578 research outputs found

    Implicit complexity for coinductive data: a characterization of corecurrence

    Full text link
    We propose a framework for reasoning about programs that manipulate coinductive data as well as inductive data. Our approach is based on using equational programs, which support a seamless combination of computation and reasoning, and using productivity (fairness) as the fundamental assertion, rather than bi-simulation. The latter is expressible in terms of the former. As an application to this framework, we give an implicit characterization of corecurrence: a function is definable using corecurrence iff its productivity is provable using coinduction for formulas in which data-predicates do not occur negatively. This is an analog, albeit in weaker form, of a characterization of recurrence (i.e. primitive recursion) in [Leivant, Unipolar induction, TCS 318, 2004].Comment: In Proceedings DICE 2011, arXiv:1201.034

    Equational characterization of Boolean function classes

    Get PDF
    Cataloged from PDF version of article.Several noteworthy classes of Boolean functions can be characterized by algebraic identities (e.g. the class of positive functions consists of all functions f satisfying the identity f(x) V f(y) V f(x V y) = f(x V y)). We give algebraic identities for several of the most frequently analyzed classes of Boolean functions (including Horn, quadratic, supermodular, and submodular functions) and proceed then to the general question of which classes of Boolean functions can be characterized by algebraic identities. We answer this question for function classes closed under addition of inessential (irrelevant) variables. Nearly all classes of interest have this property. We show that a class with this property has a characterization by algebraic identities if and only if the class is closed under the operation of variable identification. Moreover, a single identity suffices to characterize a class if and only if the number of minimal forbidden identification minors is finite. Finally, we consider characterizations by general first-order sentences, rather than just identities. We show that a class of Boolean functions can be described by an appropriate set of such first-order sentences if and only if it is closed under permutation of variables. © 2000 Elsevier Science B.V. All rights reserved

    The arity gap of polynomial functions over bounded distributive lattices

    Full text link
    Let A and B be arbitrary sets with at least two elements. The arity gap of a function f: A^n \to B is the minimum decrease in its essential arity when essential arguments of f are identified. In this paper we study the arity gap of polynomial functions over bounded distributive lattices and present a complete classification of such functions in terms of their arity gap. To this extent, we present a characterization of the essential arguments of polynomial functions, which we then use to show that almost all lattice polynomial functions have arity gap 1, with the exception of truncated median functions, whose arity gap is 2.Comment: 7 page

    Generalizations of Swierczkowski's lemma and the arity gap of finite functions

    Get PDF
    Swierczkowski's Lemma - as it is usually formulated - asserts that if f is an at least quaternary operation on a finite set A and every operation obtained from f by identifying a pair of variables is a projection, then f is a semiprojection. We generalize this lemma in various ways. First, it is extended to B-valued functions on A instead of operations on A and to essentially at most unary functions instead of projections. Then we characterize the arity gap of functions of small arities in terms of quasi-arity, which in turn provides a further generalization of Swierczkowski's Lemma. Moreover, we explicitly classify all pseudo-Boolean functions according to their arity gap. Finally, we present a general characterization of the arity gaps of B-valued functions on arbitrary finite sets A.Comment: 11 pages, proofs simplified, contents reorganize

    Kleene algebra with domain

    Full text link
    We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressiveness of Kleene algebra, in particular for the specification and analysis of state transition systems. We develop the basic calculus, discuss some related theories and present the most important models of KAD. We demonstrate applicability by two examples: First, an algebraic reconstruction of Noethericity and well-foundedness; second, an algebraic reconstruction of propositional Hoare logic.Comment: 40 page

    On the effect of variable identification on the essential arity of functions

    Get PDF
    We show that every function of several variables on a finite set of k elements with n>k essential variables has a variable identification minor with at least n-k essential variables. This is a generalization of a theorem of Salomaa on the essential variables of Boolean functions. We also strengthen Salomaa's theorem by characterizing all the Boolean functions f having a variable identification minor that has just one essential variable less than f.Comment: 10 page
    corecore