4,771 research outputs found

    A Labelling Framework for Probabilistic Argumentation

    Full text link
    The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature

    Probabilities in Statistical Mechanics: What are they?

    Get PDF
    This paper addresses the question of how we should regard the probability distributions introduced into statistical mechanics. It will be argued that it is problematic to take them either as purely ontic, or purely epistemic. I will propose a third alternative: they are almost objective probabilities, or epistemic chances. The definition of such probabilities involves an interweaving of epistemic and physical considerations, and thus they cannot be classified as either purely epistemic or purely ontic. This conception, it will be argued, resolves some of the puzzles associated with statistical mechanical probabilities: it explains how probabilistic posits introduced on the basis of incomplete knowledge can yield testable predictions, and it also bypasses the problem of disastrous retrodictions, that is, the fact the standard equilibrium measures yield high probability of the system being in equilibrium in the recent past, even when we know otherwise. As the problem does not arise on the conception of probabilities considered here, there is no need to invoke a Past Hypothesis as a special posit to avoid it

    Anvil or Onion? Determinism as a Layered Concept

    Get PDF
    Stephen Kellert (1993) has argued that Laplacean determinism in classical physics is actually a layered concept, where various properties or layers composing this form of determinism can be peeled away. Here, I argue that a layered conception of determinism is inappropriate and that we should think in terms of different deterministic models applicable to different kinds of systems. The upshot of this analysis is that the notion of state is more closely tied to the kind of system being investigated than is usually considered in discussions of determinism. So when investigating determinism corresponding changes to the appropriate notion of state–and, perhaps, the state space itself–also need to be considered

    Evidence of Evidence as Higher Order Evidence

    Get PDF
    In everyday life and in science we acquire evidence of evidence and based on this new evidence we often change our epistemic states. An assumption underlying such practice is that the following EEE Slogan is correct: 'evidence of evidence is evidence' (Feldman 2007, p. 208). We suggest that evidence of evidence is best understood as higher-order evidence about the epistemic state of agents. In order to model evidence of evidence we introduce a new powerful framework for modelling epistemic states, Dyadic Bayesianism. Based on this framework, we then discuss characterizations of evidence of evidence and argue for one of them. Finally, we show that whether the EEE Slogan holds, depends on the specific kind of evidence of evidence
    • 

    corecore