x = Φc,

where Φ is the basis function matrix and c is the coefficient of basis expansion. There are two
loss functions for parameter identification. One is the so-called inner fitting criterion to evaluate
the basis expansion quality, and another is a typical data-fitting criterion.

Generalised profiling methods are reported to be robust to noise and computationally
efficient. However, the generalised profiling method performs poorly when the chosen bases Φ
do not approximate the solution properly.

2.2.4 Recent advance in data-driven modelling of ODEs

Neural ODE [23] has received significant attention from the data-driven modelling community
and inspired many related studies. The initial study of neural ODE modelled the vector field
using only neural networks. We can train any smooth ODE model by choosing a sufficiently deep
neural network that reproduces the measured data. However, the training is computationally
expensive when the model has a high-dimensional state space.
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One way to overcome the issue of neural ODE is to use domain knowledge by making a
hybrid model of a mechanistic model and an ML structure. Research [26, 60] show that adding
ML structure improves traditional disease models. It is also shown in [76] that these hybrid
models are also easier to train than black-box models and have superior extrapolation quality.
DiffEqFlux.jl is one of the most advanced ODE model identification packages that covers
neural ODEs to hybrid ODE models. However, data-driven ODE modelling methods using a
neural network lack interpretability, as a neural network does not give any physical meanings.
Furthermore, controlling the complexity of the model under noisy data is a challenge.

The sparse identification of nonlinear dynamics(SINDy) [43] algorithm is also a recently
developed data-driven ODE modelling method. SINDy uses a library of functions to model
the vector field of the ODE and identifies the model through sparsity-promoting optimisation,
which selects the fewest possible terms from a library of functions. SINDy gives a model that is
interpretable compared to methods that use neural networks and are less prone to overfitting
issues. However, the limitation of SINDy is that the design of the function library can make
model identification ill-conditioned when the library is too extensive and make a model less
descriptive when the library is too small.

The data-driven ODE modelling methods mentioned above focus on fitting time series data
using numerical solvers. Here, we focus on fitting a system’s bifurcation diagram using the
results of the CBC experiment. For systems undergoing bifurcation, unstable periodic solutions
also convey essential information about the system, which is problematic to use as training
data sets when numerical integration solvers are used. Developing data-driven ODE modelling
methods capable of training unstable periodic solutions is one of the contributions of this
thesis. For this purpose, we use the information of bifurcation and invariant manifold as domain
knowledge, which will be discussed in the later sections.

2.3 Invariant manifold of dynamical systems

An invariant manifold is a geometrical object contained in the state space of a dynamical
system. For example, let us say that there is a surface in a three-dimensional state space where
the response remains if the initial condition is on this surface. Then, we call this surface an
invariant manifold.

In many models of dynamical systems, reduced-order models are derived using an invariant
manifold when the dimension of the invariant manifold is smaller than the entire state space.
Two types of dynamical systems considered in this thesis have invariant manifolds, centre
manifolds, and spectral submanifolds. Throughout this thesis, we use these invariant manifolds
as the core information for data-driven ODE modelling.

We can generalise this concept to a compact manifold that has a boundary. Let M be a
compact manifold with a boundary embedded in RN and let ϕt(·) denote the flow defined by
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the vector field. M is called invariant manifold if for every p ∈ M , we have ϕt(p) ∈ M for all
t ∈ R. Similarly, we call M overflowing invariant manifold if the flow in the boundary of
M , ∂M , flows out from M and inflowing invariant manifold if the flow flows into M at the
boundary (see [48]).

Invariant manifolds used in this thesis– centre manifold and spectral submanifold– can be
understood as extensions of linear subspaces defined near the equilibrium. We can understand
this concept more precisely by Fenichel’s theorem for the invariant manifold [32]. General
Fenichel’s Theorem considers two dynamical systems:

ẋ = F(x),(2.10a)

ẋ = Fpert(x),(2.10b)

where Fpert is a perturbed vector field of F where the perturbation is small. Small perturbation
means that ∥F(x) − Fpert(x)∥ is small (see [48] for the precise definition of small perturbation).

Fenichel’s first theorem indicates that a perturbed vector field, Eq. (2.10b), has an overflowing
invariant manifold, which is a smooth deformation of the overflowing invariant manifold of
Eq. (2.10a). The necessary condition for Fenichel’s first theorem is that the dynamics of the
normal direction of the invariant manifold is faster than the tangential dynamics of the invariant
manifold (see [48, 109] for the formal condition, which is called normally hyperbolic invariant
manifold (NHIM)). In this case, we say that the invariant manifold of Eq. (2.10a) persists under
the perturbation.

According to Feinichel’s first theorem, a stable and unstable manifold near a hyperbolic
equilibrium of a linear dynamical system ẋ = Ax, where A ∈ Rn×n is a constant matrix with
no zero real eigenvalues, persists under adding small nonlinear perturbations to the vector field.
See [109] for details, where it uses Fenichel’s first theorem to prove the existence of classical
stable and unstable invariant manifolds near hyperbolic equilibrium.

2.3.1 Centre manifold

A dynamical system with a nonhyperbolic equilibrium also has an invariant manifold. Consider
a dynamical system ẋ = Ax, where A ∈ Rn×n has nc zero real eigenvalues and ns negative real
eigenvalues and nu positive real eigenvalues. The centre subspace of this linear system is NHIM,
and this persists under small nonlinear perturbations using Fenichel’s theorem (see [109] for a
detailed explanation). This invariant manifold is called the centre manifold.

Moreover, the centre manifold is locally represented as a graph; the stable-unstable subspace
defined by the Jacobian of the vector field at equilibrium is a function of the centre subspace
(see [49] for the proof), near the equilibrium as the following theorem.

Theorem 2.1. Centre manifolds for ODEs [49]
Consider a Ck-smooth system
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(2.11)
ẋ = Bx + f(x,y),

ẏ = Cy + g(x,y),

where x ∈ Rnc , y ∈ Rns+nu , and f(x,y), g(x,y) have neither constant nor linear terms. Suppose
that the matrix B ∈ Rnc×nc has nc critical eigenvalues (i.e. eigenvalues with Re (λ) = 0)
and C ∈ Rnh×nh has nu eigenvalues with Re (λ) > 0, ns eigenvalues with Re (λ) < 0, and
nh = ns + nu.

The system 2.11 has a locally defined invariant manifold

W c = {(x, hc(x)) : x ∈ Rnc , ∥ x ∥≤ ε}

where ε > 0 is sufficiently small and hc : Rnc → Rns+nu is a Ck-map satisfying

hc(0) = 0, Dxh
c(0) = 0.

The centre manifold theorem is particularly useful when studying bifurcation problems with
control parameter λ as in Chapter 5. We can add λ̇ = 0 to Eq. (2.11) and compute the
parametrised version of the central manifold as in the following example.

Example 2.2. Families of centre manifolds [49]
Consider a smooth parameter-dependent system of ODEs

(2.12)
ẋ = P (x,y, λ)

ẏ = Q(x,y, λ),

where x ∈ Rnc , y ∈ Rns+nu, λ ∈ Rm and suppose that 2.12 coincides with 2.11 at λ = 0
The system 2.12 has a family of invariant manifolds, locally representative for small ∥ λ ∥

as

W c
λ = {(x, w(x, λ)) : ξ ∈ Rnc , ∥ x ∥≤ ε}

where ε > 0 is sufficiently small and w : Rnc × Rm → Rns+nu is smooth. Moreover, w(x, 0) =
hc(x), i.e. W c

0 conincides with a centre manifold W c at λ = 0.

Example 2.2 shows that we can reduce the dynamics to parametrised centre manifold W c
λ

near λ = 0. For example, assume that the three-dimensional system has a supercritical Hopf at
λ = 0. We can reduce the dynamics to a planar system on a parametrised centre manifold W c

λ

as in Fig. 2.1.
As in Fig. 2.1, the centre manifold is an attracting manifold for systems with Hopf bifurcation.

Therefore, the centre manifold has the core information of the system, as a final steady-state
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Centre manifold  

Figure 2.1: Phase portrait of a three-dimensional system near the supercritical Hopf bifurcation
at λ = 0

response is on the centre manifold in these systems. In Chapter 4, a mechanistic model with Hopf
bifurcation is reduced to a parametrised centre manifold as in Example 2.2. The mathematical
model is defined on the centre manifold in Chapter 5, where we use the existence of the centre
manifold as domain knowledge.

2.3.2 Invariant manifold of a forced mechanical systems

A mathematical model of harmonically forced mechanical systems with an asymptotically
stable equilibrium also has invariant manifolds called spectral submanifolds (SSMs). We can
understand spectral submanifolds as perturbed NHIM of the linear modal subspace spanned by
the slowest decaying modes (see [36] for details). However, SSMs exist not only for the slowest
decaying modes, as any modal subspace persists under small nonlinear perturbations under
conditions called non-resonance conditions. We will briefly introduce the theoretical background
of SSMs and how we derive reduced-order models of harmonically forced systems.

Let us consider a mathematical model of a mechanical system of N degrees of freedom with
a single harmonic external force represented as

(2.13)
Mq̈ + Cq̇ + Kq + fn(q, q̇) = εfext(Ωt), q ∈ RN

fn = O(|q|2, |q||q̇|, |q̇|2), fext(Ωt) = Re (fdeiΩt).

where M ∈ RN×N is a symmetric positive definite matrix that models the mass, K ∈ RN×N

is the stiffness matrix, C ∈ RN×N is the damping matrix. fn is the nonlinear force that
characterises nonlinear stiffness and nonlinear damping that is at least quadratic in order;
therefore, q = 0 is an equilibrium. fd ∈ CN is a direction vector with phase information of the
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2.3. INVARIANT MANIFOLD OF DYNAMICAL SYSTEMS

external force fext, which is a single harmonic function. Note that a more general mechanical
setting considering the gyroscopic effect, follower forces, and multi-harmonic excitation can be
considered as in [36].

Transforming Eq. (2.13) into a functional system of first-order ODEs offers more information
on the system by extending the state space as x = [q, q̇]T and defining the matrices as

(2.14) A =
[

0 I
−M−1K −M−1C

]
, G(x) =

[
0

−M−1fn(x)

]
, Gext(ϕ) =

[
0

−M−1fext(ϕ)

]

where ϕ = Ωt. Eq. (2.13) is transformed into a first-order autonomous ODE using Eq. (2.14) as

(2.15)
ẋ = Ax + G(x) + εGext(ϕ)

ϕ̇ = Ω,

where n = 2N , A ∈ Rn × Rn is a matrix with all eigenvalues having negative real part,
G : Rn → Rn is a nonlinear function with G(0) = 0, DG(0) = 0, harmonic force Gext : S1 → Rn

is a trigonometric function having a form a cos(ϕ) + b sin(ϕ) where a,b ∈ Rn, and ϕ ∈ S1 is a
phase variable of the harmonic force, ε ≪ 1 is a small parameter.

We are interested in the solutions of Eq. (2.15) that have the form (K(ϕ), ϕ) ∈ Rn × S1.
This type of solution is called an invariant torus, and note that periodic solutions of Eq. (2.15)
also form an invariant torus. For ε = 0, the invariant torus of Eq. (2.15) is {0} × S1 and the
study of the persistence of this invariant torus under perturbations and invariant manifolds
attached to the invariant torus is in [38], which states that invariant manifolds attached to
{0} × S1 persist under small perturbation made by εGext(ϕ) in Eq. (2.15).

Haller [36] restated Haro’s result in [38] for systems described in the form of Eq. (2.15)
under non-resonance conditions. Let us define a spectral subspace, a vector space spanned by
the eigenvectors of A, as

(2.16) E = span{v1, v̄1, . . . ,vs, v̄s},

where vi denotes the eigenvector of i-th eigenvalue, s is the number of modes contained in
E, and the upper bar denotes the complex conjugate. Note that since A is a real matrix, the
spectral subspace is always spanned by a pair of complex conjugate eigenvectors.

We can parameterise an invariant manifold of Eq. (2.15) that is tangent to the spectral
subspace of dimension 2s of A, E, with its spectrum λ1,λ̄1,. . .,λs,λ̄s at the origin when ε = 0.
Under nonresonance conditions, a perturbed invariant manifold (ε > 0) is a 2s+ 1 dimensional
manifold where the phase variable ϕ is an additional parameterisation variable, as stated in the
following theorem.
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Theorem 2.2. Invariant manifolds of harmonically forced systems [14, 36]
Consider a spectral subspace E and assume that the low-order nonresonance conditions are

(2.17) < m,λ >E ̸= λl, λl /∈ Spect(E), 2 ≤ |m| ≤ σ(E)

hold for all eigenvalues of λl of A that are outside the spectrum of E, where Spect(E) :=
{λ1, . . . , λs}, |m| := m1 + . . .+ms and

(2.18) < m,λ >E := m1λ1 + . . .+msλs, where λ1, . . . , λs ∈ Spect(E),

and spectral quotient σ(E) is defined as

(2.19) σ(E) = Int
( Re(λmin)

maxj=1,...,s Re(λj)
)
,

where λmin denotes the eigenvalue corresponding to the fastest decaying mode, and λj corresponds
to the eigenvalues corresponding to spectral subspace E and Int(·) denote the integer part of the
real number.

Then the following statements hold:

1. A parameterisation W : R2s×S1 → R2N of the invariant manifold W can be approximated
in a neighbourhood of the origin as a polynomial in the parameterisation variable z ∈ R2s

and the phase variable ϕ ∈ S1, i.e.

x = W(z, ϕ).

2. Reduced dynamics, R(z, ϕ), defined in an open neighbourhood of x = 0, such that the
invariance condition

(2.20) AW(z, ϕ) + G(W(z, ϕ)) + εGext(ϕ) = DzW(z, ϕ)R(z, ϕ) +DϕW(z, ϕ)Ω

holds. Therefore, the dynamics on the invariant manifold is governed by

ż = R(z, ϕ).

3. The parametrisation, W(z, ϕ), as well as the reduced dynamics R(z, ϕ) persists under
small vector field perturbations.

4. W is at least of class Cσ(E)+1 with respect to x.
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Theorem 2.2 indicates that we can reduce the dimension of Eq. (2.15) to a reduced system if
we study the invariant manifold W and the reduced dynamics R under nonresonance condition
Eq. (2.17).

The parameterisation of the invariant manifold W can be chosen by balancing Eq. (2.20).
Dynamics of the invariant manifold reduce our computational load when studying the frequency
response near resonance. This can be done by choosing a two-dimensional E that corresponds
to a single mode spectral subspace as in [14].

As we consider small ε, the parameterisation of the invariant manifold, W, and the reduced
dynamics, R, is represented as [14]

W(z, ϕ) =W0(z) +
∞∑
l=1

εlWl(z, ϕ),(2.21)

R(z, ϕ) =R0(z) +
∞∑
l=1

εlRl(z, ϕ),(2.22)

where the subscript l of W and R indicate the order of expansion of ε. W0, R0 corresponds
to the invariant manifold and the reduced dynamics of the autonomous system with ε = 0
in Eq. (6.1). The perturbed invariant manifolds and the reduced dynamics Wl, Rl are also
expressed in polynomial expansion as

Wl(z, ϕ) =
∑
m=0

wm
l (ϕ)zm,(2.23)

Rl(z, ϕ) =
∑
m=0

rml (ϕ)zm,(2.24)

using this expression, W and R are expressed upto O(ε|z|, ε2) accuracy as

W(z, ϕ) =W0(z) + εw0
1(ϕ) + O(ε|z|, ε2),(2.25)

R(z, ϕ) =R0(z) + εr0
1(ϕ) + O(ε|z|, ε2),(2.26)

The parameterisation variable z = [z, z̄]T can be chosen as a complex conjugate pair z, z̄ ∈ C.
Using W0 being tangent to the corresponding eigenspace [36], R0(z) is expressed as

R0(z) =
[
λlz

λ̄lz̄

]
+ O(z2).(2.27)

In principle, it is possible to model R0(z) as a polynomial up to j0 − 1 order if the following
nonresonance condition is satisfied [97].

λs1
l λ̄

s2
l ̸= λl, λ̄l, j0 ≤ s1 + s2 ≤ σ(E),(2.28)
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However, in low damping system (i.e. |λl| ≃ 1), the non-resonance condition approximately
fails. Therefore, a broad domain of validity near the equilibrium can be ensured by looking for
R0(z) as (see [97] for details)

R0(z) =
(
λlz + β3z

2z̄ + β5z
3z̄2 + . . .

λ̄lz̄ + β̄3zz̄
2 + β̄5z

2z̄3 + . . .

)
(2.29)

The typical reduced-order modelling problem is solving Eq. (2.20) using Eqs. (2.25) and (2.29)
as a functional form of W and R. The unknown coefficients of Eq. (2.25) are calculated in each
polynomial order by balancing each side of Eq. (2.20).

Using Eqs. (2.25) and (2.29) reduced dynamics on the invariant manifold can be transformed
into a polar coordinate system z = ρeiθ as [14]

ρ̇ = a(ρ) + Γ sin(ψ),

θ̇ = b(ρ) + Γ/ρ cos(ψ),

ϕ̇ = Ω,

(2.30)

where a(ρ) is the unforced vector fields of the reduced dynamics in the radius direction, b(ρ)
is the unforced vector fields of the reduced dynamics in the angle direction, Γ is the forcing
amplitude projected in the tangent direction of the invariant manifold, ψ = θ − ϕ, ϕ = Ωt is
the phase of the external forcing. Transforming the reduced dynamics to Eq. (2.30) makes
computing periodic solutions and stability properties much more convenient (see [14, 21]).

Theorem 2.2 is the theoretical background of the data-driven modelling scheme developed in
Chapter 6, where we use the existence of the SSM as domain knowledge. We generate an input-
output map to train reduced dynamics on SSM from a rotationally symmetric parameterisation
of W in Chapter 6 motivated by Eq. (2.30). Rotationally symmetric means that the reduced
dynamic is invariant under rotational transformations applied to z.

2.4 Topological equivalence and the normal form

We call two dynamical systems topologically equivalent if one system is transformable to other
systems via an invertible transformation. This transformation preserves the invariant sets and
the stability properties.

By letting ϕtF be a flow direction by ẋ = F(x), we can define the topological equivalence as
follows.

Definition 2.3. Topological equivalence [27]
Two flows ϕtF : X → X and ϕτG : Y → Y are topologically equivalent if there is a homeomor-
phism h : X → Y and a continuous time-rescailing function τ(y, t), satisfying ∂τ/∂t > 0∀y ∈ Y,
such that
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ϕtF = h−1 ◦ ϕτG ◦ h

We can use the topological equivalent dynamical system to study bifurcation qualitatively
by deriving a simple type of equation called normal form. Normal forms of bifurcation involving
periodic solutions are typically converted to polar coordinates. For example, the principal idea
is to transform a trajectory of a periodic solution into a circle where the periodic solution
corresponds to a fixed point in polar coordinates. We typically need a coordinate transformation,
parameter rescaling, and time rescaling to remove unnecessary terms, the so-called secular
terms. The following example shows how we can study a bifurcation problem using a normal
form of the Hopf bifurcation.

Example 2.3. Normal form of the Hopf bifurcation [49]
Suppose a two-dimensional system

(2.31) ẋ = F(x, α), x ∈ R2, α ∈ R

with smooth F, has for all sufficiently small |α| the equilibrium x = 0 with eigenvalues of the
Jacobian of F in the associated equilibrium

λ1,2(α) = µ(α) ± iω(α)

where µ(0) = 0, ω(0) = ω0 > 0. Let the following conditions be satisfied:
(1) The first Lyapunov coefficient is nonzero (see [49] for definition).
(2) µ̇(0) ̸= 0.

Then, there are invertible coordinate and parameter changes and a time rescaling transforming
Eq. (2.31) into

(2.32)
ẏ1 = βy1 − y2 ± (y2

1 + y2
2)y1

ẏ2 = βy2 + y1 ± (y2
1 + y2

2)y2,

where ± sign depends on the sign of the first Lyapunov coefficient. We can easily calculate the
amplitude of the LCO of Eq. (2.32) as

√
|β| , and the stability of this LCO is stable when the

first Lyapunov coefficient is negative.

The normal form gives us qualitative information about the flow near the invariant sets,
as shown in Example 2.3. Topological equivalence is the essential concept used in Chapters 4
and 5 in data-driven modelling of reduced dynamics on the invariant manifold. In Chapter 4,
we used a normal form to parameterise the bifurcation diagram using the unknown coefficients
in Chapter 4. In Chapter 5, the bifurcation structure revealed from the CBC is used to set
topologically equivalent dynamics on the centre manifold as the basis model.
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Experimental bifurcation analysis

In this chapter, we

• introduce control-based continuation (CBC) that tracks bifurcation in a physical experi-
ment,

• discuss the CBC scheme for tracking periodic solutions of harmonically forced mechanical
systems with numerical and experimental demonstration,

• develop the CBC scheme for tracking LCOs in self-excited systems with numerical and
experimental demonstration.

3.1 Introduction

Tracking parameter-dependent periodic solutions in an experiment provide extensive dynamic
information about a system. For example, the frequency sweep of a mechanical system under
harmonic forcing gives a frequency response curve with critical information about the resonance
behaviour. Similarly, a flutter test of an aerofoil in a wind tunnel can reveal a bifurcation
diagram when a system has a supercritical Hopf bifurcation. However, there can be unstable
periodic responses when a system’s nonlinearity is not negligible. In the case of a flutter test,
unstable LCOs have critical information about the system when there is a subcritical Hopf
bifurcation. A simple parameter sweep experiment does not provide sufficient information about
the system.

Previous investigations have revealed the potential benefit of exploiting unstable LCOs
when estimating the parameters of a mathematical model. For instance, the amplitudes of
unstable LCOs were used to constrain model parameter optimisation and improve model

22



3.1. INTRODUCTION

predictions in [100]. However, without control, the authors could not directly measure the
unstable LCOs, and the LCO amplitudes were estimated by applying perturbations to the
system and identifying the smallest perturbation leading to a transition to the large-amplitude
stable LCOs. In [87], a conceptually-similar perturbation approach was used to estimate the
unstable LCOs of autogyro blades. A simple model was then developed and analysed using
the numerical continuation to qualitatively reproduce the experimentally measured bifurcation
diagrams. Besides the lack of accurate measurements of the unstable LCOs, the estimation of
the unstable LCOs using perturbations does not scale well with the number of DOFs in the
system and would not be applicable to complex systems.

Feedback control can be used to measure unstable LCOs in an experiment. Time-delayed
feedback control [72, 94] uses a signal proportional to x(t) − x(t − T ), where x is one of the
measurable state variables, to stabilise the periodic solution with a period T . The measured
periodic response is identical to the uncontrolled system when the controller is properly designed.
The major application of time-delayed feedback control is controlling chaos [73, 74] where a
large number of unstable periodic orbits are embedded. Some of these unstable periodic orbits
may correspond to the desired response where delayed feedback stabilises [72]. However, dealing
with delayed signals in an experiment can cause numerous problems, such as controller stability
issues and memory. Furthermore, correctly determining the period T to use can be a significant
challenge, especially for non-autonomous systems.

For forced systems, Phase-locked loops (PLL) are used to maintain the π/2 phase lag
between the fundamental harmonic of the excitation and the response [69], which allows fast
measurement of backbone curves and unstable periodic responses. However, PLLs are applicable
only for the experiment of harmonically forced systems where the phase of the harmonic force
parametrises the response curve.

CBC is an experimental method that relies on feedback control to steer the response of a
physical system towards behaviours of interest and then uses path-following techniques to track
their evolution as experimental parameters (such as wind speed) are changed. The fundamental
idea behind CBC is to make the control system non-invasive such that observed responses
correspond to the behaviour of the underlying uncontrolled experiment of interest [8, 95]. If
properly designed, the feedback controller makes unstable orbits stable and hence observable.

Here, we will show that CBC offers a systematic methodology to identify unstable LCOs.
However, the CBC method has until now been only applied to a wide range of harmonically-
forced systems, including nonlinear energy harvesters [6, 7, 83], a bilinear oscillator [17, 18, 30]
and a nonlinear beam with harmonically-coupled modes [85], and the notable difference with
the previous application is that the system considered in this chapter is autonomous. As such,
the system’s oscillation frequency is not determined by an external excitation and is a priori
unknown. Therefore, we suggest a new CBC scheme, phase-plane CBC (PP-CBC), which uses
a planar curve parametrised by phase angle as a control target.

23
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In Section 3.2, we first introduce the CBC scheme for forced systems with numerical
and experimental examples. We develop two parametrisation methods for setting a control
target in PP-CBC in Section 3.3 with numerical examples to show the robustness of the
developed PP-CBC method. Finally, an experimental demonstration of PP-CBC is presented
in Section 3.3.3.

3.2 CBC scheme for harmonically forced systems

In this section, we will discuss CBC schemes for harmonically forced systems that have been
applied to many applications. We will first discuss the fundamental concept of stabilising
unstable periodic solutions. Then, we will explain a simplified strategy to track the bifurcation
diagram of forced systems where we can avoid Newton iterations.

A harmonically forced system can be represented as

(3.1) ẋ = F(x) + fext(A cos(Ωt) +B sin(Ωt) + u(t))

where Ω is the excitation frequency, fext ∈ RN is the direction unit vector of the force, and u(t)
is a feedback control in the form of

(3.2) u(t) = kp(x∗(t) − x(t)) + kd(ẋ∗(t) − ẋ(t)),

where x, ẋ are measured scalar signals, x∗(t) is the control target, ẋ∗(t) is the time-derivative
of the control target, kp is the proportional control gain, kd is the derivative control gain.

We can set the bifurcation parameter of the system as λ = Ω or λ = γ where γ =
√
A2 +B2

is the amplitude of the harmonic force. We refer to a bifurcation diagram as a frequency
response curve (FRC) when the bifurcation parameter is the frequency Ω, or an S-curve when
the bifurcation parameter is forcing amplitude γ.

The choice of x∗(t) that makes the controller noninvasive, i.e. u(t) = 0, is a solution of zero
problem defined by input-output map x∗(t) − x(t) = 0, where x∗(t) is the input and x(t) is the
output over one period of oscillation. Specifically, we can discretise the input-output map by
projecting x∗(t) and x(t) to the truncated Fourier series of first q + 1 modes as

(3.3)

x(t) = A0/2 +
q∑
j=1

Aj cos(jΩt) +Bj sin(jΩt),

x∗(t) = A∗
0/2 +

q∑
j=1

A∗
j cos(jΩt) +B∗

j sin(jΩt).

We can rewrite x∗(t) − x(t) = 0 using Fourier coefficients as
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(3.4) p(p∗) − p∗ = 0,

where p∗ = [A∗
0, . . . , A

∗
q , B

∗
1 , . . . , B

∗
q ]T is the control target vector and p = [A0, . . . , Aq, B1, . . . , Bq]T

is the response vector.
We can solve Eq. (3.4) using zero problem-solving methods such as Newton-like methods

[91] or Picard iteration [5] when the control gains kp and kd are suitably chosen.
Newton-like methods are essential while tracking Frequency Response Curves (FRCs) when

a bistable region exists. However, Newton-like methods are extremely time-consuming in the
experiment since we need to evaluate the Jacobian every step. We will explain a continuation
scheme where Newton-like methods can be replaced by Picard iterations that work on S-curves.

3.2.1 Measuring S-curves using CBC

An S-curve is a bifurcation diagram plotted using γ =
√
A2 +B2 as a bifurcation paramter.

The CBC continuation problem for S-curves is formulated as Eq. (3.4). To avoid this issue in
the presence of folds in the solution branch, we add the arclength equation to Eq. (3.4) given by

(3.5) p̃Tj [pj − pj−1] + γ̃j [γj − γj−1] = ∆s, for j ≧ 2,

where pj is the vector of Fourier coefficients of the j-th step defined in Eq. (3.4). pj−1 is
the Fourier coefficient of the previous point of continuation with forcing amplitude γj−1,
p̃j = pj−1 − pj−2 is the direction vector calculated from two previous experiments and
γ̃j = γj−1 − γj−2 is the searching direction of the control parameter γ, and ∆s is the arclength
parameter that user sets for a continuation problem. The zero problems can be solved in the
experiment using Newton’s methods as in [91].

The zero-problem of S-curves (Eq. (3.4)) is relatively easy to solve as we can use Picard
(fixed-point) iterations for the higher harmonics as in [11]. First, initial control target is set
as p∗

j,0 = p∗
j−1 where p∗

j−1 is the successful control target vector of last step, j − 1-th step,
of S-curve continuation and subscript 0 of p∗

j,0 indicates the step number of iteration for
noninvasive control. We can use a simple trick to avoid zero problems for main harmonic
components by computing γ as

Â =A+ kpπ1 ◦ (P∗
j+1,0 − Pj+1,0) + Ωkdπq+1 ◦ (P∗

j+1,0 − Pj+1,0),

B̂ =B + kpπq+1 ◦ (P∗
j+1,0 − Pj+1,0) − Ωkdπ1 ◦ (P∗

j+1,0 − Pj+1,0),

γ =
√
Â2 + B̂2 ,

(3.6)

where we treat the control error’s main harmonic components as the forcing amplitude increase.
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Figure 3.1: The modified Shaw-Pierre example in [14]. m = 1, k = 1, c1 =
√

3 , c2 = 0.003 and
κ = 0.5. W is mass, k is linear stiffness coefficient, c is linear damping coefficient, κ is quadratic
stiffness coefficient, f1 = A cos(Ωt). f2 = 0

The fixed-point problem for noninvasive control is defined by

(3.7) πk ◦ p∗
j+1 − πk ◦ pj+1 = 0, for k = 1, . . . , 2q + 1,

where πk is a projection function to a k-th component of a vector. Eq. (3.7) can be solved via
Picard (fixed point) iteration in the experiment by updating the control target for the higher
harmonics as

(3.8) πk ◦ p∗
j+1,l = πk ◦ pj+1,l−1 for k ∈ {0, 1, . . . , 2q + 1}/{1, q + 1},

where iteration step, l, is increased until the zero tolerance is satisfied. However, Eq. (3.7) for
k = 1, q + 1, which corresponds to the main harmonic components, is not solvable via Picard
(fixed point) iteration. This is the main reason for introducing a scheme in Eq. (3.6).

We can plot the S-curve by plotting (γ(Λ), Λ) where we assume the amplitude of periodic
responses, Λ, can be approximated using main harmonic components as Λ =

√
A2 +B2 . the

Following example shows a numerical demonstration of the CBC scheme explained in this
subsection.

Example 3.1. Numerical demonstration of measuring S-curve using CBC
The CBC is applied to a system in Fig. 3.1. The feedback control, u(t), is added to this system
to the same point f1 is applied as

u(t) = kp(q∗(t) − q1(t)) + kd(q̇∗(t) − q̇1(t)),

q∗(t) = A∗
0/2 +

5∑
j=1

A∗
j cos(jΩt) +B∗

j sin(jΩt),
(3.9)

where kp = kd = 0.01 and the Picard iteration is applied as in Eq. (3.8) to achieve noninvasive-
ness at higher harmonics with zero tolerance 10−5. We can obtain S-curves as in Fig. 3.2 by
updating the forcing amplitude as in Eq. (3.6). We can see the agreement of the S-curve is good
with the S-curve of the system without CBC computed using numerical continuation. Moreover,
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Figure 3.2: S-curves of systems studied in Example 3.1. (a) Ω = 1.004. (b) Ω = 1.005. ( ) a
system without CBC computed using spectral collocation methods, ( ) system with CBC
computed using numerical integration and algorithm explained in Section 3.2.1.

we can increase the accuracy of the CBC scheme by increasing the number of harmonics used
in Eq. (3.9).

3.2.1.1 CBC experiment of an electromagnetic oscillator

This subsection provides CBC experimental results of a forced electromagnetic system [82] (see
Fig. 3.3 for the schematic and picture) that are used in data-driven modelling of Chapter 5.

A thin steel cantilever beam plate is clamped to an armature at one end (see Fig. 3.3),
where two sets of neodymium magnets are attached at the other end of the plate. The experi-
mental system is a single-degree-of-freedom (SDOF) oscillator which is fixed vertically to avoid
transverse deformation to the plate thickness. The permanent magnets induce electromagnetic
force that affects the stiffness of the system. The stiffness characteristic is softening at the low
amplitudes and hardening at the higher amplitudes. The stiffness characteristic of the system
can be adjusted by changing the air gap between the magnet and the iron coil. However, only
one configuration of the air gap experimental result is considered here. We track the frequency
response of this system with the variation of the amplitude of the base excitation amplitude, γ,
with fixed forcing frequency, Ω, which is called S-curves.

Base and plate tip displacements are measured using laser sensors, Omron ZX2-LD50 and
Omron ZX2-LD100. The electromagnetic oscillator is excited at the base using a shaker, model
APS 113, controlled by the Maxon ADS-50/10- 4QDC controller.

Control gains are selected as kp = 0.065 and kd = 0.005 for the CBC control. During the
CBC, the zero problems were solved for higher harmonics as in Eq. (3.8), and the forcing
amplitude was updated using Eq. (3.6) to measure S-curves. Fig. 3.4 shows an S-curve measured
at forcing frequency 20.3 Hz. The fold bifurcation point of the S-curve shown in Fig. 3.4
is located at the forcing amplitude 0.4 where the lower stable branch is connected with the
unstable higher branch. At forcing amplitude 0.05, the lower unstable branch is connected
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Figure 3.3: Nonlinear electromagnetic oscillator (Left) Schematic (Right) Picture [11]

with the stable higher branch. The proposed CBC scheme makes unstable periodic response
observable and tracks the curve using the method introduced in Eq. (3.6). Fig. 3.5 shows 24
S-curves which are measured at different forcing frequencies using the scheme explained in this
section.

S-curves can be used to identify unknown parameters of the system as in [11] where the
S-curve is parametrised using unknown parameters of a polynomial function using multiple time
scale methods. In [11], a model was identified for a single S-curve, and training with multiple
S-curves is discussed in [10]. From studies [10, 11], it is shown that the polynomial functions are
not flexible enough to capture multiple S-curves and using a neural network improves the model
flexibility to capture a wider range of frequency responses with multiple S-curves. However, it
is shown in [10] that it is challenging to deal with overfitting issues using a neural network as
the model does not give smooth S-curves.

In Chapter 5, we identify a model from 24 S-curves using kernel ridge regression, where
we can deal with model complexity much more easily than the neural network. Also, we can
extract critical information, such as the backbone curve, from the model, which is discussed in
detail in Chapter 5.

3.3 CBC scheme for self-excited systems

For forced systems, the control target for CBC is parametrised using the phase of the harmonic
force as in Eq. (3.3). However, there are no phase signals in the experiment of self-excited
systems. We suggest an alternative geometric way of setting a control target for stabilising
periodic solutions of self-excited systems, called phase-plane CBC (PP-CBC). The main idea of
PP-CBC is to set a curve parametrised by an angle of a two-dimensional plane as a control
target.
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Figure 3.4: S-curve measured using CBC on an electromagnetic oscillator at forcing frequency
21.3 Hz
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Figure 3.5: 24 S-curves measured using CBC on an electromagnetic oscillator

Let Γ ⊂ RN = {Φt(γ0)|0 ≤ t < TΓ} be a trajectory of a periodic solution with period TΓ,
evolution map Φt of the system, and γ0 is a point of a periodic solution. PP-CBC stabilises the
LCO by projecting Γ to a two-dimensional phase plane (x1, x2) where we assume x1, x2 are two
measurable state variables.

Two-dimensional coordinates have a smooth transition map between Cartesian coordinates,
(x1, x2), and the polar coordinates, (r, ϕ), in R2/{(0, 0)}. The polar representation, (r, ϕ), is
not unique; however, we aim to parametrise the control target in a plane using ϕ of suitably

29



CHAPTER 3. EXPERIMENTAL BIFURCATION ANALYSIS

chosen polar coordinates.
We assume Γ projected to (x1, x2) coordinate, Γπ ⊂ R2, is a polar curve. The polar curve

is a parameterizable curve using the angle ϕ ∈ [0, 2π) defined in polar coordinate (r, ϕ). This
assumption generally means we can parametrise Γπ as

(3.10) Γπ = {(x̂1(ϕ), x̂2(ϕ))|ϕ ∈ [0, 2π)},

where x̂1, x̂2 are 2π-periodic functions

(3.11)
x̂1(ϕ) =o1 + r(ϕ) cos(ϕ),

x̂2(ϕ) =o2 + r(ϕ) sin(ϕ),

where (o1, o2) is the origin of polar coordinates.
The fundamental idea of PP-CBC is feeding kp(x̂1(ϕ) − x1) + kd(x̂2(ϕ) − x2) to the system

to stabilise the unstable LCOs where ϕ is a function of x1 and x2. To explain the concept
of PP-CBC in detail, we need to discuss the parameterisation method of x̂1 and x̂2 before
introducing zero-problem-solving strategies for PP-CBC.

Here, we suggest two different ways of parametrisation of Γπ. One is an elliptic curve, and
the other one is a general polar curve. The following subsections will explain two different
parametrisation methods with numerical examples.

3.3.1 Elliptic projected phase-plane case

When the trajectory of Γπ is an ellipse centered at (o1, o2), width A, height |Aω|. The ellipse
also can be parameterised as in Eq. (3.11); however, we can further simplify the parametrisation
in this case by introducing linear transformation on original coordinates (x1, x2) as

(3.12)
x1 7→ o1 + x1/ω

x2 7→ o2 + x2,

then transform Cartesian coordinates to polar coordinates where we can parameterize the
ellipse using ϕ as

(3.13)
x̂1(ϕ) = o1 +A cos(ϕ)

x̂2(ϕ) = o2 + ωA sin(ϕ),

where angle is represented as ϕ = tan−1 ( x2−o2
ω(x1−o1)

)
(see Fig. 3.6).

The elliptic parametrisation can be used when the projected trajectory of the periodic
solution is an elliptic curve. This parametrisation is particularly useful when we project periodic
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Figure 3.6: Parametrisation of an elliptic curve

solutions that can be approximated to a single harmonic function, i.e. x = o1 +A cos(ωt), to a
plane of a state variable and the time derivative of a state-variable (x, ẋ). In this case, we can
parameterize the elliptic curve as

(3.14)
x̂1(ϕ) = o1 +A cos(ϕ),

x̂2(ϕ) = −ωA sin(ϕ),

which is useful in many practical experiments. Note that the sign of ω governs the direction of
the rotation along the elliptic trajectory with respect to the direction of the angle.

We can stabilise the original uncontrolled system by adding control force as

(3.15)
ẋ =F(x, λ) + ec(kp(x̂1(ϕ) − x1) + kd(x̂2(ϕ) − x2)),

ϕ = tan−1
(

x2 − o2
ω(x1 − o1)

)
,

where F(x, λ) defines the vector field of the uncontrolled system, λ is a control parameter, ec is
the direction vector of the control force and kp, kd are the control gains. We can successfully
measure unstable periodic orbits when kp, kd are appropriately chosen and |kp(x̂1(ϕ) − x1) +
kd(x̂2(ϕ) − x2)| ≪ 1.

The following example shows PP-CBC stabilising an unstable LCO of a subcritical Hopf
normal form.

Example 3.2. PP-CBC applied to a Hopf normal form
Suppose PP-CBC is added to the subcritical Hopf normal form as

(3.16)
u̇1 = λu1 − u2 + u1(u2

1 + u2
2) + kp(r0 cosϕ− u1) + kd(r0 sinϕ− u2),

u̇2 = λu2 + u1 + u2(u2
1 + u2

2),
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Figure 3.7: Stabilising control using PP-CBC (left) phase portrait of a system with PP-CBC
and uncontrolled system computed via Fourier collocation method. ( ) a system without
CBC, (•) system with CBC (right) time series of system with PP-CBC and uncontrolled system
computed via numerical integration. ( ) system without CBC, ( ) system with CBC

where ϕ = tan−1 (u2
u1

)
. r0 =

√
−λ is the amplitude of the LCO of the Hopf normal form.

At λ = −0.1, we can stabilise the LCO of the uncontrolled system using kp = 0.5, kd = −0.5.
Fig. 3.7 (Left) compares the phase-portrait of the system with PP-CBC and the system without
PP-CBC computed by the Fourier collocation methods, and Fig. 3.7 (Right) shows the time-series
comparison computed by numerical integration. Computing the periodic solution of the system
with CBC and the uncontrolled system with the collocation method is identical. However, we
can see that the error in numerical integration perturbs the solution from the unstable periodic
solutions for the uncontrolled system. In contrast, the system with CBC persists in its periodic
motion in numerical integration, suggesting the periodic solution is stabilised.

In physical experiments, the parametric representation of Γπ is priori unknown. Therefore,
we suggest a scheme to achieve noninvasive control in the experiment by solving a zero problem.
Let p∗ = [A∗, ω∗, o∗

1, o
∗
2]T which is the control target vector that sets the control target as

(3.17)
x∗

1(ϕ) = o∗
1 + a∗ cos(ϕ),

x∗
2(ϕ) = o∗

2 + ω∗A∗ sin(ϕ),

where ϕ = tan−1 x2−o∗
2

ω∗(x1−o∗
1) . The response is also assumed to be an elliptic curve as

(3.18)
x1(ϕ) = o1 + a cos(ϕ),

x2(ϕ) = o2 + ωA sin(ϕ),

where we can find the elliptic coefficients of the response p = [A,ω, o1, o2]T by fitting the
measured signal with Eq. (3.18) as in [35] using least squares fitting.
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We can achieve noninvasiveness when the measured elliptic curve is approximately the same
with the control target as

(3.19) p(p∗) − p∗ = 0.

We can compute root of Eq. (3.19) using zero-problem solving methods discussed in Section 3.2.
In practice, we can use Picard iteration for the noninvasive control when we project the

periodic solution to (x, ẋ) and when x is represented as a single harmonic signal. The parameters
o∗

1 and ω∗ are first found separately from A∗ using Picard iterations. At steady state, o∗
1 and ω∗

are set equal to o1 and ω calculated from the measured response. This procedure is repeated
until it converges, i.e., the difference between measured and target parameter values is lower
than the zero tolerance. Different coefficient values are imposed to determine the unknown
coefficient A∗, and the control error Ξ = A∗ − A(A∗) is observed. The value for which the
control error and, thus, the control signal become zero indicates the presence of a periodic orbit
of the underlying uncontrolled experiment.

3.3.2 General polar curve projected phase-plane case

We can also apply PP-CBC to track unstable periodic orbits for more complex shaped polar
curves. Since Γπ is a closed curve, we have 2π-periodic r̂(ϕ) =

√
x̂1(ϕ)2 + x̂2(ϕ)2 . Without loss

of generality, we assume (o1, o2) is the origin. Therefore, r̂(ϕ) can be represented as a truncated
Fourier series

(3.20) r̂(ϕ) ≃ â0 +
nh∑
j=1

âj cos(jϕ) +
nh∑
j=1

b̂j sin(jϕ),

where we assume nh number of harmonics sufficiently represent r̂(ϕ), and â0, âj , b̂j for j =
1, . . . , nh are Fourier coefficients. Similarly, we can set a control target using the Fourier
coefficient and add PP-CBC as

ẋ = F(x, λ) + ec(kp(r∗(ϕ) cosϕ− x1) + kd(r∗(ϕ) sinϕ− x2)),(3.21)

r∗(ϕ) = a∗
0 +

nh∑
j=1

a∗
j cos(jϕ) +

nh∑
j=1

b∗
j sin(jϕ),(3.22)

where ϕ = tan−1
(
x2
x1

)
, r =

√
x2

1 + x2
2 , kp, kd are control gains.

Now, we can define a zero-problem of PP-CBC as

(3.23) Φ(r∗(ϕ)) − Φ(r(ϕ)) = 0, r =
√
x12 + x22
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where Fourier projection is defined as Φ(R) : Cp([0, 2π],R) → R2nh+1 = [a0, . . . , anh
, b1, . . . , bnh

]
and

a0 = 1
2π

∫ 2π

0
Rdθ,(3.24a)

an = 1
π

∫ 2π

0
R cos(nθ)dθ for n = 1, 2, . . . , nh,(3.24b)

bn = 1
π

∫ 2π

0
R sin(nθ)dθ for n = 1, 2, . . . , nh.(3.24c)

By adding pseudo-arclength equation Eq. (3.5) to Eq. (3.23), we have a typical continuation
of zero-problem. The following example shows the numerical demonstration of PP-CBC using a
general polar curve as a control target.

Example 3.3. PP-CBC applied to a unsteady flutter model
In this example, we apply PP-CBC to an unsteady aeroelastic flutter model presented in

Appendix A. In this model, the state-space vector is composed of heave, the velocity of heave,
pitch, the velocity of pitch and two aeroelastic variables to describe an aeroelastic force. The
wind speed is a control parameter of the model, and the model has a subcritical Hopf bifurcation
at the wind speed 18.3m/sec. PP-CBC is applied to a unsteady flutter model as

(3.25)
ż = B(µ)z + N0(z) + ec(kp(r∗(ϕ) cosϕ− x1) + kd(r∗(ϕ) sinϕ− x2)),

r∗(ϕ) = a∗
0 +

nh∑
j=1

a∗
j cos(jϕ) +

nh∑
j=1

b∗
j sin(jϕ),

where ec = [0, 1, 0, 0, 0, 0]T , and the first equation without the control force is presented in
Appendix A. We use kp = kd = −100, nh = 10 and perform a numerical continuation of the
zero problems defined by Eq. (3.23) and the pseudo-arclength equation.

We can see that the system with PP-CBC and without control has an identical bifurcation
diagram in the unstable branch emerging from a Hopf point as in Fig. 3.8. Also, PP-CBC does
not modify the original phase-portrait but stabilises the unstable response as shown in Fig. 3.9.

Floquet multipliers in Fig. 3.9 are computed from the variational equation of Eq. (3.25)
which can be written as

(3.26) v̇ = Fz(z∗(t))v,

where z∗(t) is the noninvasive periodic solution, i.e. solution that makes the control force
zero, of Eq. (3.25), v ∈ R6 is a small perturbation from the periodic solution and Fz is the
linearisation of the vector field of Eq. (3.25). Floquet multipliers are the eigenvalues of the
fundamental matrix solution of Eq. (3.1) at the period of the periodic solution with identity
matrix as the initial condition [49]. Also, Floquet multipliers are identical to the eigenvalues
of the linearised Poincare map constructed at one of the points on the periodic solution which
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Figure 3.8: Bifurcation diagram of PP-CBC compared with numerical continuation of the
uncontrolled system. ( ) numerical continuation of system without CBC, (•) numerical
continuation of system with CBC.

allows us to study stability of the periodic solutions. As PP-CBC is an autonomous system,
trivial Floquet multiplier with value 1 where the eigenvector corresponds to the velocity vector
always exists.

Floquet multipliers computed from the variational equation derived from Eq. (3.1), CBC of
harmonically forced system, are strictly inside the unit circle. The Poincare section of Eq. (3.1)
can be fully described when the state space is extended by the phase of the harmonic force
ϕ = Ωt. It should be noted that the system, Eq. (3.1), is autonomous when the state space
extended by ϕ. The Floquet multipliers of the variational equation of Eq. (3.1) do not include
the trivial Floquet multiplier of the extended state space as the Poincare section corresponds to
{(x, ϕ) : ϕ = θ0} where θ0 is one of the phase points of the harmonic external force. Physically,
CBC of a harmonically forced system makes all directions of the unextended state space stable
whereas the PP-CBC makes only the direction transverse the periodic solution stable.

3.3.3 PP-CBC of a flutter rig

This subsection will show an experimental example of PP-CBC applied to a flutter rig in a wind
tunnel experiment. This experiment uses parametrisation method discussed in Section 3.3.1.
First, we will explain the experimental setting of PP-CBC on a flutter rig. The PP-CBC
algorithm used in the experiment is presented in Section 3.3.3.2. In Section 3.3.3.3, the result
of the PP-CBC experiment is explained.
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Figure 3.9: Comparison between system with PP-CBC vs system without control at the wind
speed 16 m/s (Left) phase portrait. ( ) numerical continuation of system without CBC, ( )
numerical continuation of system with CBC, (right) Floquet multipliers. (▲) system with CBC
(◦) system without CBC.

3.3.3.1 Description of the flutter rig

The flutter rig is shown in Fig. 3.10 comprises a NACA-0015 wing profile rigidly attached to a
stainless steel shaft, supported at both ends by rotational bearings mounted on supporting plates
that are constrained to move vertically by a linear bearing system. As such, the experiment has
two mechanical degrees of freedom: pitch (rotational motion) and heave (vertical motion). The
semi-chord of the aerofoil is 150 mm with a span of 600 mm.

In the heave direction, linear springs are connected between the supporting plates and the
outer frame. In the pitch direction, torsional springs are connected between the shaft and the
supporting plates. Both sets of springs provide approximately linear restoring forces in their
respective directions. In the pitch direction, there are additional leaf springs connecting the
shaft and the supporting plates; these leaf springs provide a hardening nonlinearity, mimicking
potential interface effects at the root of the aerofoil.

The leaf springs also add an element of safety to the design, limiting the large amplitude
motions that can occur during flutter oscillations.

The dimensions of the flutter rig are such that the wing profile fits in the principal section
of the University of Bristol low-turbulence wind tunnel; the supporting plates and outer frame
lie outside it (see Fig. 3.10(a)).

Additional control forces are applied in the heave direction by using an APS 113 electro-seis
long-stroke electrodynamic shaker connected by a flexible stinger to one of the the supporting
plates.

The experiment is instrumented with an Omron ZX1-LD300 laser displacement sensor
focused on a supporting plate to capture the heave motion and an RLS AksIM 18 bit absolute
magnetic encoder fitted on the shaft to capture the pitch motion. Additionally, accelerometers
are mounted on various components, but their outputs are not used in this analysis.
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(a) (b)

Figure 3.10: The nonlinear flutter rig with a rigid NACA-0015 wing profile and two mechanical
degrees of freedom (pitch and heave; that is, rotational and vertical motion). Panel (a) is a
photograph of the experiment looking towards the trailing edge of the aerofoil; the airflow is
from left to right. Panel (b) is a schematic drawing of the experiment.

Real-time control and data acquisition are performed using a Beaglebone Black single-board
computer equipped with an analogue IO cape (18 bit ADC and 16 bit DAC) operating at a
sample rate of 5 kHz. Details of the control system are in rtc repository.

The bifurcation of the flutter rig is highly sensitive to the setup of the rig. For example,
the stiffness of the leaf spring, which can be modified by the position of the clamp, and the
friction in the pitch and the heave direction affect the flutter speed and the flutter frequency.
Therefore, feedback control gains to stabilise the system depend on the experimental setup
and the temperature of the mechanical parts of the flutter rig. Two big challanges in the
experimental setting is making the flutter rig to have a desired Hopf bifurcation and finding
the sutiable control gains that stabilises the unstable solutions.

3.3.3.2 Algorithm for tracking LCOs of a flutter rig

The control law is given by

(3.27) u(t) = kp(z∗(t) − z(t)) + kd(ż∗(t) − ż(t)),

where kp = 15.0 and kd = −0.05 are the proportional and derivative gains of the controller,
z∗(t) is the control reference and ż∗(t) its time derivative, z(t) is the heave displacement, and
ż(t) its time derivative. We use the parametrisation method presented in Eq. (3.14) for control
targets, z∗(t) and ż∗(t), as

(3.28) z∗(t) = o∗
1 +A∗ cosϕ and ż∗(t) = −A∗ω∗ sinϕ,

where

(3.29) ϕ = tan−1
( −ż(t)
ω∗(z(t) − o∗

1)

)
.
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Figure 3.11: The response of the flutter rig in open-loop mode (no control active) measured
across multiple days. Bistable behaviour is evident for flow velocities between approximately
14 m/s and 25 m/s where a stable limit cycle oscillation in heave and pitch coexists with a
stable equilibrium.

Eq. (3.28) locks the phase of the control reference onto the phase of the measured response.
The problem is now to find the unknown control reference parameters o∗

1, A∗, and ω∗ such that
a non-invasive control signal is achieved (as explained in Eq. (3.19)). As a single-harmonic signal
is assumed, geometric coefficients o1, ω can be calculated from the measured time series z(t).
Rather than using Newton’s method, which requires a time-consuming Jacobian calculation in
the experiment, we use the Picard iteration (fixed-point iteration) in this experiment discussed
in Section 3.3.1.

3.3.3.3 PP-CBC results

Open-loop tests were initially performed to investigate the dynamics of the system. Fig. 3.11
shows the response of the system for wind velocities ranging from approximately 14 m/s to
27 m/s. Starting around 14 m/s and increasing the wind velocity, the equilibrium position
of the system is stable, and the system does not exhibit any oscillation. After 24 m/s, the
equilibrium loses stability, and the system starts to exhibit large-amplitude LCOs. These LCOs
are sustained and grow in amplitude for larger wind velocities. Decreasing the wind velocity
from 27 m/s, LCOs are maintained until approximately 17 m/s, after which the system returns
to its equilibrium position. The sudden transition to finite-amplitude LCOs around 24 m/s and
the existence of a range of wind velocities for which stable equilibria and LCOs coexist indicate
the presence of a subcritical Hopf bifurcation and a branch of unstable oscillations separating
the equilibria from the stable LCOs. A saddle-node bifurcation is also present at approximately
15 m/s.

We now apply CBC to measure the system’s LCOs in the range of wind velocities where the
system is bistable. As changes to the wind velocity cannot be made automatically and introduce
substantial transient effects, we investigate the dynamics of the system for a range of fixed wind
velocities. At each wind velocity, the amplitude of the control target A∗ is increased iteratively.
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Between two increments, the dynamics is left to settle and the control error Ξ = A∗ − A is
measured. Figure Fig. 3.14(a) shows the control error obtained for 3 repetitions of the same
experiment at 15.6 m/s. When the control error crosses zero, which consistently happens
between the first two data points, the control signal is noninvasive, and the response of the
controlled system corresponds to the response of the underlying uncontrolled experiment. The
control error Ξ crosses zero in the low-amplitude, unstable LCO and in the high-amplitude,
stable LCO. The solution observed in Fig. 3.14 corresponds to unstable LCO.

Fig. 3.15 (a) shows heave amplitude of the LCOs and Fig. 3.15 (b) shows pitch amplitude of
the LCOs measured at four different wind velocities. Unstable and stable LCOs are represented
in red (◦) and blue (•), respectively. As in Fig. 3.14(a), the evolution of the oscillation frequency
across the bifurcation diagram is relatively small (Fig. 3.15(c)).

Fig. 3.16 shows some of the raw time series recorded for the heave motion ( ) and Fig. 3.17
shows the raw time series of the pitch motion. For the tolerance considered (1.8 mm), the
control reference signals ( ) are in excellent agreement with the measured responses, which
further shows that the control signal can be considered non-invasive. A further demonstration
of the small relative magnitude of the control signal was obtained experimentally by switching
off the controller on one of the stable LCOs. This did not affect the dynamic response of
the system, as shown in 3.18(a). Repeating the same process on one of the unstable LCOs
shows that the dynamics of the system evolve towards the stable equilibrium of the underlying
uncontrolled system (Fig. 3.18(b)). After repeating the process several times, we observed
that the uncontrolled response could either evolve towards the stable equilibrium or the stable
LCOs of the underlying uncontrolled system. Observing both types of responses shows that
the identified unstable LCO lies at (or very close to) the boundary between the two coexisting
stable behaviours and that the LCOs were accurately captured by PP-CBC.

The same procedure to stabilise unstable LCOs was applied in a different setting with
replaced leaf springs, which is in Fig. 3.19. We can see that the flutter speed and frequency
were changed by replacing the leaf spring.

3.4 Conclusion

In this chapter, we discussed the CBC scheme to measure bifurcation diagrams in an experiment.
We first discussed the CBC scheme to measure S-curves of harmonically forced mechanical
systems. We show from a numerical experiment that the Picard iteration scheme to avoid
Newton iteration in the experiment is robust. Also, we show an experimental example with an
electromagnetic oscillator where CBC is applied to measure S-curves.

The main novelty of this chapter is developing a CBC scheme for self-excited systems, which
is fundamentally different from previously developed CBC schemes. The developed PP-CBC
uses the geometric parametrisation of the LCO trajectory as a control target for non-invasive
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Figure 3.12: Residuals of PP-CBC in amplitude at Wind speed = 17.5 m/s
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Figure 3.13: Measurement of time series at Wind speed = 20 m/s

control. We suggest two parametrisation methods– elliptic and general polar curves– that show
robustness in numerical simulations. We also show an experimental demonstration result of
PP-CBC applied to a flutter rig in a wind tunnel experiment.
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Figure 3.14: Multiple measurements of frequency and control error of phase-locked periodic
solutions at different amplitudes of control target (a) frequency and (b) error.
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Figure 3.15: CBC results (a) Heave amplitude of LCO (mm), (b) Pitch amplitude of LCO
(rad), (c) Frequeny of LCO (Hz). (•) is measured stable LCO and (◦) is the measured unstable
LCO.
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Figure 3.16: Heave amplitude of measured LCOs (a) Unstable LCO (U=14.9 m/sec), (b)
Unstable LCO (Wind speed = 15.6 m/sec), (c) Unstable LCO (Wind speed = 6.5 m/sec), (d)
Stable LCO (Wind speed = 14.9 m/sec), (e) Stable LCO (Wind speed = 15.6 m/sec), (f) Stable
LCO (Wind speed = 16.5 m/sec). ( ) is the heave response of the rig, ( ) is the control
target.

0 0.5 1 1.5 20.6

0.7

0.8

Pi
tc

h
(r

ad
)

(a)

0 0.5 1 1.5 2

(b)

0 0.5 1 1.5 2

(c)

0 0.5 1 1.5 20.6

0.7

0.8

Time (sec)

Pi
tc

h
(r

ad
)

(d)

0 0.5 1 1.5 2
Time (sec)

(e)

0 0.5 1 1.5 2
Time (sec)

(f)

Figure 3.17: Pitch amplitude of measured LCOs (a) Unstable LCO (U=14.9 m/sec), (b) Unstable
LCO (Wind speed = 15.6 m/sec), (c) Unstable LCO (Wind speed = 16.5 m/sec), (d) Stable
LCO (Wind speed = 14.9 m/sec), (e) Stable LCO (Wind speed = 15.6 m/sec), (f) Stable LCO
(Wind speed = 16.5 m/sec).
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Figure 3.18: Response of the LCO after the controller was turned off at t = 3 sec (a) stable
LCO (Wind speed = 16.4 m/sec), (b) unstable LCO ( Wind speed = 16.4 m/sec).
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Figure 3.19: CBC results of a different leaf spring setup (a) Heave amplitude of LCO (mm), (b)
Frequency of LCO (Hz). (•) is measured stable LCO and (◦) is the measured unstable LCO.
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Parameter estimation of the mechanistic model with Hopf

bifurcation

In this chapter, we

• develop parameter identification methods for mechanistic models undergoing Hopf bifur-
cation,

• use linear system identification methods to identify a linearisation of the model using a
free-decay response,

• use centre manifold reduction and normal form analysis to parameterise the amplitude of
the LCOs,

• identify nonlinear parameters by minimising the prediction error of the amplitude of
LCOs near a Hopf bifurcation point,

• update the nonlinear parameters using spectral collocation methods to take into account
higher-amplitude branches neglected in normal form analysis,

• apply the developed method to an experiment discussed in Section 3.3.3.3.

4.1 Introduction

Mechanistic models are derived using physical principles. For example, the mass-spring-damper
model of mechanical systems can be derived using Newton’s second law, which gives a second-
order differential equation. The coefficients of the mass-spring-damper model, stiffness and
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damping, are physically interpretable. Therefore, estimating the parameters of a mechanistic
model using measured data can provide valuable physical insights to researchers.

In this chapter, we develop a parameter identification method for ODE models with Hopf
bifurcation that can be applied to mechanistic models. Specifically, we identify the parameters
of the aeroelastic flutter model that undergoes a subcritical Hopf bifurcation based on the
experimental results of CBC presented in Chapter 3.

The modelling and analysis of LCOs in aeroelastic systems have been and remain an active
research area [29]. Obtaining an accurate model of LCOs is challenging as it requires the
‘right’ balance between energy generation and dissipation in the model (to obtain a periodic
response). Furthermore, the presence of LCOs usually cannot be explained by linear models and
hence requires introducing and estimating nonlinear parameters. In [42], the nonlinear stiffness
parameters of a plunge and pitch aerofoil were estimated using static tests. The identified model
was then exploited to suppress LCOs using feedback linearisation. In [2], the method of multiple
time scales was used to investigate the LCOs of a 2-DOF aerofoil and determine the supercritical
nature of the Hopf bifurcation. The pitch and plunge amplitudes of the experimentally measured
LCOs were compared to the model predictions to determine the quadratic and cubic stiffness
coefficients in pitch.

The goal of parameter estimation in this chapter is to achieve a qualitative agreement in
the bifurcation diagram between the model and the experiment. Compared to previous studies
in parameter estimation of aerofoil models, the novelty of this chapter is that we consider both
stable and unstable LCO branches that collide at the saddle-node bifurcation. On the other
hand, other studies [2, 42] only considered LCO branches emanating from the Hopf bifurcation
point. Furthermore, we implemented parameter estimation for a system with subcritical Hopf
bifurcation that has rarely been studied in previous model identification studies.

We use a conceptually simple model of our experiment and normal form theory to predict
the unstable LCOs of our physical system. We then propose a three-stage methodology to
identify the parameters of this model based on experimental data. The first stage considers the
use of conventional linear system identification techniques to identify the linear parameters of
the model. The second stage estimates the nonlinear parameters of our model by minimising
the error between the unstable LCOs predicted using normal form theory and the measured
amplitude of LCO. The use of an analytical method is computationally effective. Finally, we
update nonlinear parameters using the collocation method to consider stable LCOs that were
not considered in the second stage.

We introduce the method to parameterise the amplitude of LCOs using centre manifold
reduction and normal form theory in Section 4.2. In Section 4.3, the parameter estimation
procedure of the ODE model is discussed.
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4.2 Mathematical model

In this chapter, we use the mathematical model presented in Appendix A. We transform
Eq. (A.1) into a system of first-order equations by setting z = [h, ḣ, α, α̇, w, ẇ]T. Eq. (A.1) is
transformed into a more convenient form for the bifurcation analysis by introducing a new
parameter µ = U − Uf where Uf is the flutter speed.

Our final model is

ż = G(z, µ).(4.1)

The type of Hopf bifurcation depends on the first Lyapunov coefficient [49], which depends on
the nonlinear part of G. Lyapunov coefficient can be computed from the normal form, which
will be explained in the next subsection.

4.2.1 Calculation of the unstable LCOs

In this chapter, the dynamics of the uncontrolled system are analysed near the Hopf bifurcation
using centre manifold reduction. The objective of this analysis is to analytically predict the
amplitude of unstable LCOs. Analytical predictions will be used to identify the nonlinear
parameters of the system.

At the Hopf bifurcation point (z, µ) = (0, 0), Eq. (4.1) can be rewritten as

ẋ = Jcx + f(x,y, µ),

ẏ = Jsy + g(x,y, µ),
(4.2)

where x = [x, x̄]T ∈ C2 and y ∈ Cn−2. The matrices Jc and Js are partition of the Jordan
canonical form of the Jacobian matrix of G(z) into its centre and stable subspaces, respectively.
For simplicity, the eigenvalues of Jc are assumed to be equal to ±i. f and g are functions with
f(0, 0) = 0, Df(0, 0) = 0 and g(0, 0) = 0, Dg(0, 0) = 0.

For system (4.2), there exists a local smooth centre manifold that is invariant under the
action of the dynamical system [20]. A polynomial approximation of the centre manifold H(x, µ)
can be computed recursively by solving

DH(x̂)(Ĵcx̂ + f(x̂,H(x̂))) = JsH(x̂) − g(x̂,H(x̂)),(4.3)

at each order of the polynomial expansion. To reduce the order of dynamics in the Hopf
bifurcation, we include µ̇ = 0 to Eq. (4.2) [49]. As such, x̂ = [µ,x]T and Ĵc is Jc extended with
a zero on its diagonal [13]. The dynamics of the centre manifold can also be approximated
using power series. The expansion considered is

(4.4) ẋ = ix+
∑
k

fk(x, x̄, µ) where fk =
∑

j+l+m=k
(a1jlm + ia2jlm)xj x̄lµm,
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µ = [µ1, µ2, . . . , µm]T , µm = µm1
1 µm2

2 · · ·µmm
m , a1jlm = [a1jlm1 , a1jlm2 , . . . , a1jlmm ]T and∑imi =

m.
The method of normal forms can be used to simplify Eq. (4.4). In this chapter, we exploit

the so-called simplest normal form [112] (SNF) method that combines a near-identity coordinate
transformation with suitable rescaling of the bifurcation parameter and time. The k-th order
SNF takes the general form

du

dτ
= (α1ν + iβ1)u+ (α2 + iβ2)u2ū+ i

∑
k

gk(u, ū),

where gk(u, ū) = (b1k + ib2k)u
k+1

2 ū
k−1

2 , for odd integer k ≥ 5.
(4.5)

where α1, β1, α2, β2 ∈ R. α2 is the first Lyapunov coefficient, and its sign determines the
criticality of the Hopf bifurcation. SNF makes the normal form of a Hopf bifurcation to Eq. (4.5)
by removing all unnecessary terms in the equation using the near-identity transformation, the
time and parameter re-scalings even if higher-order terms are taken into account in original
system. The near-identity transformation, the time and parameter re-scalings are given by
x = h(u, ū, ν) = u+∑

k hk(u, ū, ν), t = T (u, ū, ν, τ) and µ = p(ν), respectively. The reader is
referred to [112] for a detailed derivation of the coefficients α1, α2, β1 and β2 and functions h,
T , g and p. Note that the equation associated with the complex conjugate variable ū is not
shown in Eq. (4.5) for the sake of clarity.

Using u = Reiθ, Eq. (4.5) can be written in polar coordinates. For the amplitude equation,
this leads to the general expression

dR

dτ
= α1νR+ α2R

3.(4.6)

The non-trivial fixed point of Eq. (4.6) corresponds to the amplitude of the LCO. The use of
the SNF method leads to the presence of a single cubic term in Eq. (4.6), regardless of the
order of the transformation [3, 111]. This greatly simplifies the parameterisation of the LCO
amplitude used in the nonlinear parameter estimation method (Section 4.3).

4.3 Parameter estimation

The identification is performed in a staged process, starting with the identification of linear
parameters using standard linear system identification techniques. Unstable LCOs measured
using PP-CBC are then used to estimate the nonlinear stiffness parameters of the model. In the
final stage, nonlinear parameters are updated using spectral collocation methods considering
stable LCOs.

4.3.1 Parameters of underlying linear model

For small-amplitude responses, the contribution of the nonlinear part of the function Eq. (4.1)
can be neglected and the system can be considered linear. The parameters of this underlying
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linear model can be identified using conventional system identification techniques [55, 70, 90]. In
this chapter, the equations of motion are expressed in state-space form, and model parameters
are optimised using a conventional prediction error method (PEM), briefly explained hereunder.
Note that other methods that used, for example, modal properties could have been used [33].
The experimental data exploited for the identification of the linear model parameters were
obtained from free decay responses where no external force is applied with low-amplitude initial
conditions and without airflow.

Without external excitation, the discrete-time equations of motion of the underlying linear
model can be written as

z(k + 1) =Ad(θ)z(k),

y =Cz + w,
(4.7)

where y is the vector of measured output that corresponds to the first and third state variables
of the system (i.e. C = diag(1, 0, 1, 0)). w is the measurement noise and Ad is the discrete-time
state transition matrix defined as

Ad(θ) = eA(θ)Ts ,(4.8)

where Ts is the sampling time and A(.) is the continuous-time state matrix from linearisation
of Eq. (4.1). The vector of unknown parameters θ contains θ = [Iα, cα, ch, ḣ(0), α̇(0)]T . Note
that the initial velocities of the system, ḣ(0) and α̇(0), are required to simulate the response
of the model. As they were not measured, both velocities need to be estimated along with
the other physical parameters of the system. The other parameters of the model, i.e., the air
density ρ, the semi-chord of the wing b, the position of the elastic axis relative to the semi-chord
a, the mass of the wing m, the mass of the total wing structure including support mT and
the non-dimensional distance between the centre of gravity and the elastic axis xα, were all
directly measurable. The natural frequencies of the modes associated with a motion in pitch
ωα =

√
kα/Iα , and in heave ωh =

√
kh/mT were also estimated from the frequency response

of a shaker test.
The prediction error ε̂ of the model can be defined as

ε̂(k, θ) = y(k) − ŷ(k|θ),(4.9)

where ŷ(k|θ) is the model response calculated from Eq. (4.7). The optimisation is used to find
the set of parameters θ̂ that minimises the prediction error (see [55] for additional details on the
definition of the optimisation cost function). An optimisation was carried out using Matlab’s
system identification toolbox [56], and the code and results can be accessed in the Github
repository. The initial value of θ is important to avoid reaching local minima during optimisation.
The initial guess provided here is estimated from modal tests. The model identification was
applied to two different flutter rig setups with different leaf spring setups where we distinguish
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Table 4.1: Measured and identified parameter values of the linearized model.

Measured Parameter Value Identified Parameter Value
b (m) 0.15 Iα (kgm2) 0.1724
a -0.5 cα (kgm2/s2) 0.5628 (System 1), 0.9426 (System 2)
ρ (kg/m3) 1.204 ch (kg/s) 14.5756
mw (kg) 5.3 kα (N) 54.11 (System 1), 61.30 (System 2)
mT (kg) 16.9 kh (N/m) 3529.4 (System 1), 3318.3 (System 2)
xα 0.24
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Figure 4.1: Estimation of flutter properties based on normal form (a) flutter speed estimation,
(b) flutter frequeny estimation. ( ) is the linear regression curve of the measured square
of the amplitude of the heave, and (◦) is the measured response of system 1, and (△) is the
measured response of system 2. ( ) indicates x-axis in (a) and the estimated flutter speed of
two systems in (b).

these systems as system 1 and system 2.. The free optimisation parameters are Iα, cα, and
ch for system 1 and cα, kα, and kh for system 2. The values of the parameters measured and
identified are given in Table 4.1.

The linear model can be validated by comparing the flutter speed, and frequency predicted
by the model to the one predicted using the data collected with PP-CBC and normal forms.
The real and imaginary parts of the eigenvalues of the linear model of system 1 are shown
in Fig. 4.2 as a function of the wind velocity. Only two modes are shown in Fig. 4.2 because
the other eigenvalues have a zero imaginary part and correspond to nonharmonic motions.
According to Fig. 4.2, flutter occurs when the real part of the second mode becomes positive at
a wind speed of 17.96 m/s. At that wind speed, the oscillation frequency is 2.46 Hz.

Identified linear models are validated using the PP-CBC results. Eq. (4.6) shows that the
parameter µ (i.e. the wind velocity) is proportional to the square of the LCO amplitude where
we assume ν ≈ µ. Using linear regression, the wind speed at which flutter occurs is therefore
directly estimated as the velocity for which the square of the LCO amplitude crosses zero
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Figure 4.2: Eigenvalues of identified linearised system (a) real eigenvalue, (b) imaginary eigen-
value. ( ) is mode 1 and ( ) is mode 2. ( ) in (a) is x-axis and ( ) in (b) is the flutter
speed.

(Fig. 4.1 (a)). The flutter speed estimated this way is 17.92 m/s, which is remarkably close to
the flutter speed estimated from the linear model. There exists a linear relationship between the
oscillation frequency and the wind speed near the Hopf point (if the normal form is truncated
to the third order) [112]. The oscillation frequency at the flutter speed is estimated at 2.52 Hz,
which again is very close to the value found in the linear model (Fig. 4.1 (b)).

For system 2, the estimated flutter speed from the model is 23.7 m/s, whereas the estimated
flutter speed from the CBC experiment is 26.17 m/sec. The estimated flutter frequency of the
model is 2.43 Hz, while the estimated flutter frequency of the CBC result is 2.41 Hz. The
linear model validation result is in good agreement with the CBC experiment. However, we can
see a larger discrepancy in flutter speed estimation for system 2 compared to system 1. We
expect this is because linear coefficients estimated at the zero wind speed do not accurately
capture the linearisation of the vector field at the higher wind speed, where system 2 has a
much higher flutter speed than system 1.

4.3.2 Parameters of the nonlinear model

In this section, the parameters of the nonlinear model are estimated. We estimate the unknown
nonlinear parameters using the measured amplitude of unstable LCOs. Amplitude of the
unstable LCOs near the Hopf bifurcation are paramterised by unknown nonlinear coefficients
using the simplest normal form discussed in Section 4.2.1.

Following the identification of the linear model and the flutter speed, the centre manifold
reduction and associated reduced dynamics of system 1 can be calculated (see Section 4.2.1),
and Eq. (4.6) becomes

dR

dτ
=8.8 × 10−3µR+ (−4.5 × 10−5kα3 + 8.4 × 10−7k2

α2)R3.(4.10)
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For system 2
dR

dτ
=7.2 × 10−3µR+ (−3.2 × 10−5kα3 + 4.9 × 10−7k2

α2)R3.(4.11)

The amplitude of unstable LCOs, given by the nonzero fixed point of Eq. (4.10), is a function
of the nonlinear stiffness parameters kα2 and kα3, and the bifurcation parameter µ = Uf − U

where U is the wind speed and Uf is the flutter speed. µ is calculated using the flutter speed of
the model for Eqs. (4.10) and (4.11) and using the estimated flutter speed for the training data
sets generated from the CBC results. kα2 and kα3 are identified by minimising the prediction
error of the LCO amplitude with a constraint to make a system subcritical. During parameter
estimation, the near-identity transformation is approximated as the identity transformation
since the points used in parameter estimation are close to the Hopf point and have a small
amplitude. The optimised values obtained are kα2 = 750.6Nm, kα3 = 5007.38Nm for system
1, and kα2 = 771.9Nm, kα3 = 3222.52Nm for system 2.

The calculated heave amplitude by numerical continuation and the measured heave amplitude
are compared for validation, which is presented in Figs. 4.3 and 4.4. Numerical continuation
results are carried out using spectral collocation methods using the same parameters as in the
normal form computation. The measured and computed heave amplitudes from the numerical
continuation agree well at the unstable LCOs near the Hopf bifurcation point. However, both
models as shown in Figs. 4.3 and 4.4 do not accurately predict high amplitude stable LCOs as
the parameter estimation approach considers only the amplitude of unstable LCOs. However,
the proposed system identification method– linearised model parameter identification from
linear state-space model and nonlinear parameter identification using normal form theory– can
successfully build a mathematical model that captures bifurcation behaviour in combination
with the proposed CBC scheme.

4.3.3 Nonlinear parameter updating using collocation methods

The identified nonlinear parameters in Section 4.3.2 do not take into account the stable limit
cycle oscillations in the high-amplitude branch. In this section, we will introduce a scheme to
update the nonlinear parameters of the model using collocation methods adding stable LCO
measured results in the training data sets. A nonlinear parameter update is applied to system
1.

Periodic solutions xp(t) of ẋ = G(x, µ) can be found using the periodic boundary value
problem with the boundary condition x(0) = x(T ). We can solve this periodic boundary value
problem using spectral collocation methods [102]. It is convenient to rescale the problem in
a fixed time domain, such as [0, 1] for orthogonal polynomial methods or [−π, π] for spectral
collocation methods. Here, we use spectral collocation methods, giving

(4.12) ẋ = T

2πG(x, µ), x(−π) = x(π),
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Figure 4.3: Comparison between the bifurcation diagram obtained from numerical continuation
of the identified model of system 1 ( ) and the CBC result of the system 1 (•).
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Figure 4.4: Comparison between the bifurcation diagram obtained from numerical continuation
of the identified model of system 2 ( ) and the CBC result of the system 2 (•).

where T is the period of xp(t). Here, we interpolate xp(t) as a sum of periodic sinc functions in
a periodic grid of M points in the time interval [−π, π] as

(4.13) xp(t) =
N∑
k=1

= vkSM (t− tk),

where SM is a periodic sinc function on the M -point grid [102], tk is equispaced with M points
with t1 = −π, tM = π − 2π/N , and vk ∈ RN is the evaluation of xp(t) at the point of the
grid tk. We can approximate ẋ at the points on the grid using the linear equation DMv where
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Figure 4.5: Visual description of ∥v7∥h and h7. Numerical continuation of the model( ) and
the LCOs measured from CBC experiment (•). ∥ · ∥h denotes the amplitude of the periodic
solution in the heave direction calculated from the periodic grid of vi.

DM is a spectral differentiation matrix (see [102]), v = [vT1 , . . . , vTM ]T . Therefore, Eq. (4.12) is
transformed into a nonlinear fixed-point problem

(4.14) DMv −


T
2πG(v1, µ)

...
T
2πG(vM , µ)

 = 0,

adding a phase condition equation and a pseudo-arclength equation, we can then track the
family of xp(t) using the numerical continuation [47].

We identified the parameters kα2 and kα3 from the amplitude of unstable LCOs computed
via centre manifold reduction and the normal form. Using numerical continuation, we can
compute the family of periodic solutions shown in Fig. 4.5.

Let (µ1, h1), . . . , (µ8, h8) denote the measured periodic responses from the CBC experiment
where µi is wind speed of i-th measured LCO and hi is heave amplitude of i-th measured
LCO. And let (µi,vi) denote the calculated periodic solutions that correspond to the measured
response (µi, hi) where vi is the solution of Eq. (4.14) at µ = µi (see Fig. 4.5 for the example of
h7 and v7). Note that the indices of the periodic solutions are ordered by the length of arclength
from the Hopf bifurcation point. For example, the closest solution to the Hopf bifurcation point
is v1.

The perturbation of the parameters is applied as θ = [θ1, θ2]T where kα2 is perturbed by
kα2 + θ1, and kα3 is perturbed by kα3 + θ2. For a relatively small perturbation with ∥θ∥ ≪ 1, set
of periodic solutions (µ1,v1), . . . , (µ8,v8) is smoothly perturbed by θ as (µ1,vθ1), . . . , (µ8,vθ8)
where (µi,vθi ) = (µi,vi) at θ = 0 for i = 1, . . . , 8.
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We update the parameters kα2 and kα3 to minimise the prediction of the bifurcation diagram
plotted by heave amplitude by setting a cost function as

(4.15) c(θ) =
8∑
j=1

(∥vθj∥h − hj)2,

where ∥ · ∥h is a function that measures the amplitude of periodic solution in the heave direction
from points on the periodic grid. The direction of the new perturbation θp is calculated at the
perturbation value in the last step θ0 using gradient decent as

(4.16) θp = −dc
dθ

(θ0)ζ

where ζ ∈ R is the damping rate and dc(θ)
dθ is calculated using finite difference. At every iteration

step, vθj is computed by solving Eq. (4.14) using the last perturbed solution as the initial guess
of the Newton iteration. vθj is updated until ∥dc

dθ (θ)∥ < 10−6. The model update procedure for
nonlinear stiffness parameters kα2 and kα3 is summarised as

1. Perturb [kα2, kα3] with θ = [ε, 0] and compute vθ and ∂c
∂kα2

using a finite difference.

2. Compute ∂c
∂kα3

similarly and compute the next perturbation as θp = −dc
dθ (θ0)ζ

3. Update nonlinear stiffness with θp and compute vθp by solving Eq. (4.14).

4. Check ∥dc
dθ (θp)∥ < 10−6 and repeat the procedure if it is not.

The final optimised value of the nonlinear stiffness is kα2 = 751.2Nm and kα3 = 4769.1Nm.
However, the resulting bifurcation diagram does not dramatically improve the fitting of the
unperturbed system as shown in Fig. 4.6. The updated model slightly reduces the prediction
error at the stable LCOs; however, it does not capture the saddle-node bifurcation and the
overall bifurcation diagram sufficiently accurately. Fig. 4.6 suggests that the estimated nonlinear
stiffness parameters from normal-form computation are approximately a local minimum of
data-fitting criteria defined by fitting the bifurcation diagram. This results from a lack of
flexibility of the model to capture the bifurcation structure using free parameters kα2 and kα3.

4.4 Conclusion

In this chapter, we developed a method for estimating the system parameters based on a
measured bifurcation diagram. First, the parameters of the linearised system are identified
using the state-space approach from a free-decay response. Then, the nonlinear parameters
are identified using centre manifold reduction and normal form from a measured bifurcation
diagram. Finally, nonlinear parameters are updated using collocation methods while considering
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Figure 4.6: Bifurcation diagram of a mathematical model with updated nonlinear stiffness.
Unperturbed model ( ) and updated model ( ).

higher-amplitude LCOs that were not included in the initial nonlinear parameter estimation.
The method is applied to the CBC experiment of the flutter rig in Section 3.3.3.3.

The identified model captures the bifurcation structure well, and the model parameters add
physical insights to the researcher. However, this chapter shows that mechanistic models with
few free parameters are not flexible enough to capture high-amplitude branches generated at
the fold. This motivates us to seek models with more flexibility, such as neural networks and
kernel functions, which will be discussed in Chapters 5 and 6.

Data and code availability

Julia package developed for study in this chapter is available in repository HopfNormalForm.jl.
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Bifurcation-based data-driven modelling of ODEs with centre

manifolds

In this chapter, we

• develop bifurcation-based data-driven modelling of parameter-dependent ODEs with
centre manifolds,

• use domain knowledge of the modelling: existence and the dimension of the invariant
manifold and the bifurcation structure,

• set the basis of the model by combining a normal form like an equation and the observation
function,

• demonstrate the developed modelling method on numerical synthetic data sets generated
from the Van der Pol equation and the aeroelastic flutter model,

• demonstrate the developed modelling method on an experimental result discussed in
Section 3.3.3.3.

5.1 Introduction

For self-excited systems with a Hopf bifurcation, the change in parameter leads to a loss of
stability of the equilibrium and the birth of a family of LCOs near the bifurcation point. To
analyse the periodic responses of such systems and determine the amplitude of the LCOs,
it is customary to reduce the dynamics of the original system near the bifurcation point to
a low-dimensional centre manifold. The hybrid modelling methodology proposed here takes
advantage of this equivalence. A low-dimensional normal form-like model is used to capture the
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phenomenology of the real system, i.e. its bifurcation structure. A data-driven mapping from
this model to the full system is then identified using machine learning (ML) and experimentally
measured data (here, LCOs).

The use of ML models is attractive because they are theoretically capable of representing any
continuous function [110]. However, the use of traditional ML techniques and models presents
a number of difficulties. For example, a considerable amount of data is often needed to train
ML models [108]. Furthermore, even if such data are available and the obtained ML model
accurately represents the training data set, ML models can still fail to generalise to unseen
conditions [81] or even fail to capture the fundamental physics of the system [46]. The approach
proposed in this chapter is inspired by the recent development of scientific machine learning
(SciML), which aims at making ML models more interpretable, more consistent with the known
laws of physics, and less data-hungry by combining them with mechanistic (i.e., physics-based)
models. Examples of SciML approaches include Physics-Informed Neural Networks (PINNs) [79]
where a neural network is used to solve and discover partial differential equations (PDEs) while
respecting the laws of physics through constraints incorporated into the training cost function.
In [78, 79] linear ordinary differential equations (ODEs) were successfully discovered from the
data using probabilistic machine learning and Gaussian process regression. Universal differential
equations (UDEs) [76] are differential equation models that combine mechanistic differential
equations with universal approximators such as neural networks, Chebyshev expansions, or
random forests directly introduced into model equations.

While existing studies have mostly focused on numerical simulations and a quantitative
agreement between time series at particular parameter values, the approach proposed here
aims to capture the bifurcation diagram of a physical system, which requires the accurate
prediction of the system’s parameter dependence, its long-term behaviour (here LCOs), and to
deal with experimental (i.e. noise-corrupted) measurements. In this context, Beregi et al. [10]
combined machine-learnable functions with mechanistic models to capture bifurcation diagrams.
The approach proposed here differs in that it uses only knowledge of the bifurcation structure
observed in the experiment. The normal form-like model and its associated bifurcation structure
form the mechanistic model that captures the “physics” of the system and underpins the
otherwise data-driven model. The hybrid mechanistic/machine-learnt (M/ML) model obtained
does not rely on any problem-specific variables and is therefore applicable to any system
exhibiting the bifurcation structure imposed by the underlying mechanistic model, even without
any other physical model available.

The use of a model to capture the type of bifurcation observed in the data is very beneficial,
as it reduces the amount of data required to train the model and improves the ability of the
model to interpolate between data points and even extrapolate outside the range of control
parameters used for model training. Moreover, by leveraging the fact that the dynamics of
the system evolve on a low-dimensional sub-manifold and using a polar representation, the
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training of time series requires the time integration of a single one-dimensional ODE, which
is computationally much more efficient than other data-driven modelling procedures using
numerical integration of the entire model as in [76]. The hybrid M/ML models developed in
this chapter could be exploited in different ways. For instance, machine-learnt mapping could
be analysed to improve understanding of the physical system and provide new insights into the
derivation of more accurate mechanistic models. The proposed models also have the potential
to be used as digital twins where the nature of the system is captured qualitatively using the
mechanistic part of the model, and data are continuously used to refine and evolve the model
during the system’s life. Exploring these applications is beyond the scope of this thesis.

We first explain how we set the structure for the bifurcation-based ML in Section 5.2. In
Section 5.3, a strategy of two-stage model training is explained. We show the robustness of
bifurcation-based ML using synthetic data generated from the ground truth model in Section 5.4.
Finally, the bifurcation-based ML is applied to a CBC experiment results of Chapter 3 in
Section 5.5.

5.2 Model structure

Mechanistic model It is assumed that the physical system of interest can be represented by
an unknown continuous-time dynamical system (N,Φt), where N ⊂ Rn+1 with n ≥ 2 is the
number of states and Φt : R+ ×N → N is the evolution of the flow governed by a set of ODEs.
The system (N,Φt) is assumed to undergo a Hopf bifurcation at a certain parameter µ = µ0

which is not necessarily known, and the sub/supercritical nature of the bifurcation is known
(or at least identifiable from experimental data). For instance, PP-CBC discussed in Chapter 3
can be used to obtain such qualitative information. The parameter µ is constant over time and
is taken as one of the dimensions of N .

There exists a 3-dimensional centre manifold M c near the Hopf bifurcation point that can
be parametrised as a graph Mc

x [20]:

Mc
x = {(x,y)|y = h(x)},(5.1)

where x is the centre subspace, y is the attracting subspace defined at the equilibrium of
(N,Φt

full), and h is a nonlinear function. M c is an attracting invariant manifold in the state
space of the full dynamical system (N,Φt

full). The dynamics of the system in the centre
manifold is defined as (M c,Φt

red), where Φt
red : R+ × M c → M c is the evolution of the flow

in the centre manifold M c. The system (M c,Φt
red) is a reduced order model of (N,Φt

full) with
dim(M c) ≤ dim(N). The reduced dynamics is usually expressed as ẋ = f(x) where f is the
system’s vector field projected onto the centre manifold parametrised by x. It is also possible
to find a smooth, invertible change of coordinates such that the reduced dynamics can be

58



5.2. MODEL STRUCTURE

represented using the modified Hopf normal form

u̇1 = (µ− µ0)u1 − u2Ω(u1, u2, µ) + a2u1(u2
1 + u2

2) − u1(u2
1 + u2

2)2,

u̇2 = (µ− µ0)u2 + u1Ω(u1, u2, µ) + a2u2(u2
1 + u2

2) − u2(u2
1 + u2

2)2,

µ̇ = 0,

(5.2)

which can also be written in polar coordinates as

ṙ = (µ− µ0)r + a2r
3 − r5

θ̇ = Ω(r, θ, µ)

µ̇ = 0.

(5.3)

where (u1, u2, µ), or (r, θ, µ), are the coordinates parameterising the invariant manifold. The
sign of the coefficient a2 depends on the criticality of the Hopf bifurcation. Fifth-order terms
are added to introduce a saddle-node bifurcation of periodic orbits and capture the presence of
stable LCOs frequently observed in systems with subcritical Hopf bifurcations. For the latter,
stable and unstable LCOs coexist for µ ∈ [µ0 − a2

2/4, µ0]. Ω is an a priori unknown function
that governs the speed of the oscillations and reproduces the time evolution of the data (see
Section 5.3). From Eq. (5.3), it is clear that the oscillation amplitude r is independent of the
oscillation speed. This observation will be exploited in Section 5.3 to simplify the training of
the ML model by learning the coordinate mapping and the oscillation speed separately.

Eqs. (5.2) and (5.3) are not the only way to represent the dynamics of a system with a
Hopf bifurcation followed by a saddle-node bifurcation. An alternative parameterisation of the
invariant manifold can be used, using, for example, x as in Eq. (5.1), can be used. This would
result in a set of ODEs that is different from Eqs. (5.2) and (5.3). However, those different
reduced systems are topologically equivalent to each other, i.e. one can be transformed to
another by a change of coordinates [49]. The choice to take the normal form-like equation as
a mechanistic model was made to emphasise the nature of the phenomenon targeted by the
model.

Mapping to observations Following the definition of the mechanistic model (5.2), a data-
driven transformation from the model to the observation is defined. Let us consider the measured
observations z = [z1, . . . , zm, µ]T ∈ Rm+1, where m is the total number of states observed,
and the predicted observations ẑ = [ẑ1, . . . , ẑm, µ̂]T ∈ Rm+1. A function g(u1, u2, µ) = ẑ can
be defined to map the dynamics of the reduced system (5.2) to the predicted experimental
observations ẑ made on the centre manifold M c. The map g can be defined as a vector of
two functions g =

[
UT , gµ

]T
. The first function, U(u1, u2, µ) = [ẑ1, . . . , ẑm]T, represents the

mapping between (u1, u2, µ) and the observed states. The LCOs in Eq. (5.2) trace circular
trajectories in the plane (u1, u2). Therefore, the objective of mapping U is to transform these
circles into the distorted closed curves observed experimentally (as illustrated in Fig. 5.1).

59



CHAPTER 5. BIFURCATION-BASED DATA-DRIVEN MODELLING OF ODES WITH
CENTRE MANIFOLDS

Centre manifold Observation

Figure 5.1: Geometric illustration of the coordinate transformation U12(u1, u2, µ) applied to a
LCO of a supercritical Hopf bifurcation.

The second part of the map g, gµ(u1, u2, µ) = µ̂, represents the mapping between the model
parameter µ and the predicted observed parameter. In the present and common case where
the bifurcation parameter is measured directly during the experiment and not rescaled, the
mapping reduces to a simple projection, i.e. gµ(u1, u2, µ) = µ.

5.3 Model training

5.3.1 Closed orbit representation

We assume there exists a pair of coordinates for which the measured LCOs form closed curves
that can be parameterised in polar coordinates, i.e. the measured trajectory of LCOs does
not self-intersect and has a unique angular parameterisation in a plane. This assumption is
satisfied in the neighbourhood of the Hopf bifurcation point, and it is assumed that it extends
to all the measured LCOs. For convenience, this pair of measured coordinates is labelled
(z1, z2), while the remaining measured signals are (z3, ..., zm). The map U is split accordingly
as U =

[
UT

12, UT
3...m

]T
. The measured coordinate is translated to have an origin inside the

measured closed curves to represent periodic solutions using polar representation.

The map U12 from the normal form coordinates (u1, u2, µ) to the predicted observations
(ẑ1, ẑ2) is first sought. The particular challenge associated with finding this first map U12 is that
the correspondence between points (u1, u2) in the normal form coordinates and observations
(z1, z2) is initially unknown. Therefore, it is not possible to obtain U12 by solving a regression
problem since the input and output data points cannot be paired together. However, once
this first map is found, the rest of the map U that addresses the presence of additional states
(ẑ3, . . . , ẑm) can be easily determined. This will be discussed later in this section.

60



5.3. MODEL TRAINING

Finding the first mapping To train U12, the idea is to compare the continuous repre-
sentation of the predicted and measured LCOs. This approach has the advantage of avoiding
any pointwise comparison between the data points and the predictions of the model. The
training process starts by taking a user-defined number of points along periodic responses in
the normal form coordinates. Those points are mapped to the observation space using the
current estimate of the mapping U12. Following the coordinate transformation, the closed curves
obtained from the transformed trajectories can be directly compared with the measured LCOs.
Comparing closed planar curves is a well-established problem in pattern recognition [88, 114],
and a popular way to approach this problem is to use a Fourier representation of the curve
along the arc-length [113]. However, with such a representation, it is difficult to define a metric
between two distinct curves if they do not share at least one point. For this reason, here we
consider the simpler approach of directly using a phase-like angle to parameterise the orbit.
This assumption is consistent with the normal form model and the closed curves observed
experimentally, which have a much simpler geometry than the one usually investigated in
pattern recognition [113]. The polar representation of the planar orbits in terms of amplitude
and angle is obtained for the measured and predicted curves as follows.

(5.4) R =
√
z2

1 + z2
2 , θ = tan−1 z2

z1
, and R̂ =

√
ẑ2

1 + ẑ2
2 , θ̂ = tan−1 ẑ2

ẑ1
.

As the polar representations of the LCOs are assumed to be smooth and periodic; they can be
represented as a truncated Fourier series

R(θ) = a0 +
nh∑
k=1

ak cos(kθ) +
nh∑
k=1

bk sin(kθ), and R̂(θ̂) = â0 +
nh∑
k=1

âk cos(kθ̂) +
nh∑
k=1

b̂k sin(kθ̂),

(5.5)

where the number of Fourier modes, nh, is assumed to be large enough to have a small
approximation error. The shape of the closed curves R(θ) and R̂(θ̂) are thus represented by
vectors of coefficients determined by the Fourier projection Φ(·) as Φ(R) : Cp([0, 2π],R) →
R2nh+1 = [a0, . . . , anh

, b1, . . . , bnh
]T where

(5.6)

a0 = 1
2π

∫ 2π

0
Rdθ, an = 1

π

∫ 2π

0
R cos(nθ)dθ, bn = 1

π

∫ 2π

0
R sin(nθ)dθ forn = 1, 2, . . . , nh.

Alternatively, the vector of the coefficient can be computed in the least squares sense directly
using Eq. (5.5) and the pseudoinverse [67].

Taking a family of LCOs from the branch emerging at the Hopf bifurcation point, the error
between model predictions and the data is given by

ΞU =
ms∑
i=1

∥Φ(Ri) − Φ(R̂i)∥(5.7)

where ms is the number of LCO measured. This measure of model error is the cost function
that is minimised during the training of the coordinate transformation detailed in Section 5.3.2.
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Mapping to other measured signals After obtaining U12, it is possible to use the inverse
transformation U−1

12 to find the points in the normal form coordinates that are associated
with the measured data. Taking these points as input, it is then straightforward to train the
remaining m − 2 maps to the output observations (z3, . . . , zm) using standard input-output
regression techniques such as kernel ridge regression [45] or neural networks. U3...m models
additional observations that are not used in the normal form model derivations. Also, note
that we only provide concepts to model additional observations using U3...m where we do not
provide further modelling examples.

5.3.2 Functional form of the map

Neural networks provide a flexible approach to model mapping U12 [52, 110]. However, it was
found that the use of a neural network alone often leads to mappings that do not preserve
the topology of the LCOs. Therefore, it is advantageous to use a simpler initial transforma-
tion that preserves this topology. This transformation has the additional benefits of reduc-
ing the complexity of the neural network and simplifying its training. The planar mapping
U12(u1, u2, µ) = [ẑ1, ẑ2]T is thus defined as the sum of three separate contributions as

U12(u1, u2, µ) = TL(u1, u2, µ) + Ts︸ ︷︷ ︸
Transforms LCO to an ellipse

+ NNΘU(u1, u2, µ)︸ ︷︷ ︸
Correction

,(5.8)

where

(5.9) TL(u1, u2, µ) =
[
l11 l12 l13

l21 l22 l23

]
u1

u2

µ

 and Ts =
[
s1

s2

]
.

The linear transformation performed by TL(u1, u2, µ) = [ẑ1, ẑ2]T stretches and rotates the
closed curves. This transformation includes six unknown parameters lij that will be estimated
using experimental data. The transformation matrix must be nonsingular. The coordinate
transformation Ts(u1, u2, µ) = [ẑ1, ẑ2]T applies a rigid translation of the trajectories and requires
two additional parameters s1, s2. Finally, NNΘU(u1, u2, µ) = [ẑ1, ẑ2]T is a neural network with
unknown weight vector ΘU.

Including TL and Ts explicitly in U12 can be interpreted as introducing additional physics
or knowledge into the definition of the coordinate transformation. Indeed, shifting and rescaling
coordinates must be performed to transform the orbits from the space of the normal-form model
to the space of the physical system, and this operation is commonly performed in normal-form
calculations in bifurcation analysis. With this approach, the neural network model NNΘU , can
be viewed as a “small” correction to the initial transformation performed by TL + Ts (Fig. 5.2).
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Figure 5.2: Combined effect of the different components included in the transformation from
normal form coordinates u to physical space z. ( ) LCO obtained after transformation. (•)
Experimental data.

5.3.3 Oscillation speed

The oscillation speed of an LCO trajectory is defined by the general expression

Ω(r cos θ, r sin θ, µ) = ω0 + NNΘΩ(r, µ)T[1, cos θ, . . . , cosnhθ, sin θ, . . . , sinnhθ]T,(5.10)

where the first term, ω0, represents the fundamental oscillation frequency. The second term
provides a periodic correction to this fundamental frequency in order to capture state and pa-
rameter dependencies. Although this general correction term is particularly useful for capturing
systems where multiple timescales occur within the LCO, it can be significantly simplified for
systems where only one frequency dominates the response (see Section 5.4).

Following the training of the coordinate transformation, Ω is trained by minimising the
prediction error between the predicted and observed time series. To generate time series from
the model, suitable initial conditions in the normal form coordinates that correspond to the
initial measured data must be obtained. One approach to finding the initial conditions ui(t1)
would be to solve

[ui(t1), µi] − g−1(zi(t1), µi) = 0(5.11)

where t1 represents the first time instant in the time series. However, model inaccuracies and
measurement noise perturb the initial point ui(t1), away from the trajectory of the LCO
predicted at the parameter value µi. Although this is not a significant problem when training
stable LCOs; it becomes an issue for unstable LCOs, as the numerical integration of the
initial value problem will not approach the trajectory of LCOs. The approach followed to
solve this problem is to find the initial conditions ui(t1) for which the prediction of the model
(ẑi1, ẑi2) = U12(ui(t1), µi) has the same phase angle θ as the initial conditions of the measured
signal. The initial conditions in the normal form coordinates, ui(t1), are thus found by solving

ang ◦ U12(ui(t1), µi) − ang ◦ zi(t1) = 0,(5.12)

where ang : (x, y) 7→ tan−1(y/x) measures the phase angle of the vector [x, y]T . Eq. (5.12) can
be solved using the Newton method.
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Once the initial conditions have been determined, the polar form of the normal-form model
is considered for numerical integration. In this case, only the second equation of Eq. (5.3) needs
to be integrated, as the LCOs correspond to fixed points of the first equation. Only integrating
the second equation also has the advantage of avoiding any numerical instability issues, even in
unstable solutions. Indeed, this second equation corresponds to the direction of the velocity
vector, i.e. the direction vector of the trivial Floquet multiplier that is equal to unity.

The parameters ω0 and ΘΩ that define the oscillation speed Ω are then determined by
minimising the cost function

ΞΩ =
ms∑
i=1

∑
j

∥U12(ui(tj), µi) − zi(tj)∥,(5.13)

5.3.4 Learning stages

The model training is a three-stage process. The parameters of the linear transformations TL
and Ts are found first by minimising ΞU . During this process, an approximate value of the
bifurcation parameter µ0 is used. After training of the linear transformation, the LCOs in
normal-form space can be mapped to ellipses that are “close” to the measured trajectories.
During the second training step, the parameters of NNΘU and the more precise values for µ0

and a2 are found by further minimising ΞU . The linear transformation parameters are kept
constant during this process. The third training step is to find the parameters associated with
the oscillation speed Ω, i.e. ω0 and ΘΩ, by minimising ΞΩ.

Traditional deep learning packages such as PyTorch[65] and Flux.jl[41] can be used to train
U and the other model parameters using optimisation techniques such as the stochastic gradient
decent method [25, 54]. For Ω, the package DiffEqFlux.jl [76] which uses stochastic gradient
descent methods in the solutions of differential equations [50, 115] was used.

5.4 Numerical demonstration

In this section, the method developed in Sections 5.2 and 5.3 is numerically demonstrated on a
Van der Pol oscillator and a 3-degree-of-freedom model of an aerofoil that undergoes aeroelastic
oscillations. The synthetic data used for model training are noise-free and were obtained using
time integration. Demonstration of real experimental data is carried out in Section 5.5.

5.4.1 Van der Pol oscillator

The equations governing the dynamics of the Van der Pol oscillator are

dz1
dt

= z2,

dz2
dt

= 2µz2 − z2
1z2 − z1,

(5.14)
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where the states (z1, z2) and the control parameter µ are all assumed to be measured directly.
For this example, a supercritical Hopf bifurcation occurs at µ0 = 0 and only stable LCOs
exist. As such, the parameter a2 of the mechanistic model (5.2) is set equal to −1 and the
fifth-order terms are removed. Training data are generated for six different parameter values
µ = (0.1, 0.28, 0.46, 0.64, 0.82, 1.0). At each parameter value, the oscillator response is
simulated over 10 seconds using initial conditions on the LCOs (i.e., there are no transients in
the data) and a sampling time of 0.02 s. This represents 500 samples per time series, and hence
3000 samples for the whole training data set.

Following the procedure described in Section 5.3, the coordinate transformation is trained
first by minimising ΞU. The NN used within U consists of three inputs, two hidden layers each
with 32 neurones and hyperbolic tangent activation functions, and two outputs. Evaluation of
each neurone at the first hidden layer can be computed by Eq. (2.3) for n = 1 using σ as a
hyperbolic tangent. The same evaluation at the neurone can be applied to the second layer and
the output layer. Weight matrixes and bais vectors are the parameters that are the unknown
coefficients ΘU and the Hopf bifurcation point is also an unknown coefficient. Hyper parameters,
number of layers and neurones, are manually chosen to keep initial coordinate transformation
before the optimisation to be invertible. 300 iterations with ADAM [89] and a learning rate of
0.01 were necessary to estimate the NN parameters ΘU. A comparison between the bifurcation
diagrams of the real and identified models shows that the hybrid M/ML model accurately
captures the topological characteristics of the system (Fig. 5.3(a)). Phase portraits are shown
in Figs. 5.3(b-1)–(d-1). They further demonstrate that an accurate transformation from the
normal-form coordinates to the physical coordinates is achieved for the range of parameter
values considered. The parameter value at the bifurcation point was estimated at µ = 0.02,
which is very close to the actual value 0.

Following the training of the coordinate transformation, Ω is estimated. The NNΘΩ of
the model Eq. (5.10) is set to include three inputs, two hidden layers each with 32 neurones
and hyperbolic tangent activation functions, and 13 outputs (nh = 10). The parameter of the
model is estimated by minimising ΞΩ. The training was performed with NADAM [89]. 4000
iterations and a learning rate of 0.002 were necessary. Figs. 5.3(b-2)–(d-2) show a very good
agreement between the time series of the reference and identified models. As the bifurcation
parameter increases, the separation of the time scale becomes more pronounced, and errors
become noticeable in the transition between the fast and slow portions of the time series
(Fig. 5.3(d-2)). Similar observations can be made for the other state (not shown for conciseness).

5.4.2 Aeroelastic model

A 3-DOF aeroelastic system in Appendix A [1] is now considered to demonstrate the proposed
method. This model is qualitatively representative of the physical system tested in Section 5.5.

This system has a subcritical Hopf bifurcation followed by a saddle-node bifurcation of

65



CHAPTER 5. BIFURCATION-BASED DATA-DRIVEN MODELLING OF ODES WITH
CENTRE MANIFOLDS

(b)

(c)

(d)

−2 0 2

−5

0

5

z1

z 2

(b-1)

−2 0 2

−5

0

5

z1

(c-1)

−2 0 2

−5

0

5

z1

(d-1)

0 2 4 6 8 10
−4

−2

0

2

4

Time (sec)

z 1

(b-2)

0 2 4 6 8 10
−4

−2

0

2

4

Time (sec)

(c-2)

0 2 4 6 8 10
−4

−2

0

2

4

Time (sec)

(d-2)

Figure 5.3: Comparison between the Van der Pol model ( ) and the physics-guided ML model
( ). (a) Bifurcation diagram where (•) are the LCOs used for model training. (b-1-d-1) Phase
portrait and (b-2-d-2) time series at the untrained locations are reported on the bifurcation
diagram.

periodic orbits. The training data set includes four LCOs recorded in the stable branch and
four LCOs recorded in the unstable branch. As discussed in Section 5.5, in an experiment,
stable and unstable LCOs can be measured directly using control-based continuation [51]. Here,
unstable LCOs were obtained by simulating the model Eq. (A.1) under proportional derivative

66



5.4. NUMERICAL DEMONSTRATION

feedback control to reproduce the process followed for experimental tests in Section 5.5. Each
time series is recorded for one second with a sampling time of 0.001s.

For this example, NNΘU has two inputs, two hidden layers each with 21 neurones and
hyperbolic tangent activation functions, and three linear outputs. Fig. 5.4(left) shows that the
linear transformation allows the coordinate transformation to capture the overall orientation
and size of the LCO, and Fig. 5.4(right) shows that NNΘU further improves the accuracy of
this coordinate transformation, leading to an excellent visual agreement between the LCO of
the hybrid M/ML and reference models.
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Figure 5.4: Comparison between the phase portraits of the aeroelastic model ( ) and the
hybrid M/ML model ( ) for a stable LCO at µ = 15.5 m/s. Coordinate transformation (a)
without and (b) with the neural network.

Fig. 5.5(a) shows there is an excellent agreement between the bifurcation diagrams computed
from the reference and hybrid M/ML models. The bifurcation diagram of the trained model was
computed by transforming 100 equispaced points on the periodic solutions of the normal-form
model using U. The identified values for the Hopf bifurcation point, µ0 and the saddle-node
bifurcation point, a2, are 18.28 m/s and 3.64, respectively. This is in excellent agreement with
the model values µ0 = 18.28 m/s and a2 = 3.65. The phase portrait of the trained model shows
good agreement with the model for both stable and unstable LCOs (Fig. 5.5(b-1)–(d-1)).

The oscillation speed Ω is modelled using Eq. (5.10). For this example, only the constant
term in the Fourier expansion is kept such that Ω(u, µ) = ω0 + NNΘΩ(u, µ). The neural network
consists of three inputs, two hidden layers with 31 neurones each, a hyperbolic tangent activation
function, and one linear output. 300 iterations in ADAM [89] with a learning rate of 0.01 were
necessary to train Ω to minimise ΞΩ. Fig. 5.5(b-2)–(d-2) show that the model captures the
overall time series and frequency of the LCO for the range of wind velocities considered.
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Figure 5.5: Comparison between the aeroelastic model ( ) and the physics-guided ML model
( ). (a) Bifurcation diagram (•) are stable LCOs and (▲) are unstable LCOs used for
model training) (b-d) Phase portrait and (e-g)the time series at the locations reported on the
bifurcation diagram.
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5.5 Experimental demonstration on a flutter rig

The method developed in this chapter is now demonstrated on a physical aeroelastic system
where the experiment is discussed in Section 3.3.3.

5.5.1 The hybrid M/ML model

The dynamics of this aeroelastic system is characterised by a subcritical Hopf bifurcation
followed by a saddle-node bifurcation of cycles. Therefore, the mechanistic model used within
the hybrid model is the one presented in Eq. (5.2) and already used in Section 5.4.2. Training
data sets include four stable LCOs measured at µ = (14.9, 15.6, 16.5, 17.3) m/s, and three
unstable LCOs measured at µ = (14.9, 15.6, 16.5) m/s. The time series includes 6000-time
points per LCO, which represents approximately 12 oscillation periods. To train the oscillation
speed, time series were down-sampled to 1000 samples to reduce the computational cost of the
training.

For the coordinate map U12, a neural network NNΘU with three inputs, two outputs, and
two hidden layers each with 11 neurones and hyperbolic tangent activation functions was used.
First 1000 ADAM iterations using a 0.001 learning rate followed by 10000 BFGS iterations with
a 0.0001 learning rate were necessary to minimise ΞU and find µ0, a2 and network parameters
ΘU.

Fig. 5.6 compares the bifurcation diagram of the hybrid M/ML model with the experimentally
measured LCOs. Qualitatively good agreement with the data is obtained despite the limited
number of LCOs used for model training. The Hopf bifurcation point is estimated at µ0 =
17.67 m/s and the saddle-node bifurcation point at 14.66 m/s. Overall, the trained model
accurately predicts the phase portrait of the stable and unstable LCOs, as shown in Fig. 5.7.
In the phase portraits, the line associated with the experimentally measured LCOs appears
thicker than that from the model predictions. This is an illusion that comes from the presence
of multiple oscillation periods in the recorded data and the unavoidable differences that exist
between periods due to the presence of noise in the measurements.

For the identification of Ω, a model similar to that used in Section 5.4.2 is considered. The
neural network NNΘΩ(u, µ) includes three inputs, a single linear output, two hidden layers with
21 neurones each, and hyperbolic tangent activation functions. 300 iterations in ADAM with a
learning rate of 0.01 were necessary to minimise ΞΩ. The time series presented in Fig. 5.8 shows
that the model captures the frequency of the measured LCOs. The amplitude error visible in
the bifurcation diagram is also clearly visible in the time series.

One potential issue with ML model training is overfitting. This is illustrated in Fig. 5.9 where
the model was trained using different initial parameter values and different hyperparameters
(number of iterations and learning rate). Although the overall model prediction error is small
at the data points, the model presents a large variability between them, which is symptomatic
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(a)

(b)

(c)

(d)
(e)
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Figure 5.6: Comparison between the bifurcation diagram obtained from the hybrid M/ML
model with increased model accuracy ( ) and the stable (•) and unstable (▲) LCOs used for
model training. Labels (a)-(f) denote the corresponding phase portraits and time series plots in
Fig. 5.7 and Fig. 5.8, respectively.

of overfitting. To reduce overfitting and obtain the results presented in Figures 5.6 – 5.8, some
hyper-parameters, such as the number of iterations, were manually tuned. Approaches that
promote parameter sparsity [57] or a formal optimisation of hyperparameters [16] were not
carried out due to associated computational costs and the overall lack of data. Note that the
use of physics here, through the model structure (5.2) and the use of linear transformations
in U12 can also be viewed as regularisation techniques that reduce ML model complexity and
hence help in reducing overfitting.

To assess the robustness of the identified model with respect to the training data, model
training was also performed with four different data sets, each with one of the LCO data points
removed. This approach is inspired by the leave-one-out cross-validation technique and chosen
due to the small number of data points available in the parameter space. Fig. 5.10 shows
the bifurcation diagrams obtained after removing the different data points. The colour of the
bifurcation curve matches the colour of the data point that was removed from the training
data set. The dashed black bifurcation curve was obtained by including all data points in the
training set. The phase portraits and time series shown in Fig. 5.10 illustrate the performance
of the model at the removed data point. Although most bifurcation curves appear similar,
removing the stable LCO in blue appears to have a significant influence on the location of
the saddle-node bifurcation and more generally on the bifurcation curve in that area. This
also affects the quality of the oscillation speed model Ω, which is unable to capture the LCO
oscillation frequency adequately (see Fig. 5.10(c-2)). Overall, these results suggest that sufficient
training data near bifurcation points (saddle-node and Hopf) is needed to build a robust model.
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Figure 5.7: Comparison of phase portraits between the measured LCOs ( ) and the hybrid
M/ML model ( ). (a) stable LCO at wind speed 17.3 m/sec, (b) stable LCO at wind speed
16.5 m/sec, (c) stable LCO at wind speed 15.6 m/sec, (d) unstable LCO at wind speed 14.9
m/sec, (e) unstable LCO at wind speed 15.6 m / sec, and (f) unstable LCO at wind speed 16.5
m/sec.

Fig. 5.11 presents the trained mapping U12. Fig. 5.11(a, b) show the transformation U12

for µ = 15.0, and Fig. 5.11(c,d) shows the transformation U12 for µ = 17.5 m/s. The blue
dotted lines and the red solid lines correspond to unstable and stable LCOs, respectively.
The coordinate transformations are smooth transformations and locally invertible. The visible
curvature shows that the transformations are also nonlinear. As discussed in Section 5.3.2, the
presence of an initial linear coordinate transformation in (5.8) was essential. An NN alone
was unable to produce topologically equivalent closed curves and obtain a locally invertible
transformation near the bifurcation point. Models with significant overfitting, such as the one
in Fig. 5.9, were also found to result in poorly or even noninvertible transformations.

5.6 Conclusions

In this chapter, we have proposed a new hybrid modelling approach for physical systems with a
Hopf bifurcation. At its core, it uses a mechanistic model, in the form of a normal form-like
model, to capture the phenomenology of the physical system. A data-driven, machine-learnt
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Figure 5.8: Comparison of heave time series between the measured LCOs ( ) and the hybrid
M/ML model ( ). (a) stable LCO at wind speed 17.3 m/sec, (b) stable LCO at wind speed
16.5 m/sec, (c) stable LCO at wind speed 15.6 m/sec, (d) unstable LCO at wind speed 14.9
m/sec, (e) unstable LCO at wind speed 15.6 m/sec and (f) unstable LCO at wind speed 16.5
m/sec.

Figure 5.9: Illustration of model overfitting. Bifurcation diagram obtained from the hybrid
M/ML model ( ), stable (•) and unstable (▲) LCOs used for model training.
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Figure 5.10: Effect of excluding one data point from the training data set on the hybrid M/ML
model accuracy. (a) Bifurcation diagrams obtained when removing the data point of the same
colour. For example, the blue bifurcation curve is obtained when the model is trained with a
data set that excludes the blue point. ( ) Bifurcation diagram obtained from a model trained
with all measured data without removing any data points. (b-1) – (e-1) Prediction of the phase
portrait at the excluded data point. (b-2) – (e-2) Prediction of time series at the excluded data
point.

model is then used to map the mechanistic model predictions onto the measured data. Our
method was first demonstrated with numerical data collected on a Van der Pol oscillator and
an aeroelastic model, and then with experimental data collected on a flutter rig during wind
tunnel tests. The hybrid mechanistic/machine-learnt models obtained with our method were
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Figure 5.11: Mapping U12(u, µ) = (U1(u, µ), U2(u, µ)) between normal form and measured
coordinates. (a) U1 at µ=15.0 m/sec, (b) U2 at µ=15.0 m/sec, (c) U1 at µ=17.0 m/sec and
(d) U2 at µ=17.0 m/sec.

shown to quantitatively capture the bifurcation diagrams of the different systems as well as
their time evolution, even in the presence of multiple time scales and noise.

The proposed method has several advantages, such as being data-driven while being able
to work with a limited number of measured states and data. It also requires only knowledge
of the bifurcation structure of the system and is thus applicable to a priori any system with
a Hopf bifurcation. Replacing the current mechanistic model with a more detailed model of
the physical system could improve the accuracy of the obtained model, while also simplifying
the training of the mapping. However, this will probably come at the cost of having a more
application-specific modelling methodology. A more systematic approach to handling overfitting
during ML model training is also required to make the method more systematically applicable.
As the model is derived using LCO data only, the obtained hybrid-mechanistic/machine-learnt
model reproduces the long-term behaviour of the physical system but is generally unable to
accurately capture its transient dynamics. Future work should look at including transient data
in the modelling approach. One option is to use CBC to stabilise unstable LCOs of the system
and then turn off the control to measure response repelling from the unstable LCOs as shown
in Fig. 3.18. Measured data sets converging to a stable periodic branch will provide information
about the flow between the unstable solutions to Ω, and data sets that converge to equilibrium
will provide information about the flow near the equilibrium. It will be possible to generate
transient data on the centre manifold, making the trained model richer using this technique.
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Finally, the principles of the proposed method are extremely general and could therefore be
applied to systems with other types of bifurcation by changing the mechanistic model.

The hybrid mechanistic/machine-learnt models obtained with our method can have multiple
uses. The machine-learnt part of the model could be exploited to improve understanding of
the physical system of interest and provide new insights into the derivation of more accurate
mechanistic models. The ability of the proposed models to reproduce the unstable part of
the bifurcation diagram also has the potential to analyse stability boundaries and basins of
attraction of physical systems, or help in reducing the cost of experimental methods such as
CBC. Finally, the hybrid mechanistic/machine-learnt models developed here to establish a
rigorous framework to combine known physics with experimental and/or operational data and
could therefore be used as digital twins for nonlinear systems.

Data and code availability

Julia package developed for study in this chapter is available in repository ML Hopf.jl.
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Bifurcation-based data-driven modelling of ODEs with

spectral-submanifolds

In this chapter, we

• develop bifurcation-based data-driven models of parameter-dependent ODEs with spectral-
submanifolds,

• use knowledge of the application area, namely the existence and the dimension of an
invariant manifold,

• demonstrate the developed modelling method on synthetic data sets generated from
a harmonically-forced nonlinear coupled oscillator and experimental data discussed in
Section 3.3.3.3.

6.1 Introduction

Our main objective here is to develop data-driven modelling of harmonically-forced damped
mechanical systems using domain knowledge– the existence of invariant manifolds and the
dimension of invariant manifolds. Specifically, we use the existence of a 2-dimensional invariant
manifold as the core information of modelling to capture the dynamics of the frequency response
of a harmonically forced system. In this chapter, the theoretical background of data-driven
modelling is the invariant manifold theory of damped mechanical systems (Section 2.3.2)
[36, 68, 101, 104, 105] which is also known as spectral submanifolds (SSMs) and nonlinear
normal modes (NNMs) [66]. SSMs and NNMs can be understood as nonlinear extensions of
linear modal subspaces. Also, a study in [36] shows that autonomous SSMs are smoothly
perturbed by small harmonic forcing, where the phase variable is an additional parameterisation
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variable of SSMs. Therefore, we will denote the invariant manifold of harmonically-forced
damped mechanical systems as SSMs in this chapter.

Harmonically forced systems are prevalent in many applications, such as cars, aircraft,
and wind turbines, where rotating components are present. Rotating components are typically
the main source of excitation, and a system’s dynamics depend on the rotating speed, which
coincides with the excitation frequency and amplitude. Predictions of harmonically-forced
systems are easy to analyse using linear modal superposition when the system’s nonlinearity is
small enough [93]. We cannot use linear modal superpositions when the system’s nonlinearity
is not neglectable, which is more challenging than linear systems in predicting and modelling.
Also, nonlinear systems often show complex frequency responses such as bistability. Therefore,
our primary goal is to develop data-driven models of harmonically-forced nonlinear mechanical
systems that accurately predict the complex frequency response of nonlinear systems.

Data-driven modelling of systems with SSMs was first studied in [97], initially training
a NARMAX [24] model from a delay-embedded resonant decay response. The dimension of
the delay embedding was selected using Taken’s delay embedding theorem [98]. Similarly,
Canedese [21] trained the coordinates of the SSMs using a linear embedding, assuming a graph
representation of an invariant manifold in embedding space and also using a resonant decay
response. Szalai [96] improved the data-driven modelling of the system with an asymptotically
stable equilibrium by using invariant foliations theory, which does not require the training data
sets to be strictly on SSM.

The fundamental difference between this chapter and previous studies is that we do not
train the manifold itself as a subspace of state space. Previous studies trained the invariant
manifold of a delay-embedded observation space and trained the dynamics on that manifold
afterwards. Instead, we train the dynamics on the invariant manifold directly from the measured
bifurcation diagram. This simplification reduces the possibility of propagating error through
manifold learning in the initial training stage. Moreover, we use kernel ridge regression to
train the optimised model by controlling the fitting and smoothing of the model within the
sparse data sets. This is different from studies using neural networks [34, 53] and polynomials
[21, 97], which makes it challenging to optimise the trade-off between fitting and smoothing
model. It should also be noted that this study uses the forced response obtained from the CBC
experiment as input, while other related studies [21, 97] use unforced responses (resonant decay)
to train the model.

In Section 6.2, we first briefly discuss the SSM theory and explain how to transform the
measured forced response into input-output pair data for kernel ridge regression. We investigate
the data-driven modelling method developed from two modelling examples in Section 6.3. One
is a data-driven model trained from numerically generated FRCs of a two-dimensional nonlinear
spring-mass-damper model. The second data-driven model is trained from experimentally
measured S-curves of the nonlinear electromagnetic oscillator discussed in Chapter 3.
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6.2 Training ML model for system with invariant manifold

We will discuss the approach taken here to train a data-driven model for harmonically forced
systems. Specifically, we assume the existence of a harmonically-forced invariant manifold that
represents the overall dynamics of the experiment and train the reduced dynamical system on
this invariant manifold. The difference between the approach taken in the self-excited system,
Chapter 5, is that there is a harmonic force that can be used as input for data-driven modelling.

6.2.1 Invariant manifold of forced mechanical systems

We consider a dynamical system with harmonic forcing governed by an N -dimensional ODE

ẋ = Ax + G(x) + εf cos(ϕ),(6.1)

where A ∈ Rn × Rn is a matrix with all eigenvalues having a negative real part, G : RN → RN

is a nonlinear function with G(0) = 0, DG(0) = 0, f ∈ RN is a direction vector of the harmonic
force and ϕ ∈ S1 is a phase variable of the harmonic force with constant frequency Ω ∈ R,
i.e. ϕ̇ = Ω, and ε ≪ 1 is a small parameter. The origin (x = 0) is an asymptotically stable
equilibrium of ẋ = Ax + G(x).

We assume that statements 1-4 of Theorem 2.2 hold for a 2-dimensional spectral subspace
E with corresponding spectrum λl and λ̄l (see Section 2.3.2 for details). The theory of invariant
manifolds for harmonically-forced systems with asymptotically stable equilibrium (Theorem 2.2)
guarantees the existence of an invariant manifold W , of Eq. (6.1). Specifically, we consider a
harmonically-forced invariant manifold that depends on a two-dimensional parameterisation
variable z ∈ C2 (single modal subspace) and a phase variable ϕ [14]

x = W(z, ϕ), z ∈ C2,(6.2)

where W : C2 ×S1 → RN is a parameterisation of the invariant manifold W . We further assume
that the dynamics of W adequately represent the dynamics of the physical experiment with
the near-resonant condition Ω ≈ Im(λl) satisfied.

The reduced dynamics R : C2 × S1 → C2 on this manifold can be represented as

ż = R(z, ϕ),(6.3)

and we have the invariance condition on W as Eq. (2.20).

6.2.2 Observation and the bifurcation diagram

Note that we should consider the component of the forcing vector that falls into the subspace,
E, as we are considering an invariant manifold tangent to E [14]. We will denote the amplitude

78



6.2. TRAINING ML MODEL FOR SYSTEM WITH INVARIANT MANIFOLD

of harmonic forcing projected in the tangential direction of the invariant manifold as Γ in this
chapter.

FRC is a curve of a periodic response with varying excitation frequency Ω. We cannot
parameterise the FRCs by Ω when there is a bistable region. Therefore, the general way to
parameterise the FRC is to choose another parameterisation variable, s, such as the arclength
[47] used in the numerical continuation. Moreover, we will denote zΓ

s (t) as a periodic solution
of Eq. (6.3) with a parametrised frequency ϕ̇ = Ωs at a fixed Γ.

A scalar observation, φ, typically tracks FRC in the experiment, where we assume that it
depends on the parameterisation vector z of the invariant manifold W as

φ = φ(z).(6.4)

We seek φ as in Eq. (6.4) since the measured response is on the invariant manifold, W , in our
setting. Plotting the maximum amplitude of the observed periodic response As that has the
form

As = max
t∈[0,Ts)

|φ(zΓ
s (t))|,(6.5)

is a convenient way to plot the FRCs where Ts = 2π/Ωs is a period of the periodic response. In
this case, the point on the FRCs is parametrised by s as (Ωs, As).

Similarly, we can parametrise the periodic response by fixing the forcing frequency Ω and
changing the forcing amplitude Γs that depends on s. We call this bifurcation diagram the
S-curve (Γs, As).

In this chapter, we will identify reduced dynamics, R(z, ϕ), and observation, φ, using
experimentally obtained FRCs or S-curves.

6.2.3 Data-driven modelling of reduced dynamics on the invariant manifold

In this subsection, we transform the data-driven modelling of a dynamical system into a
straightforward input-output pair regression problem suitable for kernel ridge regression. In
addition, we will explain the ML framework used in this chapter.

6.2.3.1 Reduced dynamics on the invariant manifold

As in Section 2.3.2, we can express reduced dynamics R(z, ϕ) as

R(z, ϕ) = R0(z) + εr0
1(ϕ) + O(ε|z|, ε2),(6.6)

where z = [z, z̄]T , R0 corresponds to the autonomous part of the reduced dynamics, and r0
1

corresponds to the harmonic force. Deriving a reduced-order model from Eq. (2.15) is finding
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unknown coefficients of the R from the invariance equation Eq. (2.20). The typical power series
expression of R0 upto order 2M + 1 [14, 97] is

ż = λlz +
M∑
m=1

βmz
m+1z̄m,

˙̄z = λ̄lz +
M∑
m=1

β̄mz
mz̄m+1.

(6.7)

The form of Eq. (6.7) ensures a broad domain of validity for reduced-order modelling by avoiding
small denominators that arise when solving the invariance equation Eq. (2.20) (see [97] for
details).

Here, we introduce a different functional form of reduced dynamics from Eq. (6.7), which
aims to learn dynamics directly from forced responses and to impose higher model flexibility.
Note that the expression of reduced dynamics in the invariant manifold Eq. (2.30), is not unique,
and any coordinate transformation to z will give a different expression of the reduced dynamics.

In [21], the parametrisation of the invariant manifold was trained from the delay embedded
space of a scalar observable, and the reduced dynamics were identified afterwards. Reduced
dynamics trained from the embedded delay space are not necessarily rotationally symmetric;
therefore, the near-identity transformation was introduced to derive reduced dynamics in the
form of Eq. (6.7). However, we take a more straightforward approach in data-driven modelling
where the main idea is to focus on reproducing the measured bifurcation diagram (S-curves or
FRCs) using the reduced dynamics.

We assume the existence of parametrisation of invariant manifold, z = [z, z̄]T , where the
reduced dynamics is rotationally symmetric where the quadratic terms are removed using
certain coordinate transformation, and the coefficients of the higher-order polynomials are
Ω-dependent as

ż = λlz +
M∑
m=1

γm(Ω)zm+1z̄m,

˙̄z = λ̄lz +
M∑
m=1

γ̄m(Ω)zmz̄m+1,

(6.8)

where γm is Ω-dependent coefficients of polynomial where Ω is the freqency of the external
force. Transforming Eq. (6.8) into polar coordinates, z = ρeiθ, we have

ρ̇ = a(ρ,Ω) = Re(λl)ρ+
M∑
m=1

Re(γm(Ω))ρ2m+1,

θ̇ = b(ρ,Ω) = Im(λl)ρ+
M∑
m=1

Im(γm(Ω))ρ2m+1.

(6.9)
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Note that the functional form of Eq. (6.9) is different from the typical form of reduced dynamics
on SSMs in Eq. (6.7), which has Ω-dependent autonomous dynamics. However, it is possible
to transform Eq. (6.7) to Eq. (6.9) if the Ω-dependent coordinate transformation is applied
to Eq. (6.7). Furthermore, the structure of Eq. (6.9) offers greater flexibility in the model,
as data-driven modelling of reduced dynamics without Ω-dependent terms was only able to
capture frequency responses of the small frequency range, as shown in [11].

Adding r0
1 (see [14] for details of the derivation from the external force f) to Eq. (6.9), we

have the forced reduced dynamics on the SSMs as

ρ̇ = a(ρ,Ω) + Γ sin(ψ),

θ̇ = b(ρ,Ω) + Γ
ρ

cos(ψ),

ϕ̇ = Ω,

(6.10)

where ψ = θ − ϕ is the phase difference between the harmonic force and the response on the
invariant manifold, ϕ = Ωt is the phase of external forcing.

The periodic solutions of Eq. (6.10) correspond to fixed points of the following equation

a(ρ,Ω)2 + (b(ρ,Ω) − Ω)2ρ2 − Γ2 = 0,

b(ρ,Ω) + Γ
ρ

cos(ψ) − Ω = 0.
(6.11)

For example, consider an FRC parameterised by s with a fixed Γ. The periodic response zΓ
s (t)

at Ω = Ωs corresponds to a fixed point (ρs, ψs) of Eq. (6.11) as

zΓ
s (t) = (ρsei(Ωst+ψs), ρse

−i(Ωst+ψs)).(6.12)

We can train a(ρ,Ω) and b(ρ,Ω) by solving a regression problem if we know the fixed points
(ρ1, ψ1), . . . , (ρn, ψn), of Eq. (6.11). Here, we aim to find fixed points, (ρ1, ψ1), . . . , (ρn, ψn), from
measured bifurcation diagram (S-curves or FRCs) discussed in Section 6.2.2.

Let the function A(ρ) denote the maximum output of |φ| using the points in the trajectory
of the periodic solution (Eq. (6.12)) as input, which can be defined as

A(ρ) = max
θ∈[0,2π)

|φ(ρeiθ, ρe−iθ)|.(6.13)

Note that the output of A corresponds to a point on the measured FRC of an experiment
discussed in Section 6.2.2, which is the amplitude of the measured periodic response. The idea
of data-driven modelling in this chapter is to locate the fixed points of Eq. (6.11) using A,
which is measured in the experiment. Therefore, we assume that the following condition is
satisfied by choosing the coordinate system z appropriately as
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A(ρ) = ρ.(6.14)

Eq. (6.14) means that we can extract the amplitude of periodic solution ρ directly from the
amplitude of the measured periodic response A. We can train the reduced dynamics from the
fixed points, (A1, ψ1), . . . , (An, ψn), of Eq. (6.11) where (A1, ψ1), . . . , (An, ψn) are measured
data.

We expect the existence of a particular coordinate system of invariant manifold that satisfies
Eq. (6.14) will depend on several mathematical conditions of observation φ. For example, if
there exists a coordinate system that satisfies dA(ρ)

dρ ̸= 0, i.e. maximum measured amplitude A
is a monotonic function of ρ, coordinate transformed by the transition map (ρ, θ) 7→ (A(ρ), θ)
will satisfy Eq. (6.14). However, we assume the existence of a specific coordinate system that
satisfies Eq. (6.14) without mathematical justification, such as providing a condition for A to
be a monotonic function. This significantly simplifies the input-output map for the data-driven
modelling problem explained in Section 6.2.3.2. Providing mathematical conditions that justify
Eq. (6.14) is left for future work and not the scope of the thesis.

6.2.3.2 Data-driven modelling of the reduced dynamics

The phase-lag, ψ, between the phase of the harmonic forcing, ϕ, and the response of the reduced
dynamics, zΓ

s , depends on the function b(ρ,Ω). We assume that the fundamental harmonic of
the observed periodic response, φ(zΓ

s (t)), has an identical phase to the periodic response zΓ
s (t).

We can train b(ρ,Ω) from the measured phase difference by constructing samples of input-
outputs of b(ρ,Ω) using the following equation

pj = Ωj − Γj
ρj

cos(ψj),(6.15)

where j is the index of the measured periodic response, pj is j-th output of b(ρ,Ω), ψj is j-th
measured phase difference between force and the fundamental harmonic of observation, ρj is
measured j-th amplitude, and Ωj is j-th forcing frequency, and Γj is j-th forcing amplitude.
Note that Γj , which is the amplitude of the force tangent to the invariant manifold, is not
directly measurable. However, we assume that Γj is identical to the measurable quantity of the
external force by choosing the coordinate system z appropriately. For example, amplitude of
the force tangent to the SSM is proportional to the measured forcing amplitude. We assume
parametrisation of the SSM is appropriately scaled such that Γj is identical to the measured
forcing amplitude.

The expression of the invariant manifold and the reduced dynamics in SSM theory [36]
takes polynomials. However, we assume a(ρ,Ω) and b(ρ,Ω) can be successfully approximated
using functions in RKHS discussed in Definition 2.1, which makes data-driven modelling much
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easier with input-output relations presented in Eq. (6.15). Also, we can easily control the model
complexity by tuning the kernel’s hyperparameters to avoid overfitting.

We can define a kernel-ridge regression problem with loss L as

L = 1
n

n∑
j=1

(b(xj) − pj)2 + λ∥b∥2
Hk
,(6.16)

where ∥ · ∥2
Hk

is a square norm defined in RKHS [45]. We find b(ρ,Ω) in the form of

b(·) =
n∑
j=1

αjk(·,xj),(6.17)

where xj = [ρj ,Ωj ]T is j-th column of an input matrix x ∈ R2×n, αj is j-th component of the
vector α = [α1, . . . , αn]T, k : X × X → R is a postivie definite kernel, and X ⊂ R2 is the input
space. α that minimises Eq. (6.16) is computed as [45]

α = (kxx + nλIn)−1p,(6.18)

where kxx ∈ Rn×n is the kernel matrix, λ is a regularisation constant, p = [p1, . . . , pn]T is an
output vector where pj is a j-th output of b defined in Eq. (6.15). Hyperparameters [81] (length
scale, scale factor, etc.) of the kernel k and the regularisation parameter λ are optimised by
minimising the square loss L.

Similarly, we can construct the j-th input-output map of a(ρ,Ω) from Eq. (6.11) as

a(ρj ,Ωj) = −
√

Γj2 − (b(ρj ,Ωj) − Ωj)2ρ2
j ,(6.19)

to train a(ρ,Ω) using kernel ridge regression with the same procedure as in the training function
b(ρ,Ω). Note that the sign in Eq. (6.19) corresponds to the stable equilibrium (ρ = 0), and we
exclude the case of sign change in Eq. (6.19), which assumes the nonexistence of limit cycle
oscillations without forcing.

6.2.3.3 Data-driven modelling of an observation

Once we have trained a(ρ,Ω) and b(ρ,Ω), observation, φ, can be trained by constructing an
input-output map from the measured time series using kernel ridge regression. Let (ρj , ψj) be a
fixed point of Eq. (6.11) at Ω = Ωj , then the input-output map of φ is

φ(ρj cos(Ωjti + ψj), ρj sin(Ωjti + ψj)) = yi,(6.20)
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where subindex i corresponds to the index of each time series of j-th periodic response at
Ω = Ωj in an FRC. We can train φ using multiple periodic responses using the input-output
map constructed from Eq. (6.20). The rest of the training procedure is identical to a(ρ,Ω) and
b(ρ,Ω).

6.2.3.4 Extracting physical information from the model

The backbone curve connects the points in the FRCs where the phase difference between the
harmonic forcing and the response is π/2 which also coincides with the maximum amplitude of
FRCs [14]. The backbone curve provides critical resonance information of a nonlinear system.
From the second equation of Eq. (6.11), we can derive a zero problem of the backbone curve as

b(ρ,Ω) − Ω = 0.(6.21)

6.2.4 Summary of the data-driven modelling

Our first key assumption is the existence of the coordinate system z where the measured
bifurcation diagram is identical to the bifurcation diagram in the invariant manifold. The
second assumption is that the phase of the fundamental harmonic of the observed periodic
response φ(zΓ

s (t)) is identical to zΓ
s (t). Under these assumptions, the summarised procedure for

data-driven modelling is as follows:

1. Train b(ρ,Ω) using the input-output relation defined in Eq. (6.15).

2. Train a(ρ,Ω) using the input-output relation defined in Eq. (6.19).

3. Train φ(z) using the input-output relation defined in Eq. (6.20).

We can compute FRCs solving Eq. (6.11) using numerical continuation at a fixed value of Γ
and using Ω as a bifurcation parameter once the model is trained. S-curves can be calculated
by solving Eq. (6.11) using numerical continuation at a fixed value of Ω and using Γ as a
bifurcation parameter.

6.3 ML modelling examples

We demonstrate two examples of ML modelling. One is a numerical 2-DOF nonlinear oscillator
called a modified Shaw-Pierre example, where we have a ground-truth numerical model to
assess the quality of the methodology. The other modelling example is built from the CBC
experiment of the nonlinear electromagnetic oscillator.
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Figure 6.1: The modified Shaw-Pierre example in [14]. m = 1, k = 1, c1 =
√

3 c2 = 0.003 and
Γ = 0.5. m is mass, k is linear stiffness coefficient, c is linear damping coefficient, κ is quadratic
stiffness coefficient, f1 = f2 = F0 cos(Ωt).

6.3.1 Numerical model: 2-DOF nonlinear oscillator

The data-driven modelling approach was applied to the system in Fig. 6.1. Training data sets
are solutions of the numerical model with forcing amplitude F0 = 0.01 and F0 = 0.007 at 16
different frequencies with observation φ taken as the displacement x1. The data-driven model
is built for an invariant manifold tangent to the first eigenmode (modal frequency 1.0 rad/s).

For ML, square exponential kernels with ARD input transformation [81] is used for kernel
ridge regression [45]. Using square exponential kernels, we can calculate k(x, y) in Definition 2.2
as σexp(σ2 −(x−y)2

2l2 ) where σ, l are hyperparameters of the kernel which are output variance,
length scale respectively. Also, we can set different length scales for different inputs using ARD
input transformation; for example, the length scale for ρ and Ω can be set using different values
which provides higher model flexibility. The hyperparameters of a(ρ,Ω), b(ρ,Ω) are optimised
in the sense of minimising the loss function defined in Eq. (6.16) using the LBFGS algorithm
[62]. We can see that the ML model computes FRCs accurately as in Fig. 6.2-(a) in training
data sets.

We can also compute the FRCs for different forcing amplitudes (F0 = 0.3, 0.6, 0.9, and 1.2)
from the ML model as in Fig. 6.2-(b). The predicted FRCs from the ML model predict accurate
FRCs compared to the ground-truth model. This shows that the selection of the structure
of the basis model in Eq. (6.10) allows us to extrapolate the frequency-amplitude relation of
periodic responses. The backbone curve is calculated from the model by applying a numerical
continuation to Eq. (6.21), which shows a good correspondence with the linear modal frequency
near the equilibrium. It is remarkable that the model captures accurate linear modal properties,
even if it is trained with relatively high-amplitude oscillations.

Training observation is computationally more expensive than training a(ρ,Ω), b(ρ,Ω) since
it requires the computation of larger kernel matrices where the input is a time series of periodic
responses. We trained the observation using periodic responses at forcing amplitude F0 = 0.001.
Prediction of forced periodic response is accurate in trained forcing amplitudes as in Fig. 6.3
and untrained forcing amplitudes as in Fig. 6.4.

However, predicting the observation is less accurate at higher-amplitude periodic responses
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Figure 6.2: FRC computation at (a) training data sets (b) at untrained data sets with forcing
amplitudes F0 = 0.003, 0.006, 0.009 and 0.012. ( ) is computed FRC from the ground truth
model, ( ) is computed FRC from the ML model, ( ) is computed backbone curve from
the ML model, and (•) are training data sets.
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Figure 6.3: Predicting observation at trained data sets (a) F0 = 0.01, Ω = 1.003 rad/sec (b)
F0 = 0.01, Ω = 0.966 rad/sec. ( ) is the predicted time series from the model, and (•) is the
time series of the ground truth model.

than the trained periodic responses. Fig. 6.5 (a) shows prediction of observations at forcing
amplitude F0 = 1.002 and the forcing frequency Ω = 0.988 rad/sec, and Fig. 6.5 (b) shows
prediction of observations at F0 = 1.002, Ω = 1.008 rad/sec. We can see that predicting the
observation of the lower-amplitude response compared to the training data sets is accurate, but
the higher-amplitude response has significant prediction errors. This shows that the extrapolation
of φ is not accurate enough; therefore, training observations from a wide range of amplitude
responses are suggested to have a model that can predict a wide range of amplitude responses.
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Figure 6.4: Predicting observation at untrained data sets (a) F0 = 0.005, Ω = 1.002 rad/sec (b)
F0 = 0.009, Ω = 1.00 rad/sec. ( ) is the predicted time series from the model, and (•) is the
time series of the ground truth model.
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Figure 6.5: Predicting observation at untrained data sets with high forcing amplitudes (a)
Γ = 0.012, Ω = 0.0988 rad/s (b) Γ = 0.012, Ω = 1.008 rad/s. ( ) is the predicted time series
from the model, and (•) is the time series of the ground truth model.

6.3.2 Physical model: nonlinear electromagnetic oscillator

The training data sets are measured from the experiment discussed in Section 3.2.1.1.
The model was first trained from the 24 measured S-curves, where CBC was used to track

the branch of periodic responses, including unstable responses. The stabilising control algorithm
and the set-up can be found in [82]. The forcing frequency is spaced between 17.5 and 23.4 Hz.
b(ρ,Ω) was first trained using the square exponential kernel and the ARD input transformation
on inputs ρ and Ω. The hyperparameters of b(ρ,Ω) are optimised using the cost function
Eq. (6.16). a(ρ,Ω) was trained after training b(ρ,Ω) using a square exponential kernel and ARD
input transformation. The hyperparameters of a(ρ,Ω) are optimised using the cost function
Eq. (6.16) and using Eq. (6.19) to generate the input-output relation. After training a(ρ,Ω)
and b(ρ,Ω), we can compute the S-curves using numerical continuation on Eq. (6.11). Three
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Figure 6.6: S-curves computed from an ML model trained using 24 measured S-curves. (•) are
training data sets, (•) are validation data sets, and ( ) are computed S-curves from the ML
model.

S-curves are generated at the forcing frequency 18.5 Hz, 20.79 Hz and 22.79 Hz from the ML
model, where the corresponding measured S-curves are validation sets of the ML model. We
can see that the model accurately captures the S-curves in the training data sets as in Fig. 6.6,
and it also predicts the S-curves at untrained frequencies, as seen in the validation sets.

To see the effect of the sparsity of the training data, we reduced the number of S-curves to
12 from the case shown in Fig. 6.6 and trained the ML model. The training process is identical
to the 24 S-curves training case. The same validation sets are used for the above case. There is
no significant decrease in the overall quality of the model in the validation sets, as shown in
Fig. 6.7. However, there are slightly higher errors in the 20.79Hz S-curve, especially near the
limit-point bifurcations.

The effect of the training data sparsity was further investigated by reducing the number of
S-curves to 5 from the case shown in Fig. 6.6. The model training process is identical to the
above two cases. As shown in Fig. 6.8, there is no significant decrease in the overall quality of
the model in the validation sets. However, this ML model also has slightly increased errors in
the 20.79Hz S-curve near the limit point. Model analysis shows that sufficient training data
sets are needed to have a model that can predict accurate bifurcation points.

We can compute the backbone curve using trained ML models applying numerical continua-
tion to Eq. (6.21). The backbone curve was measured in the experiment using CBC, where the
algorithm and setup can be found in [82]. All three ML models predict very accurate backbone
curves, as in Fig. 6.9. It is interesting to see that we can extract the backbone curve from the
S-curves, which are experimentally much easier (see Section 3.2.1) to measure compared to
backbone curves with crucial resonance information on the system. A small number of S-curves
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Figure 6.7: S-curves computed from an ML model trained using 12 measured S-curves. (•) are
training data sets, (•) are validation data sets, and ( ) are computed S-curves from the ML
model.
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Figure 6.8: S-curves computed from an ML model trained using 5 measured S-curves. (•) are
training data sets, (•) are validation data sets, and ( ) are computed S-curves from the ML
model.

is even enough to predict accurate backbone curves between the frequency range of the training
data sets. However, the quality of the extrapolation of the model depends on the number of
training data sets.

We can also predict the observation from the model using the forcing amplitude and the
phase as input. It is shown in Fig. 6.10 where the predictions are accurate in the validation
data sets.
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Figure 6.9: Prediction of backbone curve from ML model. ( ) are computed backbone curves
from the ML models, and (•) is a measured backbone curve. The measured backbone curve is
measured between 18.59 Hz to 24.36 Hz using 47 points in frequency domain. S-curves used
for ML model training ranges from 17.5 Hz - 23.4 Hz which are computed using numerical
continuation.
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Figure 6.10: Prediction of time-series at validation sets (a) frequency 18.5 Hz, forcing amplitude
0.42 (b) frequency 20.8 Hz, forcing amplitude 0.16 (c) frequency 22.8 Hz, forcing amplitude
0.21. ( ) is measured time series, and ( ) is predicted time series from the model.

6.4 Conclusion

We developed a data-driven modelling methodology for forced mechanical systems using the
information of the invariant manifold as domain knowledge. The reduced dynamics on the
invariant manifold are trained using kernel ridge regression, where forced responses form the
training data set. We also train observations in the sense of reproducing measured time series.
The data-driven method in this research can predict high-amplitude bifurcation diagrams that
accurately capture the frequency-amplitude relations.
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We have shown two data-driven modelling examples: a numerical nonlinear mass-spring-
damper system and an experiment of the nonlinear electromagnetic oscillator. Both examples
accurately predict complex high-amplitude bifurcation diagrams– FRCs, S-curves, and backbone
curves–from sparse training data sets. In addition, the trained observation accurately predicts
the time series.

The current approach is limited to a two-dimensional invariant manifold of forced mechanical
systems where no modal interaction is assumed. We are currently working on data-driven
modelling for mechanical systems with modal interactions in ongoing research.

Data and code availability

Julia package developed for study in this chapter is available in repository ForcedKernel.jl.
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Conclusion

In this thesis, we developed a systematic approach to identifying ODE models, focusing on
the bifurcations of the systems with Hopf bifurcations and harmonically forced mechanical
systems. We summarise the findings of the thesis in this chapter. Moreover, we discuss the
limitations of the thesis work and suggest areas for further research on bifurcation-based ODE
model identification.

7.1 Conclusions

Experimental bifurcation analysis

In Chapter 3, we developed a PP-CBC scheme to extract the bifurcation structure from the
experiment of self-excited systems. The fundamental idea is to parametrise the phase portrait
of the LCOs using the angle of a two-dimensional phase plane constructed by two measured
signals. Two parametrisation methods- elliptic and general polar curves- are suggested, and
numerical examples show that the PP-CBC is robust in tracking the bifurcation structure. The
developed PP-CBC algorithm was applied to an experiment on a flutter rig that undergoes a
subcritical Hopf bifurcation in the wind tunnel.

We also discussed the CBC method for harmonically forced systems, which was previously
studied. Specifically, we have shown that simplified Picard iteration schemes for the S-curve are
robust from a numerical example. The S-curve measurement experiment for the electromagnetic
oscillator was also introduced.
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Parameter estimation of the mechanistic model with Hopf bifurcations

In Chapter 4, we developed parameter estimation methods for the system with Hopf bifurcations.
We can apply the proposed model identification methods to the mechanistic models. Linearisation
of the vector field is first identified using the small-amplitude free-decay response using the
state-space approach. Then, the LCO near the Hopf bifurcation point is parameterised using the
centre manifold reduction and the simplest normal form. Nonlinear parameters of the systems
are initially optimised using the LCO parametrisation and updated using spectral collocation
methods, taking account of higher amplitude LCOs to fit the bifurcation diagram. The proposed
model identification method was applied to the experimental results presented in Chapter 3.

Bifurcation-based data-driven modelling of ODEs with centre manifolds

In Chapter 5, we developed the ODE model identification method for systems with centre
manifolds. We use the existence of the centre manifold and the bifurcation structure as domain
knowledge to set the basis model structure. The basis of the model is the normal-form-like
equation, the reduced dynamics on the centre manifold, which is topologically equivalent to
the experimental bifurcation analysis. The observation is modelled as a mapping between the
centre manifold and the measured coordinates using neural networks. The model training is
in two stages, where we train the observation to fit the phase portrait. In the second training
stage, we train the speed of the oscillations to fit the time series prediction. The proposed ODE
model identification method is applied to synthetic numerical data generated from the Van
der Pol oscillator and the unsteady flutter model. We can see that the proposed data-driven
modelling method is robust by comparing the bifurcation diagram and time series predictions
with the ground truth model. The proposed data-driven modelling method was also applied to
the data presented in Chapter 3.

Bifurcation-based data-driven modelling of ODEs with spectral-submanifolds

In Chapter 6, we developed the ODE model identification method for systems with spectral
submanifolds. Specifically, we consider a harmonically forced system with an asymptotically
stable equilibrium. The existence and dimension of a spectral submanifold are the domain
knowledge of the modelling. We assume the existence of a coordinate system that gives identical
frequency response curves to the measured bifurcation diagram. Using this assumption, we
can construct input-output maps to identify reduced dynamics in the spectral submanifolds
using kernel-ridge regression for data-driven modelling. The proposed method was designed
to use S-curves and FRCs to train the model. We showed the robustness of the proposed
data-driven modelling with a numerical 2 DOF nonlinear oscillator example trained from FRCs.
The proposed data-driven modelling was applied to an experiment with an electromagnetic
oscillator presented in Chapter 3. The predictions in the validation data sets and the comparison
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CHAPTER 7. CONCLUSION

of the predicted backbone curve and the measured backbone curve suggest that the proposed
modelling method is robust enough and can extract valuable physical information, such as
backbone curves.

7.2 Limitations of current work and future research
suggestions

Experimental bifurcation analysis

We suggested two parameterisation methods for PP-CBC in this thesis. However, other param-
eterisation methods can be applied, such as using arclength as the parameterisation variable of
the curve. This might increase the robustness to noise and can be applied to a broader range of
phase portrait shapes.

Zero problems should be solved in the CBC experiment for noninvasive control, where
Newton iterations and Picard iterations are typically used. However, the Picard iteration only
works under specific conditions, and Newton iterations are highly time-consuming. A robust
and time-effective noninvasive control target search scheme should be developed in which ML
approaches such as kernel ridge regression can offer possibilities.

Parameter estimation of the mechanistic model with Hopf bifurcation

Chapter 4 only parameterised the LCOs near the Hopf bifurcation point. However, we can
increase the order of the centre manifold reduction and the normal-form computation to consider
the higher-amplitude branches of the LCOs in nonlinear parameter identification.

Also, the staged process here– identifying the linearisation first and identifying nonlinear
parameters– could be the reason for the lack of model flexibility to fit the bifurcation diagram.
This process can be replaced by recent ODE model identification packages considering linear
and nonlinear parameters as free parameters. However, one should consider a way to resolve
numerical integration errors while training unstable LCOs to the model.

Identifying the parameters of the mechanistic model gives a model that provides physical
insight. However, a lack of model flexibility results in a relatively poor quality of capturing
bifurcation diagrams in the high-amplitude region. To this end, combining the mechanistic
model with universal approximators can improve the fitting of the bifurcation diagram.

Bifurcation-based data-driven modelling of ODEs with centre manifolds

In Chapter 5, the normal-form-like model has only a few free parameters in the radius direction.
This results in a neural network heavily modifying the phase portrait, occasionally showing
overfitting issues. We expect that having a flexible normal-form-like model, such as more free
parameters, can resolve this issue.
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7.3. POSSIBLE FUTURE APPLICATION OF THE THESIS

The proposed model was trained using only LCOs and stability information from the LCOs.
Using transient data sets that are not LCOs as training data can infuse more information
into the model. However, a way to generate transient data sets that are not LCOs should be
carefully considered.

Bifurcation-based data-driven modelling of ODEs with spectral-submanifolds

The data-driven modelling method is only developed for systems with 2-dimensional resonant
spectral submanifolds. The modelling methods for spectral submanifolds with higher dimensions
can be an exciting subject to study. The application of autoencoders to extract the coordinates
of the reduced dynamics from the delay-embedded measured data can be an option.

7.3 Possible future application of the thesis

There are many opportunities for data-driven modelling of nonlinear dynamical systems.
Recently, engineered systems have been heavily instrumented, and a massive amount of data is
available. Therefore, there is a strong push for digital twins [4, 31] where experiments are mixed
with mathematical models in a real-time feedback loop. In this context, the thesis work can
be applied to digital twins of systems, where predicting the steady-state response depending
on a control parameter is crucial. For example, ML models developed in this thesis can be
applied to a digital twin of a lightweight drone to avoid the failure resulting from the aeroelastic
flutter. Moreover, the ML models developed in this thesis are interpretable in the context of
bifurcation theory which provides critical information on how the system will change depending
on a parameter.
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Aeroelastic model

The aeroelastic model considered in this thesis is unsteady formulation [1], which takes into
account the unsteady effects of the flow. The equations of motion of this system are

(A.1) Mẍ + Dẋ + Kx + N(α) = 0,

where x = [h, α,w]T , h is the heave displacement, w is a state variable to take into account the
unstable effects of the flow, and

M =


mT + πρb2 mwxαb− aπρb3 0

mwxαb− aπρb3 Iα + π(1/8 + a2)ρb4 0
0 0 1

 ,(A.2a)

D =


ch + 2πρbUĉ (1 + ĉ(1 − 2a))πρb2U 2πU2b(c1c2 + c3c4)

−2π(a+ 1/2)ρb2ĉU cα + (1/2 − a)(1 − ĉ(1 + 2a))πρb3U −2πρb2U2(a+ 1/2)(c1c2 + c3c4)
−1/b a− 1/2 (c2 + c4)U/b

 ,
(A.2b)

K =


kh 2πρbU2ĉ 2πU3c2c4(c1 + c3)
0 kα − 2π(1/2 + a)ρĉb2U2 −2πρbU3(a+ 1/2)c2c4(c1 + c3)
0 −U/b c2c4U

2/b2

 ,(A.2c)

ĉ = c0 − c1 − c3 and N(α) = [0, kα2α
2 + kα3α

3, 0]T . The meaning of the parameters and their
values used are given in Table A.1, and in the schematic in Fig. A.1.
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Parameter Value Description
U 0–25 Airspeed (m/s)
b 0.15 Wing semi-chord (m)
a −0.5 Position of the elastic axis relative to the semi-chord (nd)
ρ 1.204 Air density (kg/m3)
mw 5.3 Mass of the wing (kg)
mT 16.9 Mass of wing and support (kg)
Iα 0.1726 Wing moment of inertia about elastic axis (kg m2)
cα 0.5628 Pitch linear damping coefficient (kg m2/s)
ch 15.443 Heave linear damping coefficient (kg/s)
kα 54.1162 Pitch linear stiffness (N/rad)
kα2 751.6 Pitch quadratic nonlinear stiffness (N/rad2)
kα3 5006.7 Pitch cubic nonlinear stiffness (N/rad3)
kh 3529.4 Heave linear stiffness (N/m)
xα 0.234 Distance between center of gravity and elastic axis (nd)
c0,...,4 (1, 0.1650, 0.0455, 0.335, 0.3) Aeroelastic coefficients

Table A.1: Descriptions of the parameters of Eq. (A.1) and their values where applicable.
Non-dimensional units are indicated by ‘nd’.

Figure A.1: Schematic of an aeroelastic system of Eq. (A.1).
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