
Dynamic Ordered Sets with Approximate Queries,
Approximate Heaps and Soft Heaps
Mikkel Thorup
Department of Computer Science, University of Copenhagen, Denmark
mikkel2thorup@gmail.com

Or Zamir
Blavatnik School of Computer Science, Tel Aviv University, Israel
orzamir@mail.tau.ac.il

Uri Zwick
Blavatnik School of Computer Science, Tel Aviv University, Israel
zwick@tau.ac.il

Abstract
We consider word RAM data structures for maintaining ordered sets of integers whose select and
rank operations are allowed to return approximate results, i.e., ranks, or items whose rank, differ by
less than ∆ from the exact answer, where ∆ = ∆(n) is an error parameter. Related to approximate
select and rank is approximate (one-dimensional) nearest-neighbor. A special case of approxi-
mate select queries are approximate min queries. Data structures that support approximate min
operations are known as approximate heaps (priority queues). Related to approximate heaps are soft
heaps, which are approximate heaps with a different notion of approximation.

We prove the optimality of all the data structures presented, either through matching cell-probe
lower bounds, or through equivalences to well studied static problems. For approximate select,
rank, and nearest-neighbor operations we get matching cell-probe lower bounds. We prove an
equivalence between approximate min operations, i.e., approximate heaps, and the static partitioning
problem. Finally, we prove an equivalence between soft heaps and the classical sorting problem, on
a smaller number of items.

Our results have many interesting and unexpected consequences. It turns out that approximation
greatly speeds up some of these operations, while others are almost unaffected. In particular,
while select and rank have identical operation times, both in comparison-based and word RAM
implementations, an interesting separation emerges between the approximate versions of these
operations in the word RAM model. Approximate select is much faster than approximate rank.
It also turns out that approximate min is exponentially faster than the more general approximate
select. Next, we show that implementing soft heaps is harder than implementing approximate
heaps. The relation between them corresponds to the relation between sorting and partitioning.

Finally, as an interesting byproduct, we observe that a combination of known techniques yields
a deterministic word RAM algorithm for (exactly) sorting n items in O(n log logw n) time, where w

is the word length. Even for the easier problem of finding duplicates, the best previous deterministic
bound was O(min{n log log n, n logw n}). Our new unifying bound is an improvement when w is
sufficiently large compared with n.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Order queries, word RAM, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.95

Category Track A: Algorithms, Complexity and Games

Funding Mikkel Thorup’s research is supported by his Advanced Grant DFF-0602-02499B from the
Danish Council for Independent Research and by his Investigator Grant 16582, Basic Algorithms
Research Copenhagen (BARC), from the VILLUM Foundation. Part of this research was carried
out while Or Zamir and Uri Zwick were visiting BARC, Copenhagen, funded by the VILLUM
Foundation, grant 16582. Part of the research was carried out while Uri Zwick was visiting IRIF,
Paris, with support from the FSMP.

EA
T

C
S

© Mikkel Thorup, Or Zamir, and Uri Zwick;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 95; pp. 95:1–95:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mikkel2thorup@gmail.com
mailto:orzamir@mail.tau.ac.il
mailto:zwick@tau.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2019.95
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

95:2 Dynamic Ordered Sets with Approximate Queries, Approximate Heaps & Soft Heaps

1 Introduction

A data structure for maintaining dynamic ordered sets supports the operations insert,
delete, and either, or both, of the operations select and rank. insert inserts an
item, with an associated key, into the set. We assume that the keys of all items are
distinct. delete receives a reference to an item in the set and deletes it from the set.
select receives an index i and returns the i-th item in the sorted order of the items
currently in the set. rank receives an item, not necessarily in the set, and returns its
rank, i.e., the number of items in the set whose keys are smaller than the key of the item.
If both select and rank operations are implemented, then it is easy to use them to
support other operations such as predecessor, successor and nearest-neighbor. More
specifically, predecessor(x) = select(rank(x)), successor(x) = select(rank(x) + 1),
and nearest-neighbor(x) is the closer of these two to x. (We assume here that x is not
in the set.)

In the comparison-based model, each operation can be implemented in O(log n) time, and
this is optimal. In this paper, however, our main focus is the word RAM model. Assuming
integer keys, it models what can be implemented in a programming language such as C [18]
which has been used for efficient portable code since 1978. Word operations take constant
time. The word size w, measured in bits, is a unifying parameter of the model. All integers
considered are assumed to fit in a word. If |S| = n, where S is the set of items in the data
structure, then we assume that w ≥ log n, so that we can at least index the items in S.
Integers can not only be compared. We can use all the standard arithmetic and bit-wise
operations. Moreover, the random access memory of the word RAM implies that we can
allocate tables or arrays of words, accessing entries in constant time using indices that may
be computed from keys. These word RAM features are used in many classic algorithms, e.g.,
radix sort from 1929 [7] and hash tables from 1956 [9]. We note that by handling integer
keys, we immediately handle floating point keys since their standard bit-representation
(sign,exponent,mantissa) is such that casting them as integers gives the right ordering.

In the word RAM model, a more diverse picture emerges than in the comparison-based
model. Pǎtraşcu and Thorup [20] obtained a data structure that supports all the above
operations in O(log n/ log w) time. For select and rank this matches a lower bound of
Fredman and Saks [12] which holds even if we only want to support select or only want
to support rank. However, if we only want to support predecessor, successor and/or
nearest-neighbor (plus insert and delete), then Andersson and Thorup [2] have shown
that this can done in O

√
log n/ log log n) time per operation. This is the best possible bound

in terms of n, matching a static lower bound of Beame and Fich [3].
In this paper, we consider word RAM data structures for maintaining ordered sets of

integers where select and rank are allowed to return approximate results, i.e., ranks, or
items whose rank, differ by less than ∆ from the exact answer, where ∆ = ∆(n) is an error
parameter. (When ∆ = 1, the data structure has to return exact results.) We use ∆-select
as a shorthand for ∆-approximate select, and similarly for the other operations.

A ∆-min operation is an operation that returns one of the ∆ smallest items in the ordered
set. This is clearly a special case of ∆-select operations. A data structure that supports
insert, delete and ∆-min operations is known as an approximate heap, or ∆-heap.

An extract-∆-min operation finds one of the smallest ∆ items, using a ∆-min operation,
returns it, and deletes it from the ∆-heap, using a delete operation. Our ∆-heap data
structure satisfies the following fairness condition: an item cannot be one of the ∆ smallest
items in the data structure for 2∆ consecutive extract-∆-min operations without being
returned, and deleted, by one of the these extract-∆-min operations.

M. Thorup, O. Zamir, and U. Zwick 95:3

Related to approximate heaps are soft heaps, introduced by Chazelle [6], which are, in a
sense, approximate heaps with a different notion of approximation. Soft heaps were used by
Chazelle [5] to obtain the fastest deterministic algorithm for computing minimum spanning
trees in the comparison model. The implementation of soft heaps was simplified by Kaplan
et al. [17]. Soft heaps were also used recently by Kaplan et al. [16] to obtain simplified
optimal algorithms for some selection problems.

A soft heap is a heap data structure which is allowed to increase the keys of some of
the items stored in the heap. Each item has both an original key, and a current key, which
might be larger than its original key. An item whose current key is larger than its original
key is said to be corrupt. A min operation returns an item with the minimum current key.
(Once an item becomes corrupt, it remains corrupt, as its current key can only be increased.
The user can examine the original and current keys of all items, including those of the item
returned by a min operation.) A q-soft heap is a soft heap such that after any sequence that
includes n insert operations, at most n/q of the items in the heap are corrupt. Clearly, an
(n/∆)-soft heap is also a ∆-heap. We show, however, that implementing an (n/∆)-soft heap
in the word RAM model is, in general, harder than implementing a ∆-heap.

Motivation. In addition to being natural computational problems that lead to many
interesting, and perhaps unexpected, theoretical results, the problems we consider are also
well motivated in practice. In many real life applications, keys are obtained using inexact
measurements, or may change over time. We may be interested in ‘sampling’ items of given
ranks, e.g., for statistical purposes, but typically when we ask for an item of rank i, an item
whose rank is between i−∆ and i + ∆, for a small enough ∆, will serve just as well. It is
thus interesting to know whether allowing approximation can speed up such operations.

We note that the direct motivation for approximate versions of select, rank and min,
is very different from the motivation of soft heaps which at first may look a bit peculiar, but
which have proven to be useful data structure inside some important algorithms.

Our results
We show, among other things, that if ∆ = nε, for any ε > 0, then insert, delete and
∆-select can be implemented in constant time.

While select and rank operations have the same running times in the word RAM model
when exact results are required, an interesting separation emerges between the approximate
versions of these operations. Surprisingly, ∆-select is easier than ∆-rank. We also show
that ∆-min is “exponentially” faster than ∆-select. As mentioned, we also show that soft
heaps are harder to implement than approximate heaps.

Our results follow from a full characterization of the time needed for each subset of
dynamic operations via either a matching cell-probe lower bound, or via an equivalence to
the well-studied exact static problems of ordered partition and sorting.

More specifically, we obtain the following four main results:

(1) A data structure that supports insert, delete and ∆-select in O(log n/ log(w∆))
time, where n is the number of items in the set. We also obtain a matching lower bound
that shows that at least one of these operations must take Ω(log n/ log(w∆)) time. For
∆ = nε, for any ε > 0, we get O(1) time for each operations.

(2) An augmentation of the previous data structure that also supports ∆-rank operations.
insert, delete and ∆-select operations still take tu = O(log n/ log(w∆)) time, while
∆-rank takes O

(
log n/ log(w∆) + pred(n

∆ , tu∆, n, w)
)
time, where pred(n, t, s, w) is the

ICALP 2019

95:4 Dynamic Ordered Sets with Approximate Queries, Approximate Heaps & Soft Heaps

time for dynamically answering exact predecessor queries on a set of n items when the
update time is O(t), the space of the data structure is O(s), and the word length is w. (It
is known, for example that pred(n, t, n, w) = O

(√
log n

log log n

)
, for every w ≥ log n, where

t = O
(√

log n
log log n

)
, and that this is the optimal bound in terms of n.) We also provide

a matching lower bound for the complexity of ∆-rank operations that shows that the
pred(n

∆ , tu∆, n, w) term in the upper bound cannot be removed. For ∆ = nε, for any
ε > 0, we get O(1) time for ∆-select, while ∆-rank operations still cost Ω

(√
log n

log log n

)
.

This exhibits a somewhat surprising separation between ∆-select and ∆-rank, given
that the exact versions of these operations have the same running times.

(3) A three-way equivalence between (i) approximate heaps, (ii) approximate sorting and (iii)
(exact) ordered partition: There is a ∆-heap with O(P∆(n, w)) time per operation, where
P∆(n, w) is non-decreasing in n, if and only if it is possible, for every n, to ∆-sort a set
of n items in O(nP∆(n, w)) time, if and only if it is possible, for every n, to partition n

items into n
∆ sets of size roughly ∆ in O(nP∆(n, w)) time, such that the items in each

set are smaller than the items in the next set. (A sequence is ∆-sorted if no item is at
distance greater than ∆ from its position in the sorted sequence.)

(4) A three-way equivalence between (i) soft heaps, (ii) exact heaps and (iii) exact sorting:
There is q-soft heap with O(t) time per operation, if and only if there is an exact heap
holding up to q items with O(t) time per operation, if and only if it is possible to sort
up to q items in O(t) time per item.

Han and Thorup [15] showed that n items can be ordered partitioned into
√

n sets of
size roughly

√
n in O(n) time. By iterating, if follows that n items can be partitioned into

sets of size roughly n2−k in O(kn) time. Thus, n items can be partitioned into subsets
of size ∆ in O(n log(log n

log ∆)) time. If ∆ < w we can do even better. We only do log log n
log w

partitioning iterations after which we are left with sets of size roughly w. These sets can be
completely sorted in linear time using the dynamic fusion node of Pǎtraşcu and Thorup [20].
Combining these two results, we get that partitioning into sets of size ∆ can be done in
O(n log(log n

log(w∆))) time. In particular, for ∆ = 1, we get exact sorting in O(n log logw n) time,
a bound that has not been observed before. By (3), there is a ∆-heap with O(log(log n

log(w∆)))
time per operation. By the lower bound in (1), ∆-select requires Ω((log n)/ log(w∆)) time.
It follows that time(∆-min)) = O(log time(∆-select)), i.e., ∆-min is “exponentially” faster
than ∆-select. To get a constant time for ∆-min, we currently need ∆ = nε, for some
ε > 0, as for ∆-select. But, while the result for ∆-select is optimal, and hence cannot be
improved, improved partitioning algorithms could potentially yield O(1) time of ∆-min for
smaller values of ∆.

The bounds we give in this paper are amortized. However, all claimed time bounds can be
made worst-case using the techniques of Andersson and Thorup [2]. All our data structures
use linear space.

Dumitrescu [10] and Fredman [11] considered comparison-based data structures that
support ∆-select and ∆-min operations. The optimal time bounds for these operations are
Θ(log n

∆). ∆-rank operations can be easily supported within the same time bounds. Thus,
there is no separation between ∆-select and ∆-rank in this model, and to get a constant
time per operation, ∆ has to be linear in n.

A summary of our results for ∆-select, ∆-nearest-neighbor and ∆-rank are given in
Table 1. Update time refers to the time of insert and delete operations. The first row gives
the result of a general value of ∆. The query times are optimal given the update times and
assuming O(n) space. (We have no proof that the same query times cannot be obtained with

M. Thorup, O. Zamir, and U. Zwick 95:5

Error Update time ∆-select ∆-nearest ∆-rank

∆ tu = Θ
(

log n
log(w∆)

)
Θ
(

log n
log(w∆)

)
Θ
(
pred(n

∆ , tu∆, n, w)
)

Θ
(

∆-select +
nearest

)
∆ = log n Θ

(log n
log log n

)
Θ
(log n

log log n

)
Θ
(√

log n
log log n

)
Θ
(log n

log log n

)
∆ =

√
n Θ(1) Θ(1) Θ

(√
log n

log log n

)
Θ
(√

log n
log log n

)
∆ = n

w
Θ(1) Θ(1) Θ(1) Θ(1)

Figure 1 Running times for ∆-rank, and ∆-select and ∆-nearest-neighbor queries.

smaller update times.) The second and third rows specialize the results for the representative
cases ∆ = log n and ∆ =

√
n, giving bounds that hold for all values of w ≥ log n. With

regard to the second row, we note that the time bounds obtained for ∆ = log n are identical
to the exact case, i.e., ∆ = 1. We also note that if only ∆-nearest-neighbor queries are
to be answered, then the same query time of Θ

(√
log n

log log n

)
can be obtained with a reduced

update time of Θ
(√

log n
log log n

)
. (See [2].) In the third row ∆ =

√
n can be replaced by ∆ = nε,

for every ε > 0. Finally, in the forth row, we consider the case ∆ = n
w (or equivalently

∆ = n
wk , for any k ≥ 1), where all update and query time drop down to a constant.

Chazelle [6], and Kaplan et al. [17], obtained (1/ε)-soft heaps with O(log 1
ε) amortized

time per operation, which is optimal in the comparison-based model. In the word-RAM,
we obtain by (4) (1/ε)-soft heaps with O(log log 1

ε) amortized time per operation, or even
O(
√

log log 1
ε) amortized expected time per operation. We also obtain a w-soft heap with

O(1) time per operation.
The rest of the paper is organized as follows. In Section 2 we give a high-level description

of the data structures and the equivalences obtained in this paper. The full details are given
in the full version of the paper. In Section 3 we present our matching cell-probe lower bounds.
We end in Section 4 with some concluding remarks and open problems.

2 High-level description of data structures and equivalences

In this section we sketch the techniques we use and give high level descriptions of the data
structures and equivalences obtained in the paper.

2.1 Dynamic sets with approximate SELECT
Our goal is to obtain a data structure that supports insert, delete and ∆-select operations
in O(log n/ log(w∆)) time per operation, which we later show is optimal. As mentioned,
Pǎtraşcu and Thorup [20] obtained a data structure that supports insert, delete and
exact select operations in O(log n/ log w) time. Thus, we may assume that, say, ∆ > w3

and devise a data structure that supports each operation in O(log n/ log ∆) time.
Our data structure is built around a B-tree (see, e.g., [8]). The degree degree[v] of each

node v in the tree is in the range [1
4D, 4D], where D = ∆1/3. As with standard B-trees,

a node v of degree d contains an array child[v] of size d with pointers to its d children,

ICALP 2019

95:6 Dynamic Ordered Sets with Approximate Queries, Approximate Heaps & Soft Heaps

a pointer parent[v] to its parent, and an array split[v] of d− 1 splitters, s1, s2, . . . , sd−1.
We also let s0 = −∞ and sd = ∞. The keys of all items in the subtree of the i-th child
child[v][i] of v are all in the range [si, si+1), for i = 0, 1, . . . , d − 1. A non-root node v

also contains its index index[v] such that v = child[parent[v]][index[v]], i.e., v is the
index[v]-th child of its parent. The leaves of a B-tree are all at the same depth.

The B-tree used differs from a standard B-tree in several important ways. The first
is that the leaves of the tree do not contain single items, but rather buckets that contain
between ∆ and 2∆ items. These buckets are referred to as leaf buckets. The items in each
leaf bucket are not sorted, but they all lie between the appropriate splitters in the non-leaf
nodes of the tree. Second, each internal node v of the tree has a buffer buffer[v] associated
with it. The size of each such buffer is at most B = ∆2/3. The operations on the B-tree are
done lazily. An inserted item is simply placed at the buffer of the root. When a buffer is
full, its items are partitioned according to the splitters stored in the node, and sent to the
appropriate children. We refer to this operation as flushing the buffer.

All the items in the data structure reside in leaf buckets and buffers. The splitters in the
internal nodes of the tree are copies of keys of items that belonged to the data structure at
some stage.

The partitioning of the items in a buffer is done using the fast partitioning algorithm
of Han and Thorup [15]. Their algorithm partitions q items according to O(√q) splitters
in O(q) time. The choice B = ∆2/3 and D = ∆1/3 ensures that a buffer can be flushed in
O(B) time. The use of this fast partitioning algorithm is the only place in which the data
structure relies on the power of the word RAM model.

Another difference between the B-tree used and a standard one is that we impose explicit
conditions on the size of each subtree. The size of a subtree is the total number of items in
the leaf buckets and the buffers that belong to the subtree. The size of a subtree of height i

(where the leaves are at height 0), is required to be in the range [1
2∆, 2∆]Di. To maintain

this condition, we store at each node v a size[v] field that holds its current size. (To achieve
that, size[v] is updated by relevant insert and delete operations.) A simple calculation
shows that the size condition implies that the degree of each node is in the range [D

4 , 4D]. It
also implies that the height h of the tree is at most h ≤ logD

2n
∆ ≤

3 log n
log ∆ , as D = ∆1/3. We

thus need to show that the (amortized) cost of each insert, delete and ∆-select is of the
order of the depth of the tree.

To support approximate select operations, we augment the B-tree by several additional
components. To each non-leaf node v we add a (rough) locator array locate[v] of size
bsize0[v]/(1

2∆Di−1)c ≤ 4D, where size0[v] is the size of v when it was last rebuilt (see
below). If v is at height i, where i > 0, then the j-entry of the array, for j = 0, 1, . . . , 4D− 1,
contains the index of the child of v that contained the item of rank 1

2∆Di−1·j in the subtree
rooted at v, i.e., the (1

2∆Di−1 ·j)-th item in the sorted order of all items in the subtree of v,
when this subtree was last rebuilt. insert and delete operations performed after the last
rebuilding of the subtree of v make the information in locate[v] slightly inaccurate, but to
an extent that can be tolerated, as we are only aiming for approximate results.

Finally, we also store at each non-leaf node v of degree d an array sum[v] of size d + 1
such that sum[v][i], for i = 0, 1, . . . , d, is the sum of sizes of the subtrees rooted at the first i

children of v at the time the subtree of v was last rebuilt.
Using this augmented B-tree we can implement insert, delete and ∆-select operations

in O(log n/ log ∆) amortized time. The challenge is to time the flushing of buffers and the
rebuilding of subtrees so that, on the one hand, we do not spend too much time, and, on the
other hand, the information in the B-tree is always sufficiently accurate so that the rank
error in each select operation is at most ∆.

M. Thorup, O. Zamir, and U. Zwick 95:7

Essentially, to locate an item whose rank is close to k, we navigate the tree using the
locate and sum arrays. We start with v being the root and i being the height of the root.
To find the child we need to descend to, we let j ← locate[v][bk/(1

2∆Di−1)c]. It is easy
to see that the k-th item in the subtree of v, at the time of the last rebuilding, is either
contained in the j-th child of v, if sum[v][j] ≤ i < sum[v][j + 1], or otherwise in the (j + 1)-st
child of v. (This follows as k ≤ (1

2∆Di−1)dk/(1
2∆Di−1)e.) In the latter case, we increment j.

We now descend to the j-th child of v, letting v ← child[v][j], i← i− 1, k ← k − sum[r][j],
and repeat the process from there until we get to a leaf. We then return an arbitrary item
contained in the corresponding leaf bucket. In the full version of the paper we analyze this
process and show that the rank of the returned item is close enough to k.

To satisfy the fairness condition mentioned above, two minor changes are needed: (1) the
insertion buffer should be emptied once for every ∆ updates (not just every ∆ insertions);
(2) the base sets are maintained as queues (FIFO).

It is possible to convert the amortized time bounds into worst-case time bounds using
the techniques of Andersson and Thorup [2].

2.2 Dynamic sets with approximate SELECT and RANK
Pǎtraşcu and Thorup [20] devised a data structure that supports insert, delete and
exact select and rank operations in O(log n/ log w) time. An interesting separation
between select and rank operations emerges when approximate results are allowed.
In this section we explain how the data structure of Section 2.1 can be extended to
support ∆-rank operations. While the time of insert, delete and ∆-select op-
erations remains unchanged, i.e., O(log n/ log(w∆)), the time of ∆-rank operations is
O
(
log n/ log(w∆) + pred(n

∆ , tu∆, n, w)
)
time, where pred(n, t, s, w) is the time for dynami-

cally answering predecessor queries on a set of n items when the update is O(t), the space
used by the data structure is O(s), and the word length is w. We later give a lower bound
that shows that appearance of the pred(n

∆ , tu∆, n, w) term here cannot be avoided.
Quite a lot is known about pred(n, t, s, w), the time for answering exact predecessor

queries. Beame and Fich [3] gave Ω
(√

log n
log log n

)
and Ω

(
log w

log log w

)
lower bounds for the static

version of the problem, where polynomial time preprocessing and polynomial space are
allowed. (Static means no updates.) Pǎtraşcu and Thorup [19] obtained a complete query-
space tradeoff, when again no updates are allowed, i.e., they determined pred(n,∞, s, w)
asymptotically for all s and w. Pǎtraşcu and Thorup [19] showed that pred

(
n, log n

log w , n, w
)

=

Θ
(

log n
log w

)
and that pred(w, 1, w, w) = O(1). Further complications arise when deterministic

vs. randomized variants of the problem are considered. We refer the reader to [19, 20] for the
exact details. The picture simplifies considerably when pred(n, t, s) = maxw pred(n, t, s, w)
is considered. Here, it is known that pred(n,

√
log n

log log n , n, w) = pred(n, nO(1), nO(1)) =

Θ
(√

log n
log log n

)
.

As in Section 2.1, we may assume that ∆ > w3, as the case ∆ ≤ w3 is covered by
the exact algorithm of Pǎtraşcu and Thorup [20], and aim for tu = O(log n/ log ∆) and
O
(
log n/ log ∆ + pred(n

∆ , tu∆, n, w)
)
bounds, respectively.

It is not difficult to see that the rank of an item appearing in a leaf bucket or as a splitter
in the data structure of Section 2.1 can be easily approximated in O(log n/ log ∆) time. A
∆-rank operation, however, must also be able to return the (approximate) rank of an item
that does not appear in the data structure. To achieve that, we maintain an exact dynamic
predecessor data structure on the splitters. Given an item not in the data structure we

ICALP 2019

95:8 Dynamic Ordered Sets with Approximate Queries, Approximate Heaps & Soft Heaps

do a predecessor query on the key of the item, and return the approximate rank of the
returned splitter. As there are only O(n

∆) splitters, the total time of a ∆-rank operation
is O

(
log n/ log ∆ + pred(n

∆ , tu∆, n, w)
)
, as required. As we need to update the predecessor

data structure, on average, only once in every ∆ operations, we can afford to spend tu∆
time on updates to the predecessor data structure. In Section 3, we show that the use of a
predecessor data structure is essential.

2.3 Equivalence between approximate heaps and partitioning

The min operation is a very special select operation in which the smallest, i.e., the item of
rank 0, is sought after. Thus, any data structure that supports approximate select operations
also support approximate min operations. However, min operations could potentially be
faster than general select operations. This is true, for example, for the exact versions of
these problems on the word RAM.

A data structure that supports insert, delete and min operations is a priority queue.
A ∆-heap is a data structure that supports ∆-MIN operations which return one of the
smallest ∆ items in the data structure. (For ∆ = 1 we get an exact priority queue.)

Thorup [21] obtained an equivalence between priority queues and sorting. Namely, there
is an (exact) priority queue that supports each operation in P (n) time, where P (n) is
non-decreasing in n, if and only if it is possible, for every n, to sort n items in O(n P (n))
time. Here we extend this result to obtain an equivalence between ∆-heaps and the ordered
∆-partition problem: Given n items, partition them into k ≈ n

∆ sets A1, A2, . . . , Ak, each of
size about ∆, such that Ai < Ai+1, i.e., all items in Ai are smaller than all items in Ai+1,
for i = 0, 1, . . . , k − 1. We show that there is a ∆-heap with O(P∆(n)) time per operation,
where P∆(n) is non-decreasing in n, if and only if it is possible to ∆-partition a set of n

items in O(nP∆(n)) time.
Han and Thorup [15] showed that the ordered ∆-partition problem is equivalent to the

problem of partitioning a set A of size n according to k ≈ n
∆ splitters s1 < s2 < . . . < sk,

producing sets A0, A1, . . . , Ak such that si ≤ Ai < si+1, for i = 0, 1, . . . , k, where s0 = −∞
and sk+1 = +∞. Note that in this variant the sets A0, A1, . . . , Ak are not necessarily of
(roughly) equal size. This is the version of the ordered ∆-partition problem that we use
in this section.

We sketch here the construction of a O(∆ log n)-approximate heap using an algorithm for
the ordered ∆-partition problem, which is the interesting direction of the equivalence. In the
full version of the paper we complete the details of this construction, remove the O(log n)
from the approximation factor, and prove the other direction of the equivalence.

Most of the items in the priority queue constructed are stored in buckets A0, A1, . . . , Ak

separated by k + 2 base splitters −∞ = s0 < s1 < s2 < . . . < sk < sk+1 = +∞. Thus,
s0 ≤ A0 < s1 ≤ A1 < . . . < sk ≤ Ak < sk+1. The splitters are copies of keys of items
that belong or belonged to the priority queue at some stage. The items within each bucket
are unsorted. We let Φ = ∆ log n and require that Φ

4 ≤ |Ai| ≤ Φ, for i = 0, 1, . . . , k − 1,
and |Ak| ≤ Φ.

A logarithmic number of splitters t0 < t1 < . . . < t`+1, where ` = Θ(log n), also serve
as level splitters. We have t0 = s0 = −∞ and t`+1 = sk+1 = +∞. Each level splitter tj

has a level buffer Bj associated with it that can hold up to 4j∆ items. We also maintain a
counter qj that provides an upper bound of the size of Bj . Finally, there is also an insertion
buffer B = B0 that can hold up to Φ items. We maintain the following invariants, for
j = 1, 2, . . . `:

M. Thorup, O. Zamir, and U. Zwick 95:9

(i) There are more than 1
2 4j · Φ bucket items smaller than tj , if tj <∞.

(ii) There are less than 7
4 4j · Φ items smaller than tj .

(iii) The keys of all items in Bj are in [tj , tj+2). Here t`+1 = t`+2 =∞.

To insert an item, we simply add it to the insertion buffer. If the insertion buffer is not
full, this completes the operation. To delete an item, given a pointer to it, we simply delete
it from its bucket or buffer, and update some counters. A min operation returns an arbitrary
item from the bucket A0, referred to as the head. The rank of the returned item is at most
2Φ = 2∆ log n, as only items in the head and the insertion buffer may be smaller than the
returned item.

When the insertion buffer B is full, i.e., it contains Φ = ∆ log n items, we use the ordered
∆-partition algorithm to split the items in B according to the O(log n) level splitters. The
amortized cost per item is O(P∆(∆ log n)) = O(P∆(n)). Recall that O(P∆(n)) is the time,
per item, needed to order partition n items into sets of size roughly ∆, or equivalently, to
∆-sort n items. (We may assume that ∆ ≤ n1/2, as ∆ = n1/2 already yields a constant time
per operation, and hence ∆ log n ≤ n.) Let B1 < B2 < . . . < B` be the resulting partition.
The items in Bj are added, one by one, into the level buffer Bj .

When a level buffer Bj is full, or when we need to change the level splitter tj , we split
its items according to all base splitters that are smaller than tj+2. As the number of items
smaller than tj+2 is O(4jΦ), and as each bucket is of size Θ(Φ), the number of splitters
smaller than tj+2 is O(4j). The number of items in the buffer is at most 4j∆. Thus, the
splitting can be done in O(4j∆ ·P∆(n)) time. The items in each set of the partition generated
are added, one by one, to the appropriate buckets.

The above “idyllic” description ignored the fact that base buckets may get too large
or too small, and that the three invariants imposed on the level splitters may be violated.
However, as we allowed enough slack in the size of the base buckets and in the invariants, it
is not too difficult to fix these problems by merging and splitting adjacent base buckets, and
by periodically redefining the level splitters. The fairly technical details are given in the full
version of the paper. The amortized time per operation remains O(P∆(n)).

2.4 Equivalence between soft heaps and sorting
A q-soft heap is a heap which is allowed to corrupt, i.e., increase the keys, of a small fraction
of its items. More specifically, after n insert operations, at most n/q of the items in the
heap are allowed to be corrupt. The hope, of course, is that allowing corruptions leads to
a more efficient implementation of the heap operations. (It is important to note that the
number of corrupt items is related to the number of insertions, not to the number of items
currently in the heap.)

It follows easily from the definition that as long as less than q items are inserted into
a q-soft heap, the heap is not allowed to corrupt any item. Thus, a q-soft heap with O(t)
time per operation can be used to exactly sort q − 1 items in O(qt) time. By Thorup’s [21]
equivalence between sorting and priority queues, we get that if there is q-soft heap with O(t)
time per operation, then there is also an exact heap that can hold up to q items with O(t)
time per operation. It is also easy, to obtain this result directly. To implement an exact heap
on at most q items, we use a 2q-soft heap. After every 2q insertions we rebuild the 2q-soft
heap using at most q insertions. The amortized time per operation stays O(t).

More surprising is that we also have the opposite implication. If there is an exact heap
on at most q items with O(t) time per operation, then there is also a q-soft heap with O(t)
time per operation. (Note that the number of items in the q-soft heap is not bounded.) To

ICALP 2019

95:10 Dynamic Ordered Sets with Approximate Queries, Approximate Heaps & Soft Heaps

prove this result we use the simplified construction of soft heaps by Kaplan et al. [17]. We
observe that certain components in this comparison-based implementation of soft heaps can
be replaced by exact heaps that hold up to q items. This also leads to a clearer understanding
of how soft heaps work.

2.5 Faster exact sorting
Han and Thorup [15] obtained a deterministic linear time algorithm for partitioning n items
into a sequence of

√
n sets, each of size roughly

√
n, such that the items in each set are

smaller than the items in the next set. This leads, by repeated partitioning, to a deterministic
O(n log log n)-time algorithm. A different deterministic O(n log log n)-time sorting algorithm
was earlier obtained by Han [14].

More recently, Pǎtraşcu and Thorup [20], improving results of Fredman and Willard
[13], implemented dynamic fusion trees, supporting insert, delete, rank and select in
O(logw n) time per operation, where n is the size of the set and w is the word length. This
leads immediately to an O(n logw n)-time sorting algorithm. This algorithm is faster than
the O(n log log n)-time algorithm for sufficiently large w, e.g., w = nω(1/ log log n).

A simple combination of these two algorithms gives rise to a deterministic O(n log logw n)-
time algorithm. This bound subsumes the two previous bounds. Perform log logw n par-
titioning steps of [15] that partition the n input items into sets of size w. These sets are
then sorted in linear time using the dynamic fusion trees of [20]. The O(n log logw n)-time
algorithm is asymptotically faster than the O(n log log n)-time algorithm for much smaller
values of w, namely w = n1/ logo(1) n.

Han and Thorup [15] obtain a faster randomized O(n
√

log log n)-time sorting algorithm.
Andersson et al. [1] and Belazzougui et al. [4] have shown that sorting can be done in linear
expected time when w = Ω(log2 n log log n).

It is an open problem whether randomization can speed up partitioning algorithms and
lead, in particular, to faster data structures for the various operations considered in this
paper, such as ∆-select.

3 Lower bounds

In this section we give cell-probe lower bounds that match the upper bounds obtained by
the data structures for approximate select and rank given in Sections 2.1 and 2.2.

3.1 Lower bound for approximate SELECT
Pǎtraşcu and Thorup [20], relying on previous results of Fredman and Sacks [12], proved the
following cell-probe lower bound.

I Theorem 3.1. For any cell-probe data structure that supports insert, delete and (exact)
select (or rank) operations, if both insert and delete require t = t(n) time per operation,
then select (or rank) operations must take Ω

(
log n

log(w·t(n))

)
time.

Relying on this result, using a simple reduction, we obtain our lower bound for ∆-select.

I Theorem 3.2. For any cell-probe data structure that supports insert, delete and ∆-
select (or ∆-rank) operations, if both insert and delete require at most O(log n) time
per operation, then select (or rank) operations must take Ω

(
log n

log(w∆)

)
time.

M. Thorup, O. Zamir, and U. Zwick 95:11

Proof. Given a ∆-approximate data structure, we can construct an exact data structure by
duplicating each item 2∆ times. More specifically, when an item is to be inserted into the
exact data structure, we insert 2∆ copies of the item into the ∆-approximate data structure.
When an item is to be deleted from the exact data structure, we delete its 2∆ copies from
the ∆-approximate data structure. To select the item of rank i, we ∆-approximately select
an item of rank 2∆i + ∆. As the rank of the item returned differs from 2∆i + ∆ by less
than ∆, the item returned must be a copy of the item of rank i. To compute the rank of an
item, not necessarily in the data structure, we do a ∆-rank query on the approximate data
structure, divide the returned rank by 2∆ and round down. It is again easy to see that this
is the exact rank of the queried item.

If the times of insert and delete of the ∆-approximate data structures are t(n), then
the times of insert and delete in the exact data structure are ∆t(∆n). If s(n) is the time
of ∆-select (or rank), then the time for exact select (or rank) is s(∆n). If follows
from Theorem 3.1 that s(∆n) = Ω

(
log n

log(w·∆t(∆n))

)
, or equivalently s(n) = Ω

(
log n

∆
log(w·∆·t(n))

)
.

If t(n) = O(log n), then as w ≥ log n, we also get that t(n) = O(w). We may also assume
that ∆ < n1/2, as otherwise, the lower bound is a constant. Thus, s(n) = Ω

(
log n

log(w·∆)

)
,

as claimed. J

The lower bound for ∆-select is tight, as it matches the upper bound of the data
structure given in Section 2.2.

3.2 Lower bound for approximate RANK

The lower bound of Theorem 3.2 holds also for ∆-rank, but it is not tight for all values of ∆.
We provide here a tight lower bound that matches the performance of the data structure
given in Section 2.2. The lower bound relies on the fact an exact predecessor operation
can be performed using one select and one rank operations, namely, predecessor(k) =
select(rank(k)).

I Theorem 3.3. For any linear space cell-probe data structure that supports insert, delete
and ∆-rank operations, if insert and delete take at most tu = O (log n/ log(w∆)) time per
operation, then ∆-rank operations must take Ω

(
log n/ log(w∆) + pred(n

∆ , tu∆, n, w)
)
time.

Proof. Suppose that we are given a linear space data structure that supports insert and
delete operations in tu = O((log n/ log(w∆)) time, and ∆-rank operations in r(n) time.
We already known, by Theorem 3.2, that r(n) = Ω (log n/ log(w∆)) time. Thus, we only
need to show that r(n) = Ω

(
pred(n

∆ , tu∆, n, w)
)
. We show that we can use the approximate

data structure given to obtain a data structure that supports exact predecessor operations
in O(r(∆n)). It would then follow that r(n) = Ω(pred(n

∆ , tu∆, n, w)).
We first add to the data structure given to us the ability to support ∆-select operations.

This is easily done by using both the given data structure and our ∆-select data structure
of Section 2.1 to hold the same set of items. insert and delete operations still take
tu = O((log n/ log(w∆)) time, and ∆-select and rank operations still take r(n) time, as
we already know that r(n) = Ω (log n/ log(w∆)).

We now use the duplication technique used in the proof of Theorem 3.2. We get an exact
data structure in which insert and delete take ∆t(∆n) time, and exact select and rank,
and hence exact predecessor, take r(∆n) time. Thus, r(n) = Ω

(
pred(n

∆ , tu∆, n, w)
)
,

as claimed. J

ICALP 2019

95:12 Dynamic Ordered Sets with Approximate Queries, Approximate Heaps & Soft Heaps

4 Concluding remarks and open problems

Data structures for supporting dynamic ordered sets, i.e., data structures that support
insert, delete, and either one or both of select and rank, and possibly some other
operations, are among the most basic and natural data structures. Pǎtraşcu and Thorup [20]
obtained essentially optimal implementation of such data structures in the word RAM model,
the model that most closely represents what can be done on a real computer.

Surprisingly, not much attention was paid before to data structures that support approxi-
mate versions of these operations. There are many conceivable applications in which, for
example, we do not insist on knowing the exact rank of an item in the set, a good enough
approximation might be enough.

We show that allowing approximation greatly speeds up some of these operations, while
the complexity of the other operations remains essentially unchanged. We obtain a full
characterization of the time needed to implement approximate versions of these operations.
A fairly interesting picture emerges. While the exact versions of select and rank have the
same complexity, a separation emerges between the approximate versions of these problems.

We also considered approximate min operations that correspond to the implementation
of approximate heaps (priority queues). It is known that exact min operations are easier
than the more general select operations. We show that the “exponential” gap between
these operations persists when approximation is allowed. We obtained a equivalence between
approximate heaps and approximate sorting, extending the equivalence of Thorup [21] for
the exact versions of these problems.

Closely related to approximate heaps are Chazelle’s [6] soft heaps that feature prominently
in his deterministic minimum spanning tree algorithm [5]. The exact relation between
approximate and soft heaps was not understood before. Looking at these two data structures
using the “word RAM lens” reveals an essential difference between these two data structures.
Approximate heaps correspond to approximate sorting, or partitioning, while q-soft heaps
actually correspond to the exact sorting of sets of size q. This might explain the additional
usefulness of soft heaps.

The closer look at ordered set data structures, partitioning algorithms and sorting
algorithms also revealed, as a byproduct, a new deterministic sorting algorithm that runs in
O(n log logw n) time. The new bound subsumes and improves on the two previously known
bounds of O(n log log n) and O(n logw n).

We focused in this paper on deterministic algorithm. Studying the effect of randomization
on the various problems considered is an interesting research topic. In particular, it would be
interesting to know whether randomization can speed up (ordered) partitioning algorithms.

References
1 Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in Linear

Time? J. Comput. Syst. Sci., 57(1):74–93, 1998. Announced at STOC’95. doi:10.1006/jcss.
1998.1580.

2 Arne Andersson and Mikkel Thorup. Dynamic Ordered Sets with Exponential Search Trees.
J. ACM, 54(3):Article 13, 2007. Combines results announed at FOCS’96, STOC’00, and
SODA’01.

3 Paul Beame and Faith Fich. Optimal Bounds for the Predecessor Problem and Related
Problems. J. Comput. System Sci., 65(1):38–72, 2002. Announced at STOC’99.

4 Djamal Belazzougui, Gerth Stølting Brodal, and Jesper Sindahl Nielsen. Expected Linear
Time Sorting for Word Size Ω(log2 n log log n). In Proc. 14th SWAT, pages 26–37, 2014.
doi:10.1007/978-3-319-08404-6_3.

http://dx.doi.org/10.1006/jcss.1998.1580
http://dx.doi.org/10.1006/jcss.1998.1580
http://dx.doi.org/10.1007/978-3-319-08404-6_3

M. Thorup, O. Zamir, and U. Zwick 95:13

5 Bernard Chazelle. A minimum spanning tree algorithm with Inverse-Ackermann type com-
plexity. J. ACM, 47(6):1028–1047, 2000. doi:10.1145/355541.355562.

6 Bernard Chazelle. The soft heap: an approximate priority queue with optimal error rate.
J. ACM, 47(6):1012–1027, 2000. doi:10.1145/355541.355554.

7 L. J. Comrie. The Hollerith and Powers Tabulating Machines. Trans. Office Machinary Users’
Assoc., Ltd, pages 25–37, 1929-30.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein. Introduction to
algorithms. The MIT Press, 3rd edition, 2009.

9 A. I. Dumey. Indexing for rapid random access memory systems. Computers and Automation,
5(12):6–9, 1956.

10 Adrian Dumitrescu. A Selectable Sloppy Heap. CoRR, abs/1607.07673, 2016. arXiv:1607.
07673.

11 Michael L. Fredman. Comments on Dumitrescu’s “A Selectable Sloppy Heap”. CoRR,
abs/1610.02953, 2016. arXiv:1610.02953.

12 Michael L. Fredman and Michael E. Saks. The Cell Probe Complexity of Dynamic Data
Structures. In Proc. 21st STOC, pages 345–354, 1989.

13 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47:424–436, 1993. Announced at STOC’90.

14 Yijie Han. Deterministic Sorting in O(n log log n) Time and Linear Space. J. Algorithms,
50(1):95–105, 2004. Announced at STOC’02.

15 Yijie Han and Mikkel Thorup. Integer Sorting in O(n
√

log log n) Expected Time and Linear
Space. In Proc. 43rd FOCS, pages 135–144, 2002.

16 Haim Kaplan, László Kozma, Or Zamir, and Uri Zwick. Selection from Heaps, Row-Sorted
Matrices, and X+Y Using Soft Heaps. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, pages 5:1–5:21, 2019. doi:
10.4230/OASIcs.SOSA.2019.5.

17 Haim Kaplan, Robert Endre Tarjan, and Uri Zwick. Soft Heaps Simplified. SIAM J. Comput.,
42(4):1660–1673, 2013. doi:10.1137/120880185.

18 B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice Hall, 1978.
19 Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proc.

38th STOC, pages 232–240, 2006. doi:10.1145/1132516.1132551.
20 Mihai Pǎtraşcu and Mikkel Thorup. Dynamic Integer Sets with Optimal Rank, Select, and

Predecessor Search. In Proc. 55th FOCS, pages 166–175, 2014. doi:10.1109/FOCS.2014.26.
21 Mikkel Thorup. Equivalence between priority queues and sorting. J. ACM, 54(6):28, 2007.

Announced at FOCS’02. doi:10.1145/1314690.1314692.

ICALP 2019

http://dx.doi.org/10.1145/355541.355562
http://dx.doi.org/10.1145/355541.355554
http://arxiv.org/abs/1607.07673
http://arxiv.org/abs/1607.07673
http://arxiv.org/abs/1610.02953
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.5
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.5
http://dx.doi.org/10.1137/120880185
http://dx.doi.org/10.1145/1132516.1132551
http://dx.doi.org/10.1109/FOCS.2014.26
http://dx.doi.org/10.1145/1314690.1314692

	Introduction
	High-level description of data structures and equivalences
	Dynamic sets with approximate SELECT
	Dynamic sets with approximate SELECT and RANK
	Equivalence between approximate heaps and partitioning
	Equivalence between soft heaps and sorting
	Faster exact sorting

	Lower bounds
	Lower bound for approximate SELECT
	Lower bound for approximate RANK

	Concluding remarks and open problems

