32 research outputs found

    Dynamic Ordered Sets with Approximate Queries, Approximate Heaps and Soft Heaps

    Get PDF
    We consider word RAM data structures for maintaining ordered sets of integers whose select and rank operations are allowed to return approximate results, i.e., ranks, or items whose rank, differ by less than Delta from the exact answer, where Delta=Delta(n) is an error parameter. Related to approximate select and rank is approximate (one-dimensional) nearest-neighbor. A special case of approximate select queries are approximate min queries. Data structures that support approximate min operations are known as approximate heaps (priority queues). Related to approximate heaps are soft heaps, which are approximate heaps with a different notion of approximation. We prove the optimality of all the data structures presented, either through matching cell-probe lower bounds, or through equivalences to well studied static problems. For approximate select, rank, and nearest-neighbor operations we get matching cell-probe lower bounds. We prove an equivalence between approximate min operations, i.e., approximate heaps, and the static partitioning problem. Finally, we prove an equivalence between soft heaps and the classical sorting problem, on a smaller number of items. Our results have many interesting and unexpected consequences. It turns out that approximation greatly speeds up some of these operations, while others are almost unaffected. In particular, while select and rank have identical operation times, both in comparison-based and word RAM implementations, an interesting separation emerges between the approximate versions of these operations in the word RAM model. Approximate select is much faster than approximate rank. It also turns out that approximate min is exponentially faster than the more general approximate select. Next, we show that implementing soft heaps is harder than implementing approximate heaps. The relation between them corresponds to the relation between sorting and partitioning. Finally, as an interesting byproduct, we observe that a combination of known techniques yields a deterministic word RAM algorithm for (exactly) sorting n items in O(n log log_w n) time, where w is the word length. Even for the easier problem of finding duplicates, the best previous deterministic bound was O(min{n log log n,n log_w n}). Our new unifying bound is an improvement when w is sufficiently large compared with n

    RAM-Efficient External Memory Sorting

    Full text link
    In recent years a large number of problems have been considered in external memory models of computation, where the complexity measure is the number of blocks of data that are moved between slow external memory and fast internal memory (also called I/Os). In practice, however, internal memory time often dominates the total running time once I/O-efficiency has been obtained. In this paper we study algorithms for fundamental problems that are simultaneously I/O-efficient and internal memory efficient in the RAM model of computation.Comment: To appear in Proceedings of ISAAC 2013, getting the Best Paper Awar

    The Lock-free kk-LSM Relaxed Priority Queue

    Full text link
    Priority queues are data structures which store keys in an ordered fashion to allow efficient access to the minimal (maximal) key. Priority queues are essential for many applications, e.g., Dijkstra's single-source shortest path algorithm, branch-and-bound algorithms, and prioritized schedulers. Efficient multiprocessor computing requires implementations of basic data structures that can be used concurrently and scale to large numbers of threads and cores. Lock-free data structures promise superior scalability by avoiding blocking synchronization primitives, but the \emph{delete-min} operation is an inherent scalability bottleneck in concurrent priority queues. Recent work has focused on alleviating this obstacle either by batching operations, or by relaxing the requirements to the \emph{delete-min} operation. We present a new, lock-free priority queue that relaxes the \emph{delete-min} operation so that it is allowed to delete \emph{any} of the ρ+1\rho+1 smallest keys, where ρ\rho is a runtime configurable parameter. Additionally, the behavior is identical to a non-relaxed priority queue for items added and removed by the same thread. The priority queue is built from a logarithmic number of sorted arrays in a way similar to log-structured merge-trees. We experimentally compare our priority queue to recent state-of-the-art lock-free priority queues, both with relaxed and non-relaxed semantics, showing high performance and good scalability of our approach.Comment: Short version as ACM PPoPP'15 poste

    Lower Bounds for Oblivious Data Structures

    Get PDF
    An oblivious data structure is a data structure where the memory access patterns reveals no information about the operations performed on it. Such data structures were introduced by Wang et al. [ACM SIGSAC'14] and are intended for situations where one wishes to store the data structure at an untrusted server. One way to obtain an oblivious data structure is simply to run a classic data structure on an oblivious RAM (ORAM). Until very recently, this resulted in an overhead of ω(lgn)\omega(\lg n) for the most natural setting of parameters. Moreover, a recent lower bound for ORAMs by Larsen and Nielsen [CRYPTO'18] show that they always incur an overhead of at least Ω(lgn)\Omega(\lg n) if used in a black box manner. To circumvent the ω(lgn)\omega(\lg n) overhead, researchers have instead studied classic data structure problems more directly and have obtained efficient solutions for many such problems such as stacks, queues, deques, priority queues and search trees. However, none of these data structures process operations faster than Θ(lgn)\Theta(\lg n), leaving open the question of whether even faster solutions exist. In this paper, we rule out this possibility by proving Ω(lgn)\Omega(\lg n) lower bounds for oblivious stacks, queues, deques, priority queues and search trees.Comment: To appear at SODA'1

    External memory priority queues with decrease-key and applications to graph algorithms

    Get PDF
    We present priority queues in the external memory model with block size B and main memory size M that support on N elements, operation Update (a combination of operations Insert and DecreaseKey) in O(1/Blog_{M/B} N/B) amortized I/Os and operations ExtractMin and Delete in O(ceil[(M^epsilon)/B log_{M/B} N/B] log_{M/B} N/B) amortized I/Os, for any real epsilon in (0,1), using O(N/Blog_{M/B} N/B) blocks. Previous I/O-efficient priority queues either support these operations in O(1/Blog_2 N/B) amortized I/Os [Kumar and Schwabe, SPDP \u2796] or support only operations Insert, Delete and ExtractMin in optimal O(1/Blog_{M/B} N/B) amortized I/Os, however without supporting DecreaseKey [Fadel et al., TCS \u2799]. We also present buffered repository trees that support on a multi-set of N elements, operation Insert in O(1/Blog_M/B N/B) I/Os and operation Extract on K extracted elements in O(M^{epsilon} log_M/B N/B + K/B) amortized I/Os, using O(N/B) blocks. Previous results achieve O(1/Blog_2 N/B) I/Os and O(log_2 N/B + K/B) I/Os, respectively [Buchsbaum et al., SODA \u2700]. Our results imply improved O(E/Blog_{M/B} E/B) I/Os for single-source shortest paths, depth-first search and breadth-first search algorithms on massive directed dense graphs (V,E) with E = Omega (V^(1+epsilon)), epsilon > 0 and V = Omega (M), which is equal to the I/O-optimal bound for sorting E values in external memory
    corecore