12 research outputs found

    On the value set of small families of polynomials over a finite field, I

    Get PDF
    We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},..., a_{d-s} are fixed. Our estimate holds without restrictions on the characteristic of Fq and asserts that V(d,s,\bfs{a})=\mu_d.q+\mathcal{O}(1), where V(d,s,\bfs{a}) is such an average cardinality, \mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!} and \bfs{a}:=(a_{d-1},.., d_{d-s}). We provide an explicit upper bound for the constant underlying the \mathcal{O}--notation in terms of d and s with "good" behavior. Our approach reduces the question to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. We show that the polynomials defining such complete intersections are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning the singular locus of the varieties under consideration, from which a suitable estimate on the number of Fq--rational points is established.Comment: 30 page

    Master index: volumes 31–40

    Get PDF

    On the value set of small families of polynomials over a finite field, II

    Get PDF
    We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},...,a_{d-s} are fixed. Our estimate asserts that \mathcal{V}(d,s,\bfs{a})=\mu_d\,q+\mathcal{O}(q^{1/2}), where \mathcal{V}(d,s,\bfs{a}) is such an average cardinality, \mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!} and \bfs{a}:=(a_{d-1},...,a_{d-s}). We also prove that \mathcal{V}_2(d,s,\bfs{a})=\mu_d^2\,q^2+\mathcal{O}(q^{3/2}), where that \mathcal{V}_2(d,s,\bfs{a}) is the average second moment on any family of monic polynomials of Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that \mathcal{V}_2(d,0)=\mu_d^2\,q^2+\mathcal{O}(q), where \mathcal{V}_2(d,0) denotes the average second moment of all monic polynomials in Fq[T] of degree d with f(0)=0. All our estimates hold for fields of characteristic p>2 and provide explicit upper bounds for the constants underlying the \mathcal{O}--notation in terms of d and s with "good" behavior. Our approach reduces the questions to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. A critical point for our results is an analysis of the singular locus of the varieties under consideration, which allows to obtain rather precise estimates on the corresponding number of Fq--rational points.Comment: 36 page

    An approach to the moments subset sum problem through systems of diagonal equations over finite fields

    Full text link
    Let Fq\mathbb{F}_q be the finite field of qq elements, for a given subset D⊂FqD\subset \mathbb{F}_q, m∈Nm\in \mathbb{N}, an integer k≤∣D∣k\leq |D| and b∈Fqm\boldsymbol{b}\in \mathbb{F}_q^m we are interested in determining the existence of a subset S⊂DS\subset D of cardinality kk such that ∑a∈Sai=bi\sum_{a\in S}a^i=b_i for i=1,…,mi=1,\ldots, m. This problem is known as the moment subset sum problem and it is NPNP-complete for a general DD. We make a novel approach of this problem trough algebraic geometry tools analyzing the underlying variety and employing combinatorial techniques to estimate the number of Fq\mathbb{F}_q-rational points on certain varieties. We managed to give estimates on the number of Fq\mathbb{F}_q-rational points on certain diagonal equations and use this results to give estimations and existence results for the subset sum problem.Comment: 25 page

    On the intrinsic complexity of the arithmetic Nullstellensatz

    Get PDF
    We show several arithmetic estimates for Hilbert's Nullstellensatz. This includes an algorithmic procedure computing the polynomials and constants occurring in a Bézout identity, whose complexity is polynomial in the geometric degree of the system. Moreover, we show for the first time height estimates of intrinsic type for the polynomials and constants appearing, again polynomial in the geometric degree and linear in the height of the system. These results are based on a suitable representation of polynomials by straight-line programs and duality techniques using the Trace Formula for Gorenstein algebras. As an application we show more precise upper bounds for the function πS(x) counting the number of primes yielding an inconsistent modular polynomial equation system. We also give a computationally interesting lower bound for the density of small prime numbers of controlled bit length for the reduction to positive characteristic of inconsistent systems. Again, this bound is given in terms of intrinsic parameters.Facultad de Ciencias Exacta

    On the intrinsic complexity of the arithmetic Nullstellensatz

    Get PDF
    We show several arithmetic estimates for Hilbert's Nullstellensatz. This includes an algorithmic procedure computing the polynomials and constants occurring in a Bézout identity, whose complexity is polynomial in the geometric degree of the system. Moreover, we show for the first time height estimates of intrinsic type for the polynomials and constants appearing, again polynomial in the geometric degree and linear in the height of the system. These results are based on a suitable representation of polynomials by straight-line programs and duality techniques using the Trace Formula for Gorenstein algebras. As an application we show more precise upper bounds for the function πS(x) counting the number of primes yielding an inconsistent modular polynomial equation system. We also give a computationally interesting lower bound for the density of small prime numbers of controlled bit length for the reduction to positive characteristic of inconsistent systems. Again, this bound is given in terms of intrinsic parameters.Facultad de Ciencias Exacta

    On the intrinsic complexity of the arithmetic Nullstellensatz

    Get PDF
    We show several arithmetic estimates for Hilbert's Nullstellensatz. This includes an algorithmic procedure computing the polynomials and constants occurring in a Bézout identity, whose complexity is polynomial in the geometric degree of the system. Moreover, we show for the first time height estimates of intrinsic type for the polynomials and constants appearing, again polynomial in the geometric degree and linear in the height of the system. These results are based on a suitable representation of polynomials by straight-line programs and duality techniques using the Trace Formula for Gorenstein algebras. As an application we show more precise upper bounds for the function πS(x) counting the number of primes yielding an inconsistent modular polynomial equation system. We also give a computationally interesting lower bound for the density of small prime numbers of controlled bit length for the reduction to positive characteristic of inconsistent systems. Again, this bound is given in terms of intrinsic parameters.Facultad de Ciencias Exacta
    corecore