155 research outputs found

    Saturation in cascaded optical amplifier free-space optical communication systems

    Get PDF
    The performance of a free-space optical (FSO) communication system in a turbulent atmosphere employing an optical amplifier (OA) cascade to extend reach is investigated. Analysis of both single and cascaded OA FSO communication links is given and the implications of using both adaptive (to channel state) and non-adaptive decision threshold schemes are analysed. The benefits of amplifier saturation, for example in the form of effective scintillation reduction when a non-adaptive decision threshold scheme is utilised at the receiver for different atmospheric turbulence regimes, are presented. Monte Carlo simulation techniques are used to model the probability distributions of the optical signal power, noise and the average bit error rate due to scintillation for the cascade. The performance of an adaptive decision threshold is superior to a non-adaptive decision threshold for both saturated and fixed gain preamplified receivers and the ability of a saturated gain OA to suppress scintillation is only meaningful for system performance when a non-adaptive decision threshold is used at the receiver. An OA cascade can be successfully used to extend reach in FSO communication systems and specific system implementations are presented. The optimal cascade scheme with a non-adaptive receiver would use frequent low gain saturated amplification

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Convergence of millimeter-wave and photonic interconnect systems for very-high-throughput digital communication applications

    Get PDF
    In the past, radio-frequency signals were commonly used for low-speed wireless electronic systems, and optical signals were used for multi-gigabit wired communication systems. However, as the emergence of new millimeter-wave technology introduces multi-gigabit transmission over a wireless radio-frequency channel, the borderline between radio-frequency and optical systems becomes blurred. As a result, there come ample opportunities to design and develop next-generation broadband systems to combine the advantages of these two technologies to overcome inherent limitations of various broadband end-to-end interconnect systems in signal generation, recovery, synchronization, and so on. For the transmission distances of a few centimeters to thousands of kilometers, the convergence of radio-frequency electronics and optics to build radio-over-fiber systems ushers in a new era of research for the upcoming very-high-throughput broadband services. Radio-over-fiber systems are believed to be the most promising solution to the backhaul transmission of the millimeter-wave wireless access networks, especially for the license-free, very-high-throughput 60-GHz band. Adopting radio-over-fiber systems in access or in-building networks can greatly extend the 60-GHz signal reach by using ultra-low loss optical fibers. However, such high frequency is difficult to generate in a straightforward way. In this dissertation, the novel techniques of homodyne and heterodyne optical-carrier suppressions for radio-over-fiber systems are investigated and various system architectures are designed to overcome these limitations of 60-GHz wireless access networks, bringing the popularization of multi-gigabit wireless networks to become closer to the reality. In addition to the advantages for the access networks, extremely high spectral efficiency, which is the most important parameter for long-haul networks, can be achieved by radio-over-fiber signal generation. As a result, the transmission performance of spectrally efficient radio-over-fiber signaling, including orthogonal frequency division multiplexing and orthogonal wavelength division multiplexing, is broadly and deeply investigated. On the other hand, radio-over-fiber is also used for the frequency synchronization that can resolve the performance limitation of wireless interconnect systems. A novel wireless interconnects assisted by radio-over-fiber subsystems is proposed in this dissertation. In conclusion, multiple advantageous facets of radio-over-fiber systems can be found in various levels of end-to-end interconnect systems. The rapid development of radio-over-fiber systems will quickly change the conventional appearance of modern communications.PhDCommittee Chair: Gee-Kung Chang; Committee Member: Bernard Kippelen; Committee Member: Shyh-Chiang Shen; Committee Member: Thomas K. Gaylord; Committee Member: Umakishore Ramachandra

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Investigation of performance issues affecting optical circuit and packet switched WDM networks

    Get PDF
    Optical switching represents the next step in the evolution of optical networks. This thesis describes work that was carried out to examine performance issues which can occur in two distinct varieties of optical switching networks. Slow optical switching in which lightpaths are requested, provisioned and torn down when no longer required is known as optical circuit switching (OCS). Services enabled by OCS include wavelength routing, dynamic bandwidth allocation and protection switching. With network elements such as reconfigurable optical add/drop multiplexers (ROADMs) and optical cross connects (OXCs) now being deployed along with the generalized multiprotocol label switching (GMPLS) control plane this represents the current state of the art in commercial networks. These networks often employ erbium doped fiber amplifiers (EDFAs) to boost the optical signal to noise ratio of the WDM channels and as channel configurations change, wavelength dependent gain variations in the EDFAs can lead to channel power divergence that can result in significant performance degradation. This issue is examined in detail using a reconfigurable wavelength division multiplexed (WDM) network testbed and results show the severe impact that channel reconfiguration can have on transmission performance. Following the slow switching work the focus shifts to one of the key enabling technologies for fast optical switching, namely the tunable laser. Tunable lasers which can switch on the nanosecond timescale will be required in the transmitters and wavelength converters of optical packet switching networks. The switching times and frequency drifts, both of commercially available lasers, and of novel devices are investigated and performance issues which can arise due to this frequency drift are examined. An optical packet switching transmitter based on a novel label switching technique and employing one of the fast tunable lasers is designed and employed in a dual channel WDM packet switching system. In depth performance evaluations of this labelling scheme and packet switching system show the detrimental impact that wavelength drift can have on such systems

    Digital Compensation of Transmission Impairments in Multi-Subcarrier Fiber Optic Transmission Systems

    Get PDF
    Time and again, fiber optic medium has proved to be the best means for transporting global data traffic which is following an exponential growth trajectory. Rapid development of high bandwidth applications since the past decade based on cloud, virtual reality, 5G and big data to name a few have resulted in a sudden surge of research activities across the globe to maximize effective utilization of available fiber bandwidth which until then was supporting low speed (< 10Gbps) services. To this end, higher order modulation formats together with multicarrier super channel based fiber optic transmission systems have proved to enhance spectral efficiency and achieve multi tera-bit per second bit rates. However, spectrally efficient systems are extremely sensitive to transmission impairments stemming from both optical devices and fiber itself. Therefore, such systems mandate the use of robust digital signal processing (DSP) to compensate and/or mitigate the undesired artifacts. The central theme of this research is to propose and validate few efficient DSP techniques to compensate specific impairments as delineated in the next three paragraphs. For short reach data center and passive optical network related applications which adopt direct detection, a single optical amplifier is generally used to meet the power budget requirements in order to achieve the desired receiver sensitivity or bit error ratio (BER). Semiconductor Optical Amplifier (SOA) with its small form factor is a low-cost power booster that can be designed to operate in any desired wavelength and more importantly can be integrated with other electro-optic components. However, saturated SOAs exhibit nonlinear amplification that introduce distortions on the amplified signal. Alongside SOA, the photodiode also introduces nonlinear mixing among the signal subcarriers in the form of Signal-Signal Beat Interference (SSBI). In this research, we study the impact of SOA nonlinearity on the effectiveness of SSBI compensation in a direct detection OFDM based transmission system. We experimentally demonstrate a digital compensation technique to undo the SOA nonlinearity effect by digitally backpropagating the received signal through a virtual SOA with inverse gain characteristics, thereby effectively eliminating the SSBI. With respect to transmission sources, laser technology has made some significant strides especially in the domain of multiwavelength sources such as quantum dot passive mode-locked laser (QD-PMLL) based optical frequency combs. In the present research work, we characterize the phase dynamics of comb lines from a QD-PMLL based on a novel multiheterodyne coherent detection technique. The inherently broad linewidth of comb lines which is on the order of tens of MHz make it difficult for conventional digital phase noise compensation algorithms to track the large phase noise especially for low baud rate subcarriers using higher cardinality modulation formats. In the context of multi-subcarrier, Nyquist pulse shaped, superchannel transmission system with coherent detection, we demonstrate through measurements and numerical simulations an efficient phase noise compensation technique called “Digital Mixing” that operates using a shared pilot tone exploiting mutual phase coherence among the comb lines. For QPSK and 16 QAM modulation formats, digital mixing provided significant improvement in BER performance in comparison to conventional phase tracking algorithms. Coherent solutions for regional and long haul systems make use of in-line optical amplifiers to compensate fiber loss. Ideally, distributed amplification based on stimulated Raman effect offers enhanced optical signal to noise ratios (OSNR) compared to lumped amplification using erbium doped fiber amplifiers and semiconductor optical amplifiers. However, this benefit of enhanced OSNRs in distributed Raman amplification is offset by the transfer of intensity noise of pump laser on to both signal’s phase and intensity, resulting in performance degradation. In this work, we propose and experimentally validate a practical pilot aided relative phase noise compensation technique for forward pumped distributed Raman amplified, digital subcarrier multiplexed coherent transmission systems
    • 

    corecore