546 research outputs found

    Mapping the epileptic brain with EEG dynamical connectivity: established methods and novel approaches

    Get PDF
    Several algorithms rooted in statistical physics, mathematics and machine learning are used to analyze neuroimaging data from patients suffering from epilepsy, with the main goals of localizing the brain region where the seizure originates from and of detecting upcoming seizure activity in order to trigger therapeutic neurostimulation devices. Some of these methods explore the dynamical connections between brain regions, exploiting the high temporal resolution of the electroencephalographic signals recorded at the scalp or directly from the cortical surface or in deeper brain areas. In this paper we describe this specific class of algorithms and their clinical application, by reviewing the state of the art and reporting their application on EEG data from an epileptic patient

    Magnetoencephalography in Stroke Recovery and Rehabilitation

    Get PDF
    Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility

    Mapping Functional Architecture in Neocortical Epileptic Networks

    Get PDF
    Epilepsy is a debilitating brain disorder that causes recurring seizures in approximately 60 million people worldwide. For the one-third of epilepsy patients whose seizures are refractory to medication, effective therapy relies on reliably localizing where seizures originate and spread. This clinical practice amounts to delineating the epileptic network through neural sensors recording the electrocorticogram. Mapping functional architecture in the epileptic network is promising for objectively localizing cortical targets for therapy in cases of neocortical refractory epilepsy, where post-surgical seizure freedom is unfavorable when cortical structures responsible for generating seizures are difficult to delineate. In this work, we develop and apply network models for analyzing and interrogating the role of fine-grain functional architecture during epileptic events in human neocortical networks. We first develop and validate a model for objectively identifying regions of the epileptic network that drive seizure dynamics. We then develop and validate a model for disentangling network pathways traversed during ``normal\u27\u27 function from pathways that drive seizures. Lastly, we devise and apply a novel platform for predicting network response to targeted lesioning of neocortical structures, revealing key control areas that influence the spread of seizures to broader network regions. The outcomes of this work demonstrate network models can objectively identify and predict targets for treating neocortical epilepsy, blueprint potential control strategies to limit seizure spread, and are poised for further validation prior to near-term clinical translation

    On mapping epilepsy : magneto- and electroencephalographic characterizations of epileptic activities

    Get PDF
    Epilepsy is one of the most common neurological disorder, affecting up to 10 individuals per 1000 persons. The disorder have been known for several thousand years, with the first clinical descriptions dating back to ancient times. Nonetheless, characterization of the dynamics underlying epilepsy remains largely unknown. Understanding these patophysiological processes requires unifying both a neurobiological perspective, as well as a technically advanced neuroimaging perspective. The incomplete insight into epilepsy dynamics is reflected by the insufficient treatment options. Approximately 30% of all patients do not respond to anti-epileptic drugs (AEDs) and thus suffers from recurrent seizures despite adequate pharmacological treatments. These pharmacoresistant patients often undergo epilepsy surgery evaluations. Epilepsy surgery aims to resect the part of the brain that generates the epileptic seizure activity (seizure onset zone, SOZ). Nonetheless, up to 50% of all patients relapse after surgery. This can be due to incomplete mapping of both the SOZ and of other structures that might be involved in seizure initiation and propagation. Such cortical and subcortical structures are collectively referred to as the epileptic network. Historically, epilepsy was considered to be either a generalized disorder involving the entire brain, or a highly localized, focal, disorder. The modern technological development of both structural and functional neuroimaging has drastically altered this view. This development has made significant contributions to the now prevailing view that both generalized and focal epilepsies arise from more or less widespread pathological network pathways. Visualization of these pathways play an important role in the presurgical planning. Thus, both improved characterization and understanding of such pathways are pivotal in improvement of epilepsy diagnostics and treatments. It is evident that epilepsy research needs to stand on two legs: Both improved understanding of pathological, neurobiological and neurophysiological process, and improved neuroimaging instrumentation. Epilepsy research do not only span from visualization to understanding of neurophysiological processes, but also from cellular, neuronal, microscopic processes, to dynamical, large-scale network processes. It is well known that neurons involved in epileptic activities exhibit specific, pathological firing patterns. Genetic mutations resulting in neuronal ion channel defects can cause severe, and even lethal, epileptic syndromes in children, clearly illustrating a role for neuron membrane properties in epilepsy. However, cellular processes themselves cannot explain how epileptic seizures can involve, and propagate across, large cortical areas and generate seizure-specific symptomatologies. A strict cellular perspective can neither explain epilepsy-associated pathological interactions between larger distant regions in between seizures. Instead, the dynamical effects of cellular synchronization across both mesoscopic and macroscopic scales also need to be considered. Today, the only means to study such effects in human subjects are by combinations of neuroimaging modalities. However, as all measurement techniques, these exhibit individual limitations that affect the kind of information that can be inferred from these. Thus, once more we reach the conclusion that epilepsy research needs to rest upon both a neurophysiological/neurobiological leg, and a technical/instrumentational leg. In accordance with this necessity of a dual approach to epilepsy, this thesis covers both neurophysiological aspects of epileptic activity development, as well as functional neuroimaging instrumentation development with focus on epileptic activity detection and localization. Part 1 (neurophysiological part) is concerned with the neurophysiological dynamical changes that underlie development of so called interictal epileptiform discharges (IEDs) with special focus on the role of low-frequency oscillations. To this aim, both conventional magnetoencephalography (MEG) and intracranial electroencephalography (iEEG) with neurostimulation is analyzed. Part 2 (instrumentation part) is concerned with development of cutting-edge, novel on-scalp magnetoencephalography (osMEG) within clinical epilepsy evaluations and research with special focus on IEDs. The theses cover both modeling of osMEG characteristics, as well as the first-ever osMEG recording of a temporal lobe epilepsy patient

    Brain Connectivity Networks for the Study of Nonlinear Dynamics and Phase Synchrony in Epilepsy

    Get PDF
    Assessing complex brain activity as a function of the type of epilepsy and in the context of the 3D source of seizure onset remains a critical and challenging endeavor. In this dissertation, we tried to extract the attributes of the epileptic brain by looking at the modular interactions from scalp electroencephalography (EEG). A classification algorithm is proposed for the connectivity-based separation of interictal epileptic EEG from normal. Connectivity patterns of interictal epileptic discharges were investigated in different types of epilepsy, and the relation between patterns and the epileptogenic zone are also explored in focal epilepsy. A nonlinear recurrence-based method is applied to scalp EEG recordings to obtain connectivity maps using phase synchronization attributes. The pairwise connectivity measure is obtained from time domain data without any conversion to the frequency domain. The phase coupling value, which indicates the broadband interdependence of input data, is utilized for the graph theory interpretation of local and global assessment of connectivity activities. The method is applied to the population of pediatric individuals to delineate the epileptic cases from normal controls. A probabilistic approach proved a significant difference between the two groups by successfully separating the individuals with an accuracy of 92.8%. The investigation of connectivity patterns of the interictal epileptic discharges (IED), which were originated from focal and generalized seizures, was resulted in a significant difference ( ) in connectivity matrices. It was observed that the functional connectivity maps of focal IED showed local activities while generalized cases showed global activated areas. The investigation of connectivity maps that resulted from temporal lobe epilepsy individuals has shown the temporal and frontal areas as the most affected regions. In general, functional connectivity measures are considered higher order attributes that helped the delineation of epileptic individuals in the classification process. The functional connectivity patterns of interictal activities can hence serve as indicators of the seizure type and also specify the irritated regions in focal epilepsy. These findings can indeed enhance the diagnosis process in context to the type of epilepsy and effects of relative location of the 3D source of seizure onset on other brain areas

    Dense Array EEG & Epilepsy

    Get PDF

    Studying Network Mechanisms Using Intracranial Stimulation in Epileptic Patients

    Get PDF
    Patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes allow to obtain data of exceptional value for studying brain dynamics in correlation with pathophysiological and cognitive processes. Direct electrical stimulation (DES) of cortical regions and axonal tracts in those patients elicits a number of very specific perceptual or behavioral responses, but also abnormal responses due to specific configurations of epileptic networks. Here, we review how anatomo-functional brain connectivity and epilepsy network mechanisms can be assessed from DES responses measured in patients. After a brief summary of mechanisms of action of brain electrical stimulation, we recall the conceptual framework for interpreting DES results in the context of brain connectivity and review how DES can be used for the characterization of functional networks, the identification of the seizure onset zone, the study of brain plasticity mechanisms, and the anticipation of epileptic seizures. This pool of exceptional data may be underexploited by fundamental research on brain connectivity and leaves much to be learned
    • …
    corecore