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Mapping Functional Architecture in Neocortical Epileptic Networks

Abstract
Epilepsy is a debilitating brain disorder that causes recurring seizures in approximately 60 million people
worldwide. For the one-third of epilepsy patients whose seizures are refractory to medication, effective
therapy relies on reliably localizing where seizures originate and spread. This clinical practice amounts to
delineating the epileptic network through neural sensors recording the electrocorticogram. Mapping
functional architecture in the epileptic network is promising for objectively localizing cortical targets for
therapy in cases of neocortical refractory epilepsy, where post-surgical seizure freedom is unfavorable when
cortical structures responsible for generating seizures are difficult to delineate. In this work, we develop and
apply network models for analyzing and interrogating the role of fine-grain functional architecture during
epileptic events in human neocortical networks. We first develop and validate a model for objectively
identifying regions of the epileptic network that drive seizure dynamics. We then develop and validate a
model for disentangling network pathways traversed during ``normal'' function from pathways that drive
seizures. Lastly, we devise and apply a novel platform for predicting network response to targeted lesioning of
neocortical structures, revealing key control areas that influence the spread of seizures to broader network
regions. The outcomes of this work demonstrate network models can objectively identify and predict targets
for treating neocortical epilepsy, blueprint potential control strategies to limit seizure spread, and are poised
for further validation prior to near-term clinical translation.
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ABSTRACT

MAPPING FUNCTIONAL ARCHITECTURE IN NEOCORTICAL EPILEPTIC NETWORKS

Ankit Narendra Khambhati

Brian Litt

Epilepsy is a debilitating brain disorder that causes recurring seizures in approximately 60

million people worldwide. For the one-third of epilepsy patients whose seizures are refrac-

tory to medication, effective therapy relies on reliably localizing where seizures originate

and spread. This clinical practice amounts to delineating the epileptic network through

neural sensors recording the electrocorticogram. Mapping functional architecture in the

epileptic network is promising for objectively localizing cortical targets for therapy in cases

of neocortical refractory epilepsy, where post-surgical seizure freedom is unfavorable when

cortical structures responsible for generating seizures are difficult to delineate. In this work,

we develop and apply network models for analyzing and interrogating the role of fine-grain

functional architecture during epileptic events in human neocortical networks. We first de-

velop and validate a model for objectively identifying regions of the epileptic network that

drive seizure dynamics. We then develop and validate a model for disentangling network

pathways traversed during “normal” function from pathways that drive seizures. Lastly, we

devise and apply a novel platform for predicting network response to targeted lesioning

of neocortical structures, revealing key control areas that influence the spread of seizures

to broader network regions. The outcomes of this work demonstrate network models can

objectively identify and predict targets for treating neocortical epilepsy, blueprint poten-

tial control strategies to limit seizure spread, and are poised for further validation prior to

near-term clinical translation.

vi



Contents

Title i

Copyright ii

Dedication iii

Acknowledgements iv

Abstract vi

Contents vii

List of Tables xii

List of Figures xiii

1 Introduction 1

2 Background 5

2.1 Diagnosis and Treatment of Neocortical Epilepsy . . . . . . . . . . . . . . . 5

2.1.1 Clinical Imaging to Localize Structural and Functional Abnormalities 6

2.1.2 Intracranial Monitoring of Brain Electrophysiology . . . . . . . . . . 8

2.1.3 Clinical Mapping of Epileptogenic Cortex . . . . . . . . . . . . . . . . 11

vii



CONTENTS

2.1.4 Options for Surgical Treatment . . . . . . . . . . . . . . . . . . . . . 13

2.2 What is the Epileptic Network? . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Functional Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.1 Dynamic Network Analysis Toolbox . . . . . . . . . . . . . 17

3 Dynamic network drivers of seizure generation, propagation and termination 19

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Epileptic Network Reconfiguration Reveals Distinct Seizure States . . 25

3.3.2 Epileptic Network Redistributes Connectivity During Seizures . . . . 29

3.3.3 Dynamic Regional Structure of the Epileptic Network . . . . . . . . . 32

3.3.4 Impact of Surrounding Connectivity on Epileptic Network Dynamics 36

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Epileptic Network Reconfiguration . . . . . . . . . . . . . . . . . . . 37

3.4.2 Balance of Strong and Weak Connections . . . . . . . . . . . . . . . 38

3.4.3 Regional Connectivity Regulates Seizure Evolution Dynamics . . . . 40

3.4.4 Network Tightening During Seizures . . . . . . . . . . . . . . . . . . 41

3.4.5 Clinical Impact and Future Work . . . . . . . . . . . . . . . . . . . . 41

3.5 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Ethics Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Patient Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.3 Description of Seizure Events . . . . . . . . . . . . . . . . . . . . . . 44

3.5.4 Extracting Dynamic Functional Networks . . . . . . . . . . . . . . . 44

3.5.5 Computing Network States . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.6 Distinguishing Connection Types . . . . . . . . . . . . . . . . . . . . 46

3.5.7 Measuring Network Topography . . . . . . . . . . . . . . . . . . . . 46

3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



CONTENTS

3.7 Supplemental Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.1 Network States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.2 Modularity optimization for community detection . . . . . . . . . . . 48

3.7.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.2.2 Structural resolution parameter for community detection . 49

4 Recurring functional sub-networks during ictal and interictal periods 54

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Ictal Network Architecture Emerges During Interictal epochs . . . . . 61

4.3.2 Interictal Sub-Networks Stereotype Epileptic Network . . . . . . . . 65

4.3.3 Functional Sub-Networks Differentially Expressed During Ictal epochs 68

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Modular Cortical Pathways Comprise Epileptic Network Architecture 70

4.4.2 Predicting Pathways of the Epileptic Network . . . . . . . . . . . . . 71

4.4.3 Clinical Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Patient Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1.1 Ethics Statement . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1.2 Electrophysiology Recordings . . . . . . . . . . . . . . . . . 72

4.5.1.3 Description of Ictal and Interictal epochs . . . . . . . . . . 73

4.5.2 Extracting Time-Varying Functional Networks . . . . . . . . . . . . . 73

4.5.3 Learning Functional Sub-Networks . . . . . . . . . . . . . . . . . . . 74

4.5.4 Consensus Clustering of Sub-Network Ensembles . . . . . . . . . . . 75

4.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



CONTENTS

5 Virtual cortical resection reveals push-pull network control mechanism 80

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Network Homogeneity Improves Synchronizability . . . . . . . . . . 85

5.3.2 Network Controllers of Synchronizability . . . . . . . . . . . . . . . . 88

5.3.3 Regulatory System Controls Seizure Dynamics . . . . . . . . . . . . . 90

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 Spatial Extent of Seizure Evolution . . . . . . . . . . . . . . . . . . . 95

5.4.2 Push-Pull Control as a Regulatory Mechanism . . . . . . . . . . . . . 96

5.4.3 Methodological Limitations and Extensions . . . . . . . . . . . . . . 96

5.4.4 Clinical Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 Patient Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1.1 Ethics Statement . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1.2 Electrophysiology Recordings . . . . . . . . . . . . . . . . . 98

5.5.1.3 Description of Epileptic Events . . . . . . . . . . . . . . . . 100

5.5.2 Functional Network Construction . . . . . . . . . . . . . . . . . . . . 101

5.5.2.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.2.2 Coherence Estimation . . . . . . . . . . . . . . . . . . . . . 101

5.5.3 Metrics of the Time-Varying Functional Network . . . . . . . . . . . . 102

5.5.3.1 Network Geometry . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.3.2 Network Synchronizability . . . . . . . . . . . . . . . . . . 102

5.5.3.3 Virtual Cortical Resection . . . . . . . . . . . . . . . . . . . 103

5.5.3.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Supplemental Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



CONTENTS

5.7.1 Network Synchronizability . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7.1.1 Master Stability Function . . . . . . . . . . . . . . . . . . . 104

5.7.1.2 Synchronizability of Low-γ Functional Networks . . . . . . 105

5.7.2 Virtual Cortical Resection . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7.2.1 Uniqueness of Control Centrality . . . . . . . . . . . . . . . 108

5.7.2.2 Regulation of Synchronizability in Low-γ Networks . . . . . 110

6 Conclusions and Discussion 114

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

References 118

xi



List of Tables

3.1 Patient data set for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Event and state durations for patients . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Patient data set for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Patient data set for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



List of Figures

2.1 Chart of epilepsy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Example of brain lesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Implantation of intracranial electrodes . . . . . . . . . . . . . . . . . . . . . 9

2.4 Diagram of epileptic zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 NeuroPace RNS device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Pipeline for measuring time-Varying functional networks . . . . . . . . . . . 24

3.2 Identifying discrete network states . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Discrete functional states of epileptic networks . . . . . . . . . . . . . . . . 28

3.4 Global changes of connectivity in epileptic network states . . . . . . . . . . 31

3.5 Regional characteristics of epileptic network geography . . . . . . . . . . . . 35

3.6 Topographical characteristics of epileptic network connectivity . . . . . . . . 37

3.7 Structural resolution parameter sweep for modularity optimization . . . . . 51

3.8 Distribution of optimal structural resolution parameter . . . . . . . . . . . . 52

4.1 Pipeline for disentangling time-varying functional sub-networks . . . . . . . 60

4.2 Consensus clustering of sub-network ensembles . . . . . . . . . . . . . . . . 62

4.3 Ictal sub-networks recapitulated during interictal epochs . . . . . . . . . . . 64

4.4 Interictal sub-networks predict epileptic network architecture . . . . . . . . 67

4.5 Persistent and transient temporal expression of functional sub-networks . . 69

xiii



LIST OF FIGURES

4.6 Optimizing number of learned sub-networks . . . . . . . . . . . . . . . . . . 77

4.7 Optimizing number of consensus clusters from sub-network ensemble . . . . 78

4.8 Co-clustering probability of ictal and interictal sub-networks . . . . . . . . . 79

5.1 Hypothesized mechanism of seizure regulation . . . . . . . . . . . . . . . . 84

5.2 Differential pre-seizure synchronizability . . . . . . . . . . . . . . . . . . . . 87

5.3 Virtual cortical resection of network controllers . . . . . . . . . . . . . . . . 89

5.4 Regional control centrality differentiates pre-seizure epoch . . . . . . . . . . 92

5.5 Regional control centrality differentiates seizure epoch . . . . . . . . . . . . 94

5.6 Synchronizability of low-γ networks . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Control centrality as a network measure . . . . . . . . . . . . . . . . . . . . 109

5.8 Regional control in pre-seizure epoch . . . . . . . . . . . . . . . . . . . . . . 111

5.9 Regional control in seizure epoch . . . . . . . . . . . . . . . . . . . . . . . . 113

xiv



Chapter 1

Introduction

Epilepsy is a neurological disease of recurring seizures that affects an estimated 60 million

people worldwide (51). Patients experiencing a seizure may exhibit one or more of a num-

ber of clinical signs (e.g. confusion, muscle convulsion, loss of consciousness) that can be

dangerous, because seizures that can manifest anywhere and anytime. In more than one-

third of epilepsy patients, seizures are pharmaco-resistant and increase risk of premature

death, anxiety, depression, and cognitive dysfunction (51, 52). For drug-resistant patients,

neurologists seek an understanding of what behavioral conditions precipitate the seizure

and where in the brain the seizure originates.

The inherent challenges in treating drug-resistant epilepsy is that the disease character-

istics such as seizure precipitants, symptoms, and onset location are unique to each patient.

Patients undergo extensive clinical work-up for mapping their epileptic brain regions, which

includes imaging, for localizing anatomic malformations of cortical tissue, neuropsychologi-

cal testing, for assessing dysfunction associated with epileptic activity in cognitive domains,

and electrophysiology, for diagnosing dysfunctional brain activity in the seizure-onset zone.

These tests enable a patient’s clinical team to prescribe a variety of treatment options, of

which surgically removing dysfunctional tissue is the most common (52). When seizures

1



are localized to mesial temporal lobe structures such as hippocampus and amygdala, sur-

gical resection of the anterior temporal lobe yields seizure freedom in 70% of cases (52).

More sobering is when seizures originate in the neocortex, long-term seizure freedom rates

vary between 27–66% of cases depending on etiology and localization (88). In this work,

we focus our study on patients with neocortical epilepsy. The poor post-surgical outcome

for neocortical epilepsy patients has resulted in a paradigm shift from localizing and resect-

ing epileptic tissue towards mapping the epileptic network and identifying key regions for

intervention (46, 57, 84).

Innovating beyond crude resective surgery, many novel neurotechnologies are being

developed to target and affect specific cortical structures of brain networks (85). Such

neurotechnology includes implantable devices for stimulating or modulating brain activity

to control seizures (28, 64) and laser interstitial thermal therapy for ablating pathologic

brain tissue (62, 90). Compared to traditional resective surgery, these treatment options

afford a greater degree of precision to target dysfunction while limiting brain regions vital

to normal function. While clinicians are excited about introducing novel neurotechnology

into clinical practice, preliminary data shows only moderate seizure reduction on the order

40% with implantable devices (64). A primary barrier to better performance and wide-scale

clinical adoption is an inadequate understanding of how the epileptic network is organized

and which cortical structures are optimal targets for therapy.

The overarching hypothesis of this thesis is that the clinically-defined region where

seizures begin, or seizure-onset zone (SOZ), is functionally necessary but insufficient area

for generating seizures. Epileptologists encounter clinical cases where removing the SOZ

does not lead to complete seizure freedom, suggesting a broader extent of cortical net-

works are involved in seizure-generation. Neurophysiologically, seizure-generating regions

are believed to drive dysfunction by aberrantly synchronizing and recruiting local neuron

populations. While neuronal synchrony is believed to be essential for normal brain func-

tion, seizures are seen as a manifestation of excessive and hyper-synchronization between

2



clusters of neurons that forms the epileptic network.

Modern clinical practice is already working towards diagnosing network abnormalities

in drug-resistant epilepsy (84). In their clinical work-up epileptologists study the elec-

trocorticogram (ECoG), brain activity generated by populations of local neurons, to capture

signatures of epileptic activity and describe their spatial and temporal patterns of evolution.

Understanding these complex dynamics help clinicians pinpoint the source of pathologic ac-

tivity, or seizure-onset zone, and map its spread to secondarily recruited brain regions. More

formally, the cortical pathways corresponding to the generation and evolution of pathologic

activity comprise the functional architecture of the epileptic network. While diagnosing

drug-resistant epilepsy under network formalisms can improve patient outcome, especially

when applied in conjunction with novel neurotechnology, a non-unified definition of dys-

function in the epileptic network leads to poor inter-rater reliability in diagnosis. Thus, a

central challenge in translating the notion of the epileptic network to guide clinical inter-

vention is objectively characterizing dysfunctional pathways that drive epileptic activity.

This dissertation is designed to address this challenge by: (i) objectively formulating a

notion of the epileptic network using top-down modeling to identify functional pathways

between brain regions, (ii) connecting the network model to clinical markers used for di-

agnosis, and (iii) predicting targets for clinical intervention based on network dysfunction.

In Chapter 2, we provide a background on characteristics of neocortical epilepsy and intro-

duce a framework for modeling functional networks from electrophysiology. In Chapter 3,

we develop a dynamic model of the epileptic network for describing the role of distributed

cortical structures in seizure generation, termination and propagation. In Chapter 4, we

develop an unsupervised learning technique for disentangling cohesive sub-structures from

a dynamic model of the epileptic network and use it to compare network topology between

baseline and seizure states. In Chapter 5, we develop virtual cortical resection technique

for predicting network response to the removal of specific regions and use it to compare

mechanisms of seizure spread. We conclude the thesis in Chapter 6 with a summary of our

3



findings, a discussion of our work, contributions to epilepsy and network science, and a

roadmap for future work.
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Chapter 2

Background

2.1 Diagnosis and Treatment of Neocortical Epilepsy

In this dissertation we focus on a population of drug-resistant epilepsy patients whose

seizures arise in the neocortex, which is the superficial tissue comprising the first func-

tional layers of gray-matter in the brain (Fig. 2.1). Neocortical epilepsy cases are among

the most difficult epilepsy types to treat, because their etiology and localization is unique to

each patient. Neocortical epilepsy has a variety of causes ranging from genetic to structural

and metabolic, and in many cases the cause cannot be identified (9). Of those patients

with neocortical epilepsy, seizures may focally originate in the frontal lobe, temporal lobe,

occipital lobe, parietal lobe, or from a combination of these regions.
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2.1 Diagnosis and Treatment of Neocortical Epilepsy

Figure 2.1: Population distribution of epilepsy types. The distribution of patients with differ-
ent types of epilepsies. The literature sources used to estimate population percentage is listed at

each level. The focus of this work is extratemporal neocortical epilepsy, which has a prevalence
of ≈6 million people.

2.1.1 Clinical Imaging to Localize Structural and Functional Abnormalities

While intracranial monitoring of neural activity associated with epileptic events is indis-

pensable for identifying the seizure origin, multi-modal imaging can often identify lesions

(Fig. 2.2) (e.g. focal cortical dysplasia, tuberous sclerosis, other malformations of cortical

development), which when resected lead to significantly better odds (2.9 times) of seizure

freedom than in cases where imaging returns negative findings (89). For cases with un-

known etiology, only ≈54% of patients attain favorable seizure freedom (Engel score I or

II) (56). Even in cases where no clear lesions are evident on MRI, clinicians perform a
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2.1 Diagnosis and Treatment of Neocortical Epilepsy

battery of imaging tests that provide orthogonal information about the epileptic network.

We briefly introduce some of these imaging techniques below (50):

Figure 2.2: Example of epileptogenic brain lesion. A T2-weighted coronal FLAIR image

displaying hyperintensity (white) in the inferior precuneus corresponding to a Type IIB focal
cortical dysplasia, a common lesion underlying the development of focal seizures (33).

Magnetic Resonance Imaging (MRI) Neuroradiologists examine T1 or T2-weighted MRI

sequences to delineate gray- and white-matter brain tissue. This imaging modality is most

widely used for localizing aberrant migration of neural tissue associated with developmen-

tal disorders and investigating anatomical changes due to brain injury. Epilepsy cases with

unremarkable MRI are colloquially considered non-lesional.

Single Photon Emission Computed Tomography (SPECT) SPECT imaging is used in

conjunction with an injectable radioactive tracer, which together yield a dynamic or static

picture of blood perfusion through the brain. SPECT may be conducted during the ictal

period to identify patterns of seizure onset and spread and, when compared to baseline

interictal SPECT, can localize portions of the epileptic network in 70–90% of patients (50).
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2.1 Diagnosis and Treatment of Neocortical Epilepsy

The challenge for clinicians is accurate timing of conducting a SPECT study during seizures,

which occur infrequently.

Positron Emission Tomography (PET) For epilepsy patients, PET is often used in con-

junction with the radioactive tracer fluorodeoxyglucose (FDG), which together yield an

estimate of metabolic activity in imaged tissue. While interictal PET has shown utility in

localizing abnormalities in temporal lobe epilepsy, results are less promising for neocortical

epilepsy.

2.1.2 Intracranial Monitoring of Brain Electrophysiology

Although structural and functional imaging modalities provide significant information re-

garding abnormal brain tissue, the electrophysiology of neural circuits provide the clearest

evidence of dysfunction when diagnosing epilepsy. A patient’s neurological team will com-

pile results from imaging and phase-I monitoring of scalp electroencephalography (EEG)

and plan an invasive surgery to implant sub-dural, intracranial sensors for monitoring the

electrocorticogram (ECoG) (Fig. 2.3).

Each sensor of an ECoG electrode is made from platinum-iridium and captures the lo-

cal field potential (LFP) of neural activity from superficial layers of the neocortex (17).

This LFP represents the extracellular voltage deflection from an aggregated population of

neurons and is comprised of the population’s synaptic activity and action potential firing

patterns. Understanding the composition of the LFP is vital for connecting recorded ECoG

activity to the behavior of underlying neural populations. While this is an active area of

research, studies mostly agree that (i) action potentials generate a broad-band increase in

the spectral power of the LFP, (ii) spectral power in higher-frequency bands corresponds

to more synchronous firing of action potentials, and (iii) higher-frequency components of-

ten phase-lock with lower-frequency components of the LFP, signifying a clear relationship

between fluctuations of extracellular current and the action potentials produced by these

8



2.1 Diagnosis and Treatment of Neocortical Epilepsy

B C

A

Figure 2.3: Intracranial electrodes for monitoring epileptic cortex. (A) Schematic of
clinical-scale intracranial electrode with 20 sensors arranged in 4x5 configuration. Center-to-

center distance between sensors is 10mm, and each sensor as a diameter of 4mm with 2.3mm

exposed to the sub-dural cortical surface. (B) Photograph of a similar electrode with 32 sensors
in 4x8 configuration. (C) Intraoperative photograph of implanted electrode in human epilepsy

patient with reference to gyral, sulcal, and vascular anatomy.
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2.1 Diagnosis and Treatment of Neocortical Epilepsy

currents (17). Below is list of frequency bands that are commonly identified in neural

recordings of LFP and their physiological significance in terms of behavioral functioning:

Delta Band (0–4 Hz) Delta wave oscillations represent the slowest rhythms of LFP, and

are typically recorded during the deepest stages of sleep (non-REM).

Theta Band (4–7 Hz) Theta wave oscillations are commonly observed in the hippocam-

pus and the neocortex, although the putative functional role of this rhythm is different

between the two brain regions. The hippocampal theta rhythm is typically found during

behaviorally active states and has a purported relationship to learning and memory. The

neocortical theta rhythm may have relevance to mechanisms of sleep and wakefulness.

Alpha Band (7–15 Hz) Alpha waves were the first discovered brain rhythm and have a

strong relationship with activation of visual pathways and opening and closing of the eyes.

Beta Band (15–30 Hz) Beta waves are believed to represent cognitive processes associ-

ated with consciousness. Additionally, beta rhythms are frequently recorded over motor

cortex in conjunction with muscle contraction.

Low-Gamma Band (30–80 Hz) Rhythmic activity in low-gamma band is often connected

to a wide array of cognitive tasks and is believed to play a key role in binding cognitive

processes across neural systems to produce consciousness.

High-Gamma Band (80–500 Hz) Unlike slower neural oscillations, high-gamma band

activity is purported to represent spiking activity of neural populations. High-gamma activ-

ity is of great interest to epilepsy researchers because it may be indicative of neural bursting

that could initiate epileptiform events.
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2.1 Diagnosis and Treatment of Neocortical Epilepsy

2.1.3 Clinical Mapping of Epileptogenic Cortex

For neurologists, rhythmic neural activity in the ECoG is not only indicative of normal brain

activity, but also provides clues regarding network dysfunction. Clinicians first characterize

ECoG signal properties during three major states: (i) interictal, or baseline, period of “nor-

mal” brain function that is at least four hours removed from a seizure, (ii) preictal period

during which the brain transitions towards a seizure, and (iii) ictal period during which a

critical change, away from background ECoG signal properties, occurs (i.e. the seizure).

Based on the time-varying patterns of epileptiform activity, and their spatial distribu-

tions, clinicians divide epileptic cortex into various functional regions (Fig. 2.4) (66, 74).

These regions are:

Irritative Zone Cortical tissue in this region generates spontaneous epileptiform activ-

ity that includes, but is not limited to, interictal spikes, spike-and-wave discharges, high-

frequency oscillations, and epileptic bursts. Although these events are pathologic in nature,

they do not produce clear symptoms unless a critical mass of activity is reached.

Seizure-Onset Zone This subset of the irritative zone is where clinical seizures are spon-

taneously generated and is the primary target for surgical resection. Ideally, the seizure-

onset zone represents the initial site where the transition from preictal to ictal state occurs.

However, the lack of a standardized definition between clinicians yields poor inter-rater

reliability of which cortical area truly constitutes the seizure-onset zone.

Epileptogenic Zone This hypothetical region represents the full extent of cortical tissue

that is capable of generating spontaneous seizures. In cases where surgical resection of the

seizure-onset zone yields complete seizure freedom, the epileptogenic zone and the seizure-

onset zone overlap completely. Therefore, the epileptogenic zone is a clinical construct that
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Figure 2.4: Organization of epileptic zones in the neocortex. An example of the relative

spatial localization of epileptic zones in the neocortex. The irritative zone displays evidence of
interictal and ictal epileptiform activity that is generated in epileptogenic cortex and spreads

through local pathways. The seizure-onset zone is the initial site of ictal brain activity. The

epileptogenic zone is the hypothetical region that is indispensable for the generation of epileptic
activity.
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2.1 Diagnosis and Treatment of Neocortical Epilepsy

describes cortical regions that continue to generate seizures after surgical resection of the

seizure-onset zone.

2.1.4 Options for Surgical Treatment

Until recently, surgical manipulation of the cortex was the only major option for treating

drug-resistant neocortical epilepsy. Surgeons have typically resorted to resections in the

frontal, parietal, and occipital lobes (5-year seizure freedom rates average ≈40%), multiple

subpial transections – shallow cuts into the epileptic cortex to “disconnect” tissue generat-

ing seizures – (5-year seizure freedom rates of 16%), and callosotomy – cutting of corpus

callosum to prevent interhemispheric spread of seizures – (5-year seizure freedom rates

of 35%) (88). The prospect of introducing novel neurotechnologies in targeted ablative

therapy and implantable devices has rejuvenated hope for a long-term solution towards

controlling seizures.

Laser interstitial thermal therapy (LITT) is a minimally invasive procedure that delivers

light energy, percutaneously, towards cortical tissue that requires ablation (62, 90). The

surgical technique is image-guided and holds significant promise in epilepsy cases with

identifiable focal lesions associated with seizure-onset. Furthermore, surgical cases em-

ploying LITT for epilepsy surgery have shown a reduction in cognitive deficit as compared

to patients who underwent open resection (23). These studies suggest that LITT improves

stereotactic control over the surgical target in epilepsy surgery.

Implantable devices that stimulate or modulate brain activity is another promising op-

tion for controlling seizures (Fig. 2.5) (64). In contrast to early neurostimulation devices,

newer devices are capable of closed-loop control that can continuously monitor ECoG for

epileptic events and responsively stimulate to prevent specific events from evolving into

seizures. These devices are exciting because they don’t require removal of any tissue and

are programmable such that therapy delivery can adjust if a patient’s epilepsy character-

istics change. Improving the efficacy of implantable devices for aborting seizures may re-
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A B

Figure 2.5: NeuroPace responsive neurostimulator device. (A) The NeuroPace stimulator
device and attachable electrodes for sensing and stimulating epileptic brain. (B) CT-scan show-

ing an implanted NeuroPace RNS device along with the positioned sensing and stimulating

electrodes.

quire a better understanding of the functional pathways through which seizures develop

and spread.

2.2 What is the Epileptic Network?

Though conventional diagnosis of epilepsy seeks to delineate brain tissue that give rise

to seizures, the notion of labeling epilepsy as a network disorder is clouded and generic.

Beyond structural and functional abnormalities of cortical tissue (e.g. malformations, le-

sions, epileptiform spikes, high-frequency oscillations), this thesis argues that epilepsy is a

dysfunction of cortical circuits that aberrantly generate epileptic events and subsequently

spread this pathologic activity to secondary brain structures.

At the outset, we importantly distinguish between notions of structural and functional

connectivity of the epileptic network. Though not the focus of this dissertation, structural

connectivity describes white-matter fiber pathways between brain regions and are believed
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to be the primary vehicle for large-scale spreading of seizures through the brain (i.e. sec-

ondary generalization).

2.2.1 Functional Connectivity

While structural networks describe hardwired, white-matter connections, functional net-

works are thought of as communication pathways between brain regions that sub-serve

neurophysiologic and behavioral operation (15, 32, 40). Functional pathways may be

dynamic as different neural populations communicate at different points in time. Major

challenges towards modeling functional networks is understanding the spatial scale of the

recorded brain signal and defining cortical structures comprising nodes and neurophysio-

logic phenomena that signify connections.

For networks derived from the electrocorticogram, networks nodes are neural popula-

tions measured by intracranial sensors and network edges are statistical relationships of

similarity between neural activation patterns (15, 32, 40). Under this framework, signals

with more similar dynamics have a stronger functional connection between them. The

statistical metric used to quantify similarity between signals dictates the neurophysiologic

interpretation of a connection. Briefly, we will introduce two notions of functional connec-

tivity used in this work.

Broad-Band Cross-Correlation The cross-correlation is a measure of linear relationships

between two variables accounting for a time-dependent lag between observations. That is,

how much does the neural activity at node x between t1 and t2, linearly relate to the neural

activity at node y between t1 + τ and t2 + τ for a defined lag τ . For any τ , cross-correlation

values closer to 1, or -1, indicate strong positive, or negative, linear relationship between

signals x and y. Cross-correlation values approaching 0 indicate a lack of linear similarity

between the two signals.
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To measure functional connectivity using the cross-correlation similarity function ρ, we

compute the maximum magnitude (absolute value) value of the cross-correlation for t be-

tween t1 and t2 over a range of τ over the span of t2 − t1 (Eqn. 2.1).

ρxy(t) = argmax
τ

E[(x(t)− µx)(y(t+ τ)− µy)] (2.1)

This achieves a couple things: (i) accounts for transmission delays over geographical dis-

tances and volume conduction effects observed simultaneously among nearby cortical struc-

tures, and (ii) enforces a relationship between cortical structures that says, "any fluctuation

in one structure that is correlated to a fluctuation in another structure implies that the two

structures are functionally co-dependent."

A prime advantage to using cross-correlation of broad-band ECoG signal, is that connec-

tivity is not restricted to a priori determined semiology of neural activity. This point is vital

in epilepsy, where clinicians are in much disagreement in the labeling of epileptiform events

(i.e. what is an epileptic spike? what is a high-frequency oscillation?). Cross-correlation is

robust to the shape of the neural activity, and is more concerned with identifying whether

any pattern of neural activity in one cortical structure resembles a pattern of neural activity

in a second cortical structure, up to a scaling in amplitude.

Band-Specific Coherence As discussed in Section 2.1.2, frequency-dependent structure

in the ECoG signal resembles the behavior of local neural populations in the neocortex. By

examining similarity of spectral power between network nodes, we can quantify functional

relationships between cortical regions based on neurophysiologic behavior (i.e. whether

two regions are exhibiting delta, theta, alpha, beta or gamma rhythms at the same time).

The coherence Γ is a normalized measure of the cross-spectral similarity C between

two neural signals, x and y, over frequencies f within a spectral band computed for time t

between t1 and t2 (Eqns. 2.2 and 2.3).

Cxy(f) = E[

∫ t2

t1

x(t)e−i2πftdt

∫ t2

t1

y(t)e−i2πftdt] (2.2)
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Γxy(f) =

∣
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∣

(2.3)

In this thesis, we will focus on coherence of neural activity within low-gamma (30–40

Hz) and high-gamma (95–105 Hz) frequency bands. Prior work has explored the gamma

band activity in ECoG, demonstrating they represent neural firing of spatially localized neu-

ral ensembles and are active during cognitive, functional tasks (19). However, functional

networks derived from coherence in gamma band is relatively unexplored, but can be a

potentially powerful technique for describing hypersynchronization of more local neural

populations in epileptic cortex. These studies would be an incremental push forward from

prior work demonstrating micro-domains of epileptic activity (27, 77, 87, 92, 98, 102).

2.2.1.1 Dynamic Network Analysis Toolbox

To conduct many of the network analyses in this study, we developed the Dynamic Network

Analysis Toolbox (DyNe). DyNe was developed in the Python programming language and

extracts, analyzes, and presents information from sensor networks that evolve with time.

DyNe emerges from the rapidly-growing field of complex networks as a toolbox for mapping

multidimensional systems whose architecture changes with time. The toolbox comprises of

state-of-the-art algorithms to study and visualize system dynamics in real-time (and offline),

and is available at https://github.com/akhambhati/dyne.

DyNe utilizes pipelining to analyze and visualize incoming sensor data and results. A

pipeline is an ordered list of modules or pipes that process incoming data in logical steps.

While pipeline construction follows general rules dictating which pipes are capable of link-

ing, the end-user has flexibility in choosing which version of a pipe to implement depending

on the specific task.

For this work, we used DyNe and created two major pipelines for measuring functional

networks from ECoG. The first pipeline estimates time-varying functional connectivity based
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on broad-band cross-correlation. The second pipeline estimates two time-varying functional

networks based on spectral coherence in low-gamma and high-gamma frequency.
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Chapter 3

Dynamic network drivers of seizure

generation, propagation and

termination

3.1 Abstract

The epileptic network is characterized by pathologic, seizure-generating ‘foci’ embedded in

a web of structural and functional connections. Clinically, seizure foci are considered op-

timal targets for surgery. However, poor surgical outcome suggests a complex relationship

between foci and the surrounding network that drives seizure dynamics. We developed a

novel technique to objectively track seizure states from dynamic functional networks con-

structed from intracranial recordings. Each dynamical state captures unique patterns of

network connections that indicate synchronized and desynchronized hubs of neural popu-

lations. Our approach suggests that seizures are generated when synchronous relationships

near foci work in tandem with rapidly changing desynchronous relationships from the sur-

rounding epileptic network. As seizures progress, topographical and geometrical changes in

network connectivity strengthen and tighten synchronous connectivity near foci—a mecha-
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nism that may aid seizure termination. Collectively, our observations implicate distributed

cortical structures in seizure generation, propagation and termination, and may have prac-

tical significance in determining which circuits to modulate with implantable devices.

3.2 Introduction

Localization-related epilepsy causes seizures that arise from one or more abnormal islands

of cortical tissue in the neocortex or mesial temporal structures (83). In more severe cases,

seizures with focal onset secondarily generalize, as pathologic activity spreads across the

brain (49). Localization-related epilepsy represents ≈80% of epilepsy cases and is often

resistant to medication (31). For drug-resistant patients, the only treatment options are im-

plantable devices, or more traditionally resective surgery to remove enough cortical tissue

in the epileptic network to decrease seizure frequency, while preserving brain tissue respon-

sible for eloquent function. In surgical cases where discrete lesions associated with seizure

onset (‘foci’) are not evident on an MRI, only ≈40% remain seizure-free post-surgery (31).

The modest outcome associated with these procedures has lead investigators to further ex-

plore spatial distributions of epileptic activity using multiscale neural signals in ECoG and

sub-millimeter µECoG to more accurately localize where seizures start and how their patho-

logic activity spreads (27, 77, 87, 92, 98, 102). These approaches have spurred a paradigm

shift from localizing just the foci towards informing interventions by mapping structural

and functional connectivity of the whole epileptic network.

The notion of an epileptic network stems from the idea that pathologic functional con-

nections and/or disconnections disrupt neural function, producing rhythmic motor activity,

altered cognition, or abnormal sensation. Functional connections are time-dependent (40)

communication pathways between neural populations that are measured by statistical re-

lationships between electrode sensor (node) time series (32), and that evolve according to

brain state to produce behavior. The seizure state was originally considered to be hyper-
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synchronous, or composed predominantly of strong functional connections. In contrast, a

significant body of recent work presents compelling evidence that complex changes among

strong (synchronized) and weak (desynchronized) network nodes accompany seizure dy-

namics (41, 43, 47, 79, 80, 99). The state-space of these dynamics are well described at

the sensor level using measures of node centrality (16, 75). However, epileptic network ar-

chitecture at the basic sub-unit of individual connections is poorly understood, but tremen-

dously powerful for discriminating fine-grain network changes that drive seizure dynamics.

Understanding the interplay between individual functional connections in the epilep-

tic network is critical to answer questions goading clinical epileptologists and translational

researchers: Where do seizures start? Can the epileptic network be modulated therapeuti-

cally? What can these methods reveal about the underlying neurophysiologic mechanisms?

Progress in addressing these questions requires methods to track time-dependent functional

connections within the epileptic network and understand their relative strengths and weak-

nesses, which in network terms are collectively referred to as the network’s geometric struc-

ture. Such methods would not only shed light on geographical dysfunction of epileptic foci,

but also the disruption of normal brain tissue that is recruited during seizure events.

We hypothesize that the epileptic network achieves dysfunction and drives seizure ac-

tivity by reconfiguring network connections during key network states that are clinically

described as seizure generation, propagation, and termination. Our network reconfigu-

ration hypothesis is informed by recent work demonstrating that human brain networks

dynamically reorganize prior to changes in behavior (8, 25). During pathologic events,

reconfiguration in epileptic networks may involve a redistribution of metabolic resources

between strong and weak connections, supporting distinct network functions (26, 76). Our

results support this hypothesis, demonstrating that the epileptic network can be character-

ized by hubs of persistent strong connections surrounded by rapidly reconfiguring weak

connections that drive seizure processes.
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3.3 Results

To analyze the epileptic network, we retrieved ECoG recorded during simple partial, com-

plex partial, and secondarily generalized seizures from 21 neocortical epilepsy patients

undergoing routine pre-surgical evaluation of their epilepsy (see Table 3.1 for patient-

specific information) through the International Epilepsy Electrophysiology Portal (IEEG Por-

tal, http://www.ieeg.org). We estimated weighted functional connectivity using a normal-

ized cross-correlation metric (see Methods) applied to non-overlapping, 1s time windows of

ECoG (Fig. 3.1a) This procedure results in a symmetric, N × N connectivity matrix (spec-

ifying N(N − 1)
2 unique connections in the upper or lower triangle of the symmetric con-

nectivity matrix), where N is the number of network nodes, for each of T time windows

analyzed. The pattern of unique network connections from a single time-window is a con-

figuration vector, which can be concatenated over all time windows to form a configuration

matrix of size N(N − 1)
2 × T .

To better understand how global and local epileptic network geometry drive seizure

dynamics, we study the configuration matrix during epileptic events divided into seizure

and pre-seizure epochs (Fig. 3.1b).
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Patient
(IEEG Portal)

Sex Age
(Years)

Seizure Onset Etiology Seizure
Type

Seizures
(N)

Imaging Outcome

HUP64_phaseII M 03/20 Left frontal Dysplasia CP+GTC 01 L ENGEL-I

HUP65_phaseII M 02/36 Right temporal Auditory
reflex

CP+GTC 03 N/A ENGEL-I

HUP68_phaseII F 15/26 Right temporal Meningitis CP,
CP+GTC

05 NL ENGEL-I

HUP70_phaseII M 10/32 Left
perirolandic

Cryptogenic SP 08 L NR

HUP72_phaseII F 11/27 Bilateral left Mesial
temporal
sclerosis

CP+GTC 01 L NR

HUP73_phaseII M 11/39 Anterior right
frontal

Meningitis CP+GTC 05 NL ENGEL-I

HUP78_phaseII M 00/54 Anterior left
temporal

Traumatic
injury

CP 05 L ENGEL-III

HUP79_phaseII F 11/39 Occipital Meningitis CP 01 L NR

HUP86_phaseII F 18/25 Left temporal Cryptogenic CP+GTC 02 NL ENGEL-II

HUP87_phaseII M 21/24 Frontal Meningitis CP 02 L ENGEL-I

Study 004-2 F 14/27 Right temporal
occipital

Unknown CP+GTC 01 NL ILAE-IV

Study 006 M 22/25 Left frontal Unknown CP 02 NL NR

Study 010 F 00/13 Left frontal Unknown CP 02 L NF

Study 016 F 05/36 Right temporal
orbitofrontal

Unknown CP+GTC 03 NL ILAE-IV

Study 019 F 31/33 Left temporal Unknown CP+GTC 15 NL ILAE-V

Study 020 M 05/10 Right frontal Unknown CP+GTC 04 NL ILAE-IV

Study 023 M 01/16 Left occipital Unknown CP 04 L ILAE-I

Study 026 M 09/09 Left frontal Unknown CP 10 NL ILAE-I

Study 031 M 05/05 Right frontal Unknown CP+GTC 05 NL NF

Study 033 M 00/03 Left frontal Unknown GA 07 L ILAE-V

Study 037 F 45/?? Indeterminate Unknown CP 02 NL NR

Table 3.1: Patient information. Patient data sets accessed through IEEG Portal
(http://www.ieeg.org). Age (years) at first reported onset and at phase II monitoring. Local-

ization of seizure onset and etiology is clinically-determined through medical history, imaging,
and long-term invasive monitoring. Seizure types are SP (simple-partial), CP (complex-partial),

CP+GTC (complex-partial with secondary generalization), or GA (generalized atonic). Counted
seizures were recorded in the epilepsy monitoring unit. Clinical imaging analysis concludes L,

Lesion; NL, non-lesion. Surgical outcome was based on either Engel score or ILAE score (scale:
I-IV/V, seizure freedom to no improvement; NR, no-resection; NF, no follow-up). M, male; F,

female.
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Figure 3.1: Analysis pipeline for dynamic epileptic networks. (a) (Top) We create functional

networks based on electrophysiology by windowing ECoG signals collected from patients with
drug-resistant neocortical epilepsy implanted with intracranial electrodes into 1s time windows.

Each sensor is represented as a network node, and weighted functional connectivity between

sensors, interpreted as degree of synchrony, is represented as a network connection. (Lower

Right) Functional connectivity is estimated by a magnitude normalized cross-correlation be-

tween sensor time series for each time window). (Lower Left) We study temporal dynamics
of each unique connection in a network configuration matrix. (b) For each epileptic event,

we estimate dynamic functional connectivity during the seizure and the pre-seizure epoch. A
seizure epoch consists of time windows between seizure onset – as characterized by the earliest

electrographic change (EEC) (60) – and seizure termination. The associated pre-seizure epoch
consists of an equal number of time windows as the seizure epoch and occurs immediately prior

to the EEC.

24



3.3 Results

3.3.1 Epileptic Network Reconfiguration Reveals Distinct Seizure States

Do functional connectivity patterns significantly change as a seizure progresses? To answer

this question, we developed a new method to uncover network states, defined by unique

patterns of sensor-sensor functional connectivity between T time windows (Fig. 3.2). We

define a network state to be the set of all configuration vectors that exhibit a similar pattern

of functional connectivity, more formally known in the network science literature as “net-

work geometry”. To quantify geometric similarity, we calculated the Pearson correlation co-

efficient between configuration vectors extracted from all possible pairs of T time windows.

This procedure produced a symmetric T × T configuration-similarity matrix (Fig. 3.2c).

We next ask whether clusters of time windows exhibit similar configuration patterns

indicative of independent network states (Fig. 3.2d). To test for distinct states in each

epileptic event, we used an unsupervised clustering approach for networked data – com-

munity detection – that maximizes a modularity quality function Q obtained from the

configuration-similarity matrix (see Materials). In this approach, a structural resolution pa-

rameter γ can be tuned to maximize the reliability of state estimates; we separately tuned

this parameter for each seizure and pre-seizure epoch in each patient (See Supplemental

Information). This procedure assigns each time window to a community (or state), and

each state is composed of time windows that exhibit similar network geometry. Note that

these time windows need not be temporally contiguous. We found that the epileptic net-

work transitions through a variety of network states during pre-seizure and seizure epochs

(Fig. 3.3a-b). A comprehensive summary of epoch and state durations for each patient can

be found in Supplemental Information: Table 1.

The existence of epileptic state transitions support the notion of a dynamically recon-

figuring network. To quantify reconfigurability of the epileptic network, we measured the

network flexibility, or rate the of state change in each epoch (Fig. 3.3c). We found that

pre-seizure epochs display significantly higher flexibility (µ = 0.665 ± 0.205) than seizure

epochs (µ = 0.274±0.165) (paired-samples t-test; t87 = −14.12, p = 2.2×10−16), indicating

25



3.3 Results

that the epileptic network transitions between states more slowly through seizure epochs

than through pre-seizure epochs. Furthermore, pre-seizure epochs consisted of many short-

duration states, while seizure epochs consisted primarily of 3 long states that occupy ≈87%

of seizure duration (Fig. 3.3d). The three largest pre-seizure states occupied approximately

75% of the epoch. Together, these results support the possibility that rapid changes in net-

work geometry in pre-seizure epochs lead to seizures, and once there, the network under-

goes slower geometric changes through 3 main dynamic states. To fairly assess differences

in seizure and pre-seizure states, we retained the 3 longest network states from seizure (S0,

S1, S2) and pre-seizure epochs (PS0, PS1, PS2) for the following analyses.
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Figure 3.2: Schematic for identifying network configuration states. (a) We estimate dy-

namic functional connectivity; colors represent arbitrary connection strengths ranging from
strong to weak (red, gray, blue). (b) We track all unique functional connections over time us-

ing a configuration matrix, in which each vector represents the set of connection weights for
a 1s time window. (c) We compute the similarity between the network geometries of each

pair of time windows using a Pearson correlation coefficient. In the resultant configuration-
similarity matrix, colors represent the magnitude of similarity and visually identified clusters

are distinguished by colored, dashed lines (orange and green). (d) We optimize a modularity

quality function to cluster the configuration vectors (and thus time windows) into communities.
Each cluster or community contains time windows with similar network geometry; colors rep-

resent assignments of time windows to different network configuration communities (orange
and green).
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Figure 3.3: Distinct dynamical states of epileptic networks. (a) Example clustering of time

windows to network states during a single pre-seizure epoch demonstrating rapid network
reconfiguration. State assignments are overlaid on ECoG signals. Red traces correspond to

seizure onset nodes. (b) Example clustering of time windows to network states during associ-
ated seizure epoch (from EEC to Termination) demonstrating slower network reconfiguration.

(c) Network flexibility – or average rate of network state transitions – during pre-seizure and
seizure epochs. The epileptic network displayed significantly more geometric reconfigurations

during pre-seizure epochs than in seizure epochs (N = 88, p = 2.2 × 10−16). (d) Size-ordered
distribution of total fractional duration of the 6 longest network states from each epoch (PS (S)

indicates states of pre-seizure (seizure) epochs). All epochs are normalized to have duration

of 1. We retain the first 3 network states of each epoch (PS0, PS1, PS2, S0, S1, S2) for the
remaining analysis.
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3.3.2 Epileptic Network Redistributes Connectivity During Seizures

In the previous section, we observed that seizures progress through distinct states char-

acterized by different functional connectivity patterns. To understand how these patterns

differ, we used a two-pronged approach, examining (i) the strength of functional connec-

tions and (ii) the pattern of functional connections in different network states (Fig. 3.4a).

For simplicity, we report the strength of functional connections as a fraction of the total

strength, and we refer to this quantity as the connection density. Similarly, to characterize

the pattern of functional connections, we examine the relative prevalence of synchronized

(strong) versus desynchronized (weak) connections, and we refer to this quantity as the

connection type index.

The functional connection density measures the average connection strength in the net-

work, where greater connection density indicates increased global network synchrony. We

computed connection density by averaging the distribution of all connection strengths over

all time windows in the given network state. We performed a one-way ANOVA to compare

the effect of pre-seizure and seizure network states on connection density. We observed a

significant effect of network state on connection density (F5,474 = 21.34, p < 2 × 10−16).

Post-hoc analysis using Tukey’s honest significant difference test (HSD) to control for a

family-wise rejection error rate of 5% (FWER=5%) revealed a significant increase of con-

nection density in each seizure state compared to any pre-seizure state. During the seizure,

connection density increased between S0 (µ = 0.304 ± 0.051) and S1 (µ = 0.333 ± 0.58)

(padj = 0.014), and S0 and S2 (µ = 0.338 ± 0.052) (padj = 0.002), but did not significantly

change between S1 and S2 (padj = 0.995). Differences in connection density between the

pre-seizure states (PS0, PS1, PS2) were not significant. These results suggest synchroniza-

tion increases as the network transitions from pre-seizure to seizure states.

While we observed an increase in global synchrony as seizures begin and progress, it

is unclear whether this increase accompanies a change in functional connectivity pattern,
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and particularly in a switch from relative desynchronization (weak connectivity) to syn-

chronization (strong connectivity). To type individual connections as strong or weak, we

(1) compiled a distribution of all functional connections over all time windows across each

event (encompassing the pre-seizure and seizure epoch), and (2) determined thresholds for

connection type based on rank percentile, where strong (weak) connections were stronger

(weaker) than 95% of all connections. Based on connection type assignments in each epoch,

we found the total number of strong (Cs) and weak (Cw) connections over all time windows

in each network state and computed the connection type index as Cs −Cw
Cs +Cw

. A strong type

dominant network has a connection type index between 0 and +1, where +1 implies all

connections are strong, while a weak type dominant network has a connection type index

between 0 and −1, where −1 implies all connections are weak.

To determine the effect of network state on connection type index (Fig. 3.4b), we con-

ducted a one-way ANOVA test. We observed a significant effect of network state on con-

nection type index (F5,474 = 70.41, p < 2 × 10−16). Post-hoc analysis using Tukey’s HSD

(FWER=5%) indicated a significant change from weak type dominance during any pre-

seizure state towards strong type dominance during seizure states. During the seizure,

connection type index increased between S0 (µ = 0.023±0.498) and S1 (µ = 0.437±0.417)

(padj < 2 × 10−16), and S0 and S2 (µ = 0.512 ± 0.447) (padj < 2 × 10−16), but did not

significantly change between S1 and S2. Differences of connection type index between the

pre-seizure states (PS0, PS1, PS2) (µ ≈ −0.401) were not significant.

Chronologically, the network is persistently desynchronized during the pre-seizure epoch,

is driven to a quasi-synchronized seizure generation state S0, and remains persistently syn-

chronized as the seizure progresses through S1 and S2. A predominance of weak connec-

tions during a persistently desynchronized pre-seizure epoch coincides with earlier findings

of improved network flexibility to reorganize during the same epoch. Unremarkable change

in weak connection type dominance during the pre-seizure epoch suggests that the network

simply redistributes weak connections amongst different nodes during this period. A critical
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transition to seizure generation during state S0 is accompanied by synchronization towards

more evenly distributed strong and weak connection types. As network flexibility decreases

during the seizure, connections become more strong type dominant. To better understand

how the network evolves through the desynchronized and synchronized states, we next

study the impact of local, geographical changes in network geometry.
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Figure 3.4: Changes in global connectivity of epileptic networks. (a) Functional connec-

tion density during pre-seizure (PS) and seizure (S) network states. We average connection
strengths over all time windows within each network state (N = 80). We found significant

increase in connection density from all PS to any S network state, and significantly greater
connection density during S2 and S1 compared to S0. (b) Connection type index indicating

strong or weak connection dominance during PS and S network states (N = 80). We found
significant change from weak type dominance during PS to quasi weak-strong type dominance

during S0 and strong type dominance during S1 and S2.
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3.3.3 Dynamic Regional Structure of the Epileptic Network

In the preceding analyses, we demonstrated that the epileptic network displays weak type

dominant connectivity during pre-seizure epochs and undergoes synchronizes to strong type

dominance as the seizure initiates and progresses through 3 primary states. However, our

approaches did not address whether these reconfigurations are spatially localized or dis-

tributed, and how they relate to seizure foci. To address these questions, we leveraged

routine clinical procedures: A team of neurologists successfully identified the sensors on

the seizure onset zone (SOZ) based on visual inspection of the intracranial recordings in 15

patients across a total of 50 seizures. We used this information to map connections in each

seizure state to physical electrode locations in stereotaxic space (Fig. 3.5a).

To quantify spatial localization of connectivity relative to seizure foci and examine the

role of network region in pre-seizure and seizure dynamics, we delineated the following

three geographic types: (i) connections between nodes within the SOZ (SOZ-SOZ), (ii)

connections between nodes outside the SOZ (OUT-OUT), and (iii) connections between

one node within the SOZ and one node outside the SOZ (SOZ-OUT) (Fig. 3.5b). We per-

formed a two-way ANOVA test to compare the effects of geography and network state on

connection strength. We observed a significant main effect of geography on connection

strength (F2,882 = 158.501, p < 2× 10−16) and a significant main effect of network state on

connection strength (F5,882 = 26.394, p < 2 × 10−16). We also observed significant interac-

tions between geography and network state (F10,882 = 2.871, p = 0.002). Post-hoc analysis

on the interactions using Tukey’s HSD (FWER=5%) identified persistently stronger con-

nection strength amongst SOZ-SOZ connections (µ ≈ 0.393 ± 0.140) relative to OUT-OUT

(µ ≈ 0.282 ± 0.059) and SOZ-OUT (µ ≈ 0.284 ± 0.059) connections in every network state

(padj < 1 × 10−3). Connections in the SOZ-SOZ group were modestly strengthened during

S0 relative to PS0 and PS2 (padj < 0.05), were greatly strengthened during S1 and S2 rel-

ative to any pre-seizure state (padj < 1 × 10−3), and during the seizure only strengthened

between S0 to S2 (padj < 0.05). However, connection strengths in the SOZ-SOZ group did
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not significantly vary between pre-seizure states. Similarly, SOZ-OUT and OUT-OUT group

did not significantly vary between any network states.

These results suggest that SOZ-SOZ connections are persistently the strongest of all

network connection types during pre-seizure and seizure epochs. Upon seizure gener-

ation SOZ-SOZ connections strengthen incrementally, and then substantially as seizures

progress. Nuancing our description of global network connectivity during pre-seizure and

seizure epochs, which demonstrates a progression from desynchronization to synchroniza-

tion over time, our results demonstrate that (i) desynchronization during pre-seizure states

is primarily localized to SOZ-OUT and OUT-OUT connections, and (ii) resynchronization

is primarily localized to SOZ-SOZ connections. Intuitively, desynchronous SOZ-OUT and

OUT-OUT connections that frequently re-wire drives heightened network flexibility during

pre-seizure epochs and synchronous SOZ-SOZ connections disrupts network flexibility dur-

ing the seizure.

To investigate the sensitivity and specificity of connection strength as a measure for

identifying SOZ-SOZ connections, we employed receiver operating characteristic (ROC)

analysis during pre-seizure and seizure epochs (Fig. 3.5c). The ROC analysis evaluates

the sensitivity and specificity of connections belonging to the SOZ-SOZ type as connection

strength threshold is incrementally raised. We evaluate performance in detecting SOZ-SOZ

connections by computing the area under the ROC curve (AUC) ranging from 0 to +1,

where values of +1 imply low sensitivity and false positives with high specificity and true

positives. To assess significance of the AUC, we bootstrapped confidence intervals (α =

0.05) by re-assigning sensors to the SOZ uniformly at random without replacement 10000

times for each network state in both epochs. During seizure epochs, we found that S2 was

most effective at predicting SOZ-SOZ connections based on AUC (µ = 0.849 ± 0.169) with

significant AUC values in 32 of 50 seizures. Conversely S0 was least effective at predicting

SOZ-SOZ connections (µ = 0.773 ± 0.238) with significant AUC values across 26 of 50

seizures. During pre-seizure epochs, SOZ-SOZ connections were similarly predictable across
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PS0 (µ = 0.709 ± 0.268) (significant in 25 of 50), PS1 (µ = 0.722 ± 0.257) (significant in

25 of 50), and PS2 (µ = 0.754 ± 0.238) (significant in 27 of 50). These results suggest

that connection strength may be used to predict SOZ-SOZ connections during pre-seizure

epochs with precision, but has better performance during more synchronized states such as

S2 compared to less synchronized states such as S0.
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Figure 3.5: Regional characteristics of network geography. (a) Example of network geog-
raphy with preserved 2-D spatial relationships between nodes for categories of strongest and

weakest connections in upper and lower 5% of connection strength distribution; Connection
colors indicate weak (blue) and strong (red); the clinically-determined seizure onset sensors

are shown in red. (b) Connection strength within 3 geographic connection types during PS

and S network states (N = 50). During PS and S, we observed significantly stronger connec-

tions amongst SOZ-SOZ regions than OUT-OUT and SOZ-OUT regions. During S, we observed

significant increase in SOZ-SOZ connections as seizures initiate and progress. (c) ROC AUC
compared to 95% bootstrapped confidence intervals using connection strength to predict SOZ-

SOZ connections during PS and S network states (N = 50). The synchronized S2 state yielded
the best performance, while the desynchronized PS0 state yielded the worst performance.
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3.3.4 Impact of Surrounding Connectivity on Epileptic Network Dynamics

Thus far we have seen how connectivity associated with the SOZ synchronizes the epileptic

network during seizures. However, it is unclear whether involvement from the broader

epileptic network aids or disrupts pre-seizure and seizure dynamics.

We first hypothesized that changes in network geometry are not limited to redistribu-

tion of connection strengths, but may also involve topographical changes in connection

lengths accompanying changes in functional network anatomy. In a sample of pre-seizure

and seizure states, we observed clustering of strong connections while weak connections

distributed more broadly (Fig. 3.5a). To test our hypothesis, we restricted our analysis to

connections within electrode grids with uniformly spaced nodes in 8 × 8, 8 × 6, 6 × 6, or

4 × 6 configurations (in 75 seizures over 19 patients) and computed average Spearman’s

rank correlation coefficient between connection length and connection strength over all

time windows of each network state (Fig. 3.6a). A more positive (negative) correlation co-

efficient indicated stronger connections were longer (shorter). A one-way ANOVA test was

conducted to compare the effect of pre-seizure and seizure network states on correlation

between connection length and connection strength. We observed a significant effect of net-

work state on correlation (F5,444 = 9.348, p = 1.76× 10−8). Post-hoc analysis using Tukey’s

honest significant difference test (HSD) to control for a family-wise rejection error rate of

5% (FWER=5%) revealed significant increase in negative correlation between connection

length and strength in S0 (µ = −0.225 ± 0.92) compared to PS2 (µ = −0.182 ± 0.091)

(padj < 0.05) but not PS0 (µ = −0.188 ± 0.100) or PS1 (µ = −0.189 ± 0.092). Con-

nection length is significantly more negatively correlated with connection strength in S1

(µ = −0.258 ± 0.081) and S2 (µ = −0.242 ± 0.086) compared to any pre-seizure state

(padj < 0.01). There was no significant change in correlation between pre-seizure states or

seizure states.

In summary, we found that stronger connection strengths are present in connections

with shorter lengths, regardless of network state. During seizures, reorganization in the
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epileptic network leads to further lengthening of weaker connections and shortening of

stronger connections. Coinciding with the earlier finding that seizure generation involves

quasi-synchronization of the network, we find a modest shortening of strong connections

relative to the pre-seizure period. As seizures progress, synchronous connections tighten

to more local regions, while desynchronous connections stretch further into the broader

epileptic network.
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Figure 3.6: Topographical characteristics of network connectivity. (a) Average Spear-

man’s rank correlation coefficient between connection length and strength in PS and S epochs
(N = 75). Physical connection lengths computed from regularly spaced nodes in electrode grid;

connection lengths measured in millimeters. Stronger connections are consistently shorter than
weaker connections. During S, there is significant topographical reorganization making weak

connections longer and strong connections tighter.

3.4 Discussion

3.4.1 Epileptic Network Reconfiguration

Intuitively, complex reconfiguration of functional brain networks can accompany changes

in cognitive state or changes in behavior. Prior fMRI studies have explored such reconfigu-

ration in whole-brain networks constructed from data acquired during motor skill learning

(8) and as task states change (5), and in networks impacted by stroke (35, 94). In contrast,
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here we explore the reconfiguration of a local area and use higher resolution ECoG data to

map the fine-scale temporal dynamics of reconfiguration processes.

In this study, we developed and exercised a novel method for distinguishing brain states

based on differences in time-dependent functional network geometry. Our approach ex-

pands upon previous notions of state-space in dynamic epileptic networks (16, 75), by

tracking changes between node pairs (connections) rather than in node importance (cen-

trality). An important advantage associated with this technique is that network reorgani-

zation can be studied without a priori knowledge of specific topological structure, such as

small-worldness (47). Rather, time-dependent changes in connectivity are based simply on

similarities in signal statistics.

We applied our technique to a set of human ECoG recordings, and extracted network dy-

namics during seizure and pre-seizure epochs. We found that seizures exhibit at least three

network states (S0, S1, S2) and that the epileptic network progresses through these states

more slowly in comparison to the period preceding seizure generation. Our results are in

line with prior work that has shown more frequent state changes during the interictal period

in comparison to seizures (16). Next, we provide a mechanistic explanation of how state

changes operate with strong and weak regimes of connectivity to drive seizures through

neurologically-defined onset, propagation and termination states ubiquitous in clinical de-

scriptions.

3.4.2 Balance of Strong and Weak Connections

Our analytical approach utilizes the distribution of functional connection strengths to char-

acterize connections as “strong” (synchronous) or “weak” (desynchronous), rather than

simply stating that two sensors are functionally “connected” or “not connected”. Mathe-

matically, this focus corresponds to a study of network geometry as opposed to network

topology. A primary advantage of the weighted network approach is the ability to sep-

arate connections into classes that differ in strength. Evidence suggests that strong and
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weak connections play different roles in supporting cognitive function (76, 81). Traditional

thought is that strong connections represent primary communication pathways between

brain areas. However, recent work demonstrates that weak connections support increased

network efficiency and may play a large role in distinguishing pathologic (6) and healthy

(18, 76) network states. From a dynamical perspective, strong connections may persistently

engage throughout neurophysiological processes, whereas weak connections may engage

transiently to enable brain state transitions.

Prior work has speculated that the epileptic network is connected at the beginning of

the seizure, disconnected in the middle, and finally reconnected at the end (47, 79, 99).

However, our results suggest that a more accurate way to address this hypothesis is to

consider the strength of functional connections and disambiguate slower temporal dynamics

occurring at each node, independently, which may elevate spurious connectivity between

disconnected regions.

Using a weighted connectivity approach, we find that connections in the epileptic net-

work have more weak than strong connections during PS0, PS1, and PS2, states preceding

the electrographic seizure onset, a near balance of strong and weak connections during S0,

which corresponds to seizure generation, and more strong than weak connections during S1

and S2 states representing seizure progression and termination. It is possible that clinician

subjectivity in marking the time of seizure onset may explain our result of disconnectivity

before seizure generation, which contrasts with prior reports of a disconnected network

at either seizure onset or mid-seizure (47, 79, 99). Our method places greater emphasis

on connectivity derived from faster activity by reducing contribution from slower dynamics

(see Methods) and corroborates clinical belief that seizure generation during S0 involves

a gradual transition from desynchronous to synchronous connectivity, which peaks during

the termination phase of the seizure (S2).

Mechanistically, the weak connectivity that we observe preceding seizure generation

benefits from high network flexibility to drive seizure generation through a rapid reorgani-
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zation of weaker connections in the epileptic network. As seizures initiate and progress, the

epileptic network redistributes weak connectivity to strong connectivity while network flex-

ibility is concurrently diminished. In relation to prior work that demonstrates a propensity

for the epileptic network to follow a recurring pattern of state transitions during seizures

(16), our results suggest that weak connectivity preceding the seizure drives the network

to a more predictable series of increasingly synchronized states during seizures. Next, we

explore beyond global network structure and discuss how regional connectivity dynamics

provide further insight on network drivers of seizure evolution.

3.4.3 Regional Connectivity Regulates Seizure Evolution Dynamics

While temporal network structure provides rich information regarding seizure states, it does

not directly provide information regarding the spatial processes involved in seizure dynam-

ics. We therefore complemented the temporal network approach by incorporating informa-

tion about sensor role either within or outside the seizure onset zone and sensor location

in Euclidean space. Our results demonstrate that these additional spatial features provide

new insights into potential neurophysiological mechanisms involved in seizure generation,

and may inform the development of clinical tools for objectively isolating the seizure onset

zone directly from seizure or pre-seizure data.

Prior work has demonstrated high synchronization within the seizure onset zone during

interictal epochs (20, 97). However, the temporal dynamics and geometrical roles of these

two sets of areas has remained elusive. Our results elucidate the role played by seizure onset

regions during seizures and the accompanying recruitment of the surrounding epileptic

network during termination. Clear isolation of the seizure onset zone exists in pre-seizure

periods, suggesting the potential to identify foci, niduses of seizure generation, within the

network from inter-ictal data. Critically, connectivity within the onset zone strengthens

during early seizure periods (S1) and intensifies as seizures progress (S2) and terminate

(S3), suggesting that the onset zone drives the transition from global desynchronization
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to synchronization during seizure generation and persists in this functional role through

the entire seizure. Such a mechanism also points to a role of the onset zone in seizure

termination, potentially in tandem with topographical mechanisms, which we discuss in

the next section.

3.4.4 Network Tightening During Seizures

Our observation that stronger connections are typically short and weaker connections are

typically long, is consistent with results from two lines of research: (i) functional studies in

healthy individuals that utilize other imaging modalities such as fMRI (76) and (ii) struc-

tural connectivity studies in non-human primates that utilize tract tracing techniques (26).

In epilepsy, prior work has shown hubs of connectivity proximal to the seizure onset zone

(75, 78, 105), however their role in seizure dynamics was previously unknown. We show

that seizure generation leads to further shortening of stronger connections and lengthen-

ing of weaker connections, suggesting that stronger connections are physically tightening,

perhaps into more functionally cohesive portions of cortex during seizures. We speculate

that the tightening of stronger connections to localized sub-networks might act as a con-

trol mechanism to quench disruptive network activity that may have built-up over many

hours prior to the seizure through increasing frequency of epileptiform discharges (60) or

facilitate previously described compensatory mechanisms (75). Conversely, weaker connec-

tions are longer during seizure periods than pre-seizure periods and could be a vehicle for

spreading desynchronous activity broadly.

3.4.5 Clinical Impact and Future Work

We have seen that the dynamical processes that propel epileptogenic networks into seizures

can be complex and are poorly understood. Yet, clinicians rely on visual inspection to

describe spatial and temporal properties of seizures. The lack of standardized clinical mea-

sures to mark epileptic events calls for the development of automated methods. The net-
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work analysis tools we have built, while generally applicable to any dynamic network, can

parse seizure states, localize driver ‘foci’ of seizures, and characterize how seizures progress

and terminate. This interpretation can be translated into useful clinical tools to identify

dysfunctional anatomical regions that drive the epileptic network and may be particularly

amenable to local interventions, such as surgery or device placement. Of interest, seizure

driving ‘foci’ were equally present in the half of our study patients who did not have focal

lesions on brain imaging, compared to those patients with lesions demonstrated on MRI.

We plan a more detailed study in the future to correlate mapping of these seizure-driving

regions with brain resection and outcome.

Currently, our tools employ community detection techniques to identify gross changes

in the meso-scale architecture of network structure across time. The observed meso-scale

reconfiguration processes may be accompanied by region-specific trends in reconfigura-

tion between the epileptic network and surrounding healthy networks. A remaining gap

is understanding how functional dynamics map to structural features of the epileptic net-

work using fiber-tracking techniques to describe how seizures start and then spread through

white-matter. Additionally, this work could be used to address cellular mechanisms by con-

sidering micro-scale reconfigurations. Recent studies suggest that epileptic networks in the

neocortex may be composed of distributed micro-domains on the scale of a few cortical

columns generating high frequency oscillations and micro-seizures that coalesce in a net-

work during seizure generation and termination (87). While of great interest, these studies

are currently limited by the lack of appropriate implantable high-resolution sensors capa-

ble of covering clinically relevant areas sufficiently to yield comprehensive high-resolution

maps. Further development of dynamic community detection methods to identify and track

reconfiguration within network sub-regions at both the meso and micro-scales may help de-

lineate healthy and pathologic networks and uncover mechanisms of network recruitment.

An important clinical consideration related to this work is the impact of sampling error

inherent in any intracranial implantation procedure on our results. Any technique used to
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map epileptic networks, subdural electrode strips and grids, more distributed “Stereo EEG”

implantations, and combinations of these two approaches, usually yield incomplete repre-

sentations of epileptic networks. It is not possible to fully record from the entirety of cortex

in affected patients. In some cases this might mean that neither seizure onset zones nor

all regions of seizure spread are fully delineated. Despite this incomplete representation,

the presence of three clear states defining seizures in each of the patients presented above,

and their objective and independently determined relationship to the seizure onset zone

suggest that our findings are important and real. With further validation on a larger num-

ber of patients with both lesional and non-lesional epilepsies, we hope to demonstrate the

utility of our method to define functional components of epileptic networks. Our method

shows promise for informing epilepsy surgery and for placing devices into regions that drive

seizure generation and termination. Future work will focus on using these methods to com-

pare competing approaches for localizing epileptic networks, such as subdural and stereo

EEG. It is intuitively plausible that each will have advantages in recording components of

epileptic networks in different types of localization-related epilepsy.

3.5 Materials and Methods

3.5.1 Ethics Statement

All patients included in this study gave written informed consent in accord with the Univer-

sity of Pennsylvania Institutional Review Board and Mayo Clinic Institutional Review Board

for inclusion in this study.

3.5.2 Patient Data Sets

Twenty-one patients undergoing surgical treatment for medically refractory epilepsy be-

lieved to be of neocortical origin underwent implantation of subdural electrodes to localize
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the seizure onset zone after noninvasive monitoring was indeterminate. De-identified pa-

tient data was retrieved from the online International Epilepsy Electrophysiology Portal

(IEEG Portal) (93). ECoG signals were recorded and digitized at either 512 Hz (Hospital of

the University of Pennsylvania, Philadelphia, PA) or 500 Hz (Mayo Clinic, Rochester, MN)

sampling rate. Surface electrode (Ad Tech Medical Instruments, Racine, WI) configura-

tions, determined by a multidisciplinary team of neurologists and neurosurgeons, consisted

of linear and two-dimensional arrays (2.3 mm diameter with 10 mm inter-contact spacing)

and sampled the neocortex for epileptic foci (depth electrodes were first verified as being

outside the seizure onset zone and subsequently discarded from this analysis). Signals were

recorded using a referential montage with the reference electrode, chosen by the clinical

team, distant to the site of seizure onset and spanned the duration of a patient’s stay in the

epilepsy monitoring unit.

3.5.3 Description of Seizure Events

We analyzed a total of 88 seizure events, including simple partial, complex partial, and

secondarily generalized, stemming from neocortical foci in this study. Seizure onset time

and localization were defined by the point of earliest electrographic change (EEC) and

annotated and marked by a team of practicing epileptologists (60). ECoG signal directly

preceding each seizure and equal in duration to that seizure was also extracted for balanced

comparison and labeled as pre-seizure.

3.5.4 Extracting Dynamic Functional Networks

Signals from each epoch were divided into 1-second, non-overlapping, wide-sense station-

ary time windows in accord with other studies (47) and subsequently pre-processed. To test

the biasing effect of high-amplitude spiking on signal connectivity measurements, we also

investigated windows 0.5-seconds in duration to sample more of the non-biasing temporal

space and found similar results. In each time window, signals were re-referenced to the
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common average reference (47, 91) to account for variation in reference location across

patients and to avoid broad field effects that may bias connectivity measurements erro-

neously in the positive direction. Each window was filtered at 60 Hz to remove line-noise,

and low-pass and high-pass filtered at 120 Hz and 1 Hz, respectively, to account for noise

and drift. To limit sources of volume conduction from introducing spurious connectivity, we

pre-whiten signals in each window using a first-order autoregressive model to account for

slow dynamics. This accomplishes two goals: (i) flattening of the signal power spectrum

to enhance higher-frequency content that contains local neural population dynamics that is

less affected by volume conduction, and (ii) decreases the influence of independent node

dynamics when computing correlation-based connectivity measurements (3, 14, 61, 91).

Dynamic functional networks were formed by applying a normalized cross-correlation

similarity function ρ between the time series of two sensors in the same time window using

the formula

ρxy(k) = argmax
τ

E[(xk(t)− µxk
)(yk(t+ τ)− µyk

)] (3.1)

where x and y are signals from one of N sensors or network nodes, k is one of T non-

overlapping, one-second time windows, and xk = yk = 0. The NxNxT similarity matrix is

also known as a network adjacency matrix A (Fig. 3.1a). In our weighted network analysis

approach, we retain and analyze all possible connection weights between nodes.

3.5.5 Computing Network States

Network states, or temporal changes in network geometry, was tracked separately in each

epoch by clustering the configuration-similarity matrix through a community detection tech-

nique known as modularity optimization. We construct the configuration-similarity matrix

by first unraveling A to a network evolution matrix Â describing the weights of N(N− 1)
2

connections across T time windows. Using a Pearson correlation coefficient to measure

similarity, we transform Â to a fully-connected TxT configuration state adjacency matrix
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S. The configuration adjacency matrix is partitioned into communities by maximizing the

modularity index Q (68) using a Louvain-like locally greedy algorithm (10). We employed

a Newman-Girvan null model (69, 71) and adaptively determined an optimal structural res-

olution parameter γ per seizure (see Supplemental Information; and (7) for a more detailed

discussion of resolution parameters in modularity maximization). We used a consensus

partition method with 1000 optimizations per run until we obtained consistent commu-

nity partitioning (7, 54). The three longest communities (clusters, or network states) from

each seizure were selected for further analysis and re-labeled in order of median temporal

occurrence for population-level comparison.

3.5.6 Distinguishing Connection Types

Connections were classified as strong or weak based on thresholds determined by the dis-

tribution of connection strengths for each epoch separately for each seizure. The strong

(weak) connections must be >95% (<5%) of all connection strengths. To measure the

dominance of strong or weak connections, we defined the connection type index as

B =
Cs −Cw

Cs +Cw

(3.2)

where Cs and Cw are the average number of strong and weak connections over possible

connections and number of time windows.

3.5.7 Measuring Network Topography

Connection topography metrics were computed for only within-grid electrodes, ignoring all

other non-grid electrodes such that inter-electrode spacing in all analyses was kept constant.

We related connection strength to the two-dimensional physical distance between nodes

(electrode sensors) of that connection in millimeters.

46



3.6 Acknowledgments

3.6 Acknowledgments

AK and BL acknowledge support from the National Institutes of Health through awards

#R01-NS063039, #1U24 NS 63930-01A1, the Citizens United for Research in Epilepsy

(CURE) through Julie’s Hope Award, and the Mirowski Foundation. DSB acknowledges

support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan

Foundation, the Army Research Laboratory, the Institute for Translational Medicine and

Therapeautics, the National Institute of Mental Health through award number 2-R01-DC-

009209-11 (Thompson-Schill), and the National Science Foundation awards CRCNS BCS-

1441502 and BCS-1430087 through the ENG, CISE, and SBE directorates. The content is

solely the responsibility of the authors and does not necessarily represent the official views

of any of the funding agencies. We thank Sarah F. Muldoon, Urs Braun, Shi Gu, Qawi

Telesford, Lohith Kini, Hoameng Ung for comments on earlier versions of this manuscript.

3.7 Supplemental Information

3.7.1 Network States

For dynamic networks there is a lack of approaches to quantify how the pattern of connec-

tions between nodes, or the gross network configuration, varies over time. Clusters of time

windows in which network configurations look similar can be thought as network states. In

networks where N nodes stay constant over all T time windows, we can describe the state

of N(N−1)
2 possible connections between all nodes in each time window t = 1 to T by a con-

figuration vector ~vt ∈ R
N(N−1)

2 ; collectively forming a configuration matrix V ∈ R
N(N−1)

2
×T .

Intuitively, changes in ~vt between different t can imply dynamical changes in network con-

nectivity.

While dynamic networks commonly experience meso-scale changes in connectivity over

time, there is currently no way to determine whether these meso-scale changes contribute

47



3.7 Supplemental Information

to gross reconfiguration of the entire network. Using a similarity function (herein we use

Pearson correlation coefficient), we quantify the degree of change in connectivity patterns

in V between all T time windows stored in a symmetric configuration-similarity matrix

S ∈ R
T×T . In this work we are interested in clustering time windows that express sim-

ilar network configuration patterns. To this end, we employ static community detection

techniques to group time windows with similar gross network configuration.

3.7.2 Modularity optimization for community detection

3.7.2.1 Theory

Community detection is a technique often used to study meaningful group structure in

complex networks by clustering nodes into ‘modules’ or ‘communities’. A community can

be thought of as a set of nodes that are connected among one another more densely than

they are to nodes in other communities. A popular way to identify community structure is

to optimize a quality function known as modularity Q, which has been shown to extract

meaningful functional components of networks by comparing the real network to a null

model (29, 68, 69, 71). While these approaches have been mainly applied to both binarized

and weighted static networks, more recent extensions of the model investigate dynamic

communities that group nodes over time. In our work we apply static community detection

to the configuration-similarity matrix, viewed as a fully connected graph where each node

represents the similarity of the configuration vector ~vt between time windows t1 and t2

where t1 = t2 = 0, to group gross network configuration patterns into communities.

In general, to perform community detection one begins with a network of N nodes

and a given set of connections between those nodes. A static network is then represented

using an N × N adjacency matrix A. The element Aij of the adjacency matrix represents

a connection from node i to node j where i = j = 0, and its value indicates the weight of
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that connection. Then, Q is formally defined as:

Q =
∑

ij

[Aij − γPij ]δ(gi, gj) , (3.3)

where node i is assigned to community gi, node j is assigned to community gj , the Kro-

necker delta δ(gi, gj) = 1 if gi = gj and it equals 0 otherwise, γ is the structural resolution

parameter, and Pij is the expected weight of the edge connecting node i to node j under a

specified null model. The choice γ = 1 is very common, but it is important to consider mul-

tiple values of γ to examine groups at multiple scales (see SI Section 3.7.2.2). A commonly

chosen null model is the Newman-Girvan null model (29, 68, 69, 71) defined as:

Pij =
kikj

2m
(3.4)

where ki =
∑

j Aij is the strength of node i and m = 1
2

∑

ij Aij is the average strength over

all connections.

Maximizing Q partitions the network into communities such that the total within-community

connection weight is maximum relative to the null.

3.7.2.2 Structural resolution parameter for community detection

The structural resolution parameter γ of the modularity quality function can be used to

identify community structure over different topological or geometric scales (7, 30, 65, 71,

73). Typically, γ is chosen to be equal to 1. However, by varying γ, one can examine fine

grain structure in networks by extracting smaller communities. In our application, we were

interested in determining community structure of configuration-similarity matrices with a

variable (i) number of sensors implanted per patient, (ii) seizure duration and (iii) spatial

extent of epileptogenic cortex. Each of these factors can potentially impact the scale at

which appreciable meso-scale functional reorganization can be detected.

Prior studies have explored a structural resolution parameter limit that represents a

trade-off between grouping all nodes into a single community with large modularity (low
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γ) and grouping each node into separate communities with low modularity (high γ) (30). In

real-networks (7) modularity and structural resolution share an approximate inverse power

relationship, suggesting an optimal γ may occur as rate of change in modularity decreases

(within increasing γ). Such a phenomenon would occur at the inflection point for change

in modularity as the γ parameter is tuned.

To determine an optimal γ parameter for each configuration-similarity matrix (per epoch,

per patient), we computed the inflection point in modularity Q at each γ between 0.8 and

1.3 in intervals of 0.01 (Fig. S3.7). We define the optimal γ to be the γ at which the in-

flection point occurs. The optimal γ (Fig. S3.8) was significantly different between the

pre-seizure epochs and seizure epochs, based on t-test (t87 = 2.64, p < 0.01). This result

demonstrates that the granularity of network state division is significantly greater during

seizure epochs than pre-seizure epochs.

50



3.7 Supplemental Information

Figure 3.7: Structural resolution parameter sweep. Each graph demonstrates the effect of
varying γ on modularity Q per epoch per patient. blue, pre-seizure; red, seizure. Crosses

denote the γ chosen based on the inflection point for community detection results presented in
the main manuscript.
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Figure 3.8: Distribution of optimal structural resolution parameter. Optimal γ parameter
for pre-seizure and seizure epochs (N = 88). On average, seizure epochs tend to have more

granular temporal division.
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Patient
(IEEG Portal)

Epoch Duration
(Sec)

PS0

(sec)
PS1

(sec)
PS2

(sec)
S0

(sec)
S1

(sec)
S2

(sec)

HUP64_phaseII 107.0± 0.0 33±0.0 31±0.0 28±0.0 42±0.0 37±0.0 27±0.0

HUP65_phaseII 87.7± 4.5 24.0 ±

2.1

17.3±

3.8

15.0±

2.5

36.3±

2.3

27.0±

0.6

19.3±

2.7

HUP68_phaseII 96.8± 5.3 32.4 ±

6.5

24.8±

5.2

13.6±

2.3

32.3±

4.5

25.8±

3.5

21.0±

3.7

HUP70_phaseII 107 ± 0 4.9±0.4 3.8±0.5 1.8±0.2 6.9±0.7 3.0±0.4 1.7±0.3

HUP72_phaseII 90.0± 0.0 43.0 ±

0.0

23.0±

0.0

20.0±

0.0

12.0±

0.0

7.0±0.0 6.0± 0

HUP73_phaseII 77.0± 4.7 23.0 ±

7.2

20.2±

6.3

10.4±

2.7

33.8±

2.3

31.2±

1.8

11.3±

3.1

HUP78_phaseII 46.4± 6.0 16.6 ±

4.6

10.8±

2.3

7.6±1.0 18.2±

3.2

15.8±

2.9

4.6±1.4

HUP79_phaseII 259 ± 0.0 96.0 ±

0.0

67±0.0 59±0.0 73±0.0 68±0.0 45±0.0

HUP86_phaseII 51.0± 17.0 21.5 ±

3.5

20.5±

2.5

17.0±

1.0

19.5±

8.5

18.0±

8.0

15.5±

6.5

HUP87_phaseII 10.5± 1.0 11.5 ±

1.5

11.0±

2.0

5.5±0.5 23.5±

7.5

21.0±

9.0

3.5±2.5

Study 004-2 46.0± 0.0 9.0±0.0 31±0.0 28±0.0 42±0.0 37±0.0 27±0.0

Study 006 85.0± 14.0 30.0 ±

12.0

26.0±

13.0

12.5±

0.5

25.0±

1.0

18.5±

2.5

15.5±

1.5

Study 010 127 ± 8.0 38.0 ±

5.0

34.0±

3.0

14.0±

2.0

35.0±

9.0

33.0±

7.0

20.5±

3.5

Study 016 113 ± 18.8 22.7 ±

10.2

19.0±

8.5

12.0±

6.1

47.7±

7.2

32.7±

6.2

17.3±

8.1

Study 019 116.5± 16.3 41.3 ±

6.2

37.0±

6.5

13.7±

2.2

44.3±

6.3

38.3±

6.1

22.3±

4.2

Study 020 64.8± 25.9 6.8±0.5 5.0±0.4 3.5±0.6 30.5±

12.4

24.5±

11.4

6.8±3.8

Study 023 64.5± 11.0 17.3 ±

4.7

14.5±

3.7

11.3±

2.8

22.5±

6.9

18.3±

4.8

8.0±0.0

Study 026 53.4± 2.3 14.2 ±

2.3

12.0±

2.0

7.0±1.4 18.3±

1.3

15.0±

1.4

10.2±

1.3

Study 031 44.6± 3.9 19.2 ±

1.1

16.4±

1.2

6.5±3.3 19.0±

2.9

16.2±

3.1

5.2±1.0

Study 033 118 ± 31.4 45.1 ±

11.5

39.4±

9.1

28.0±

6.9

72.9±

14.0

60.1±

9.3

35.6±

8.5

Study 037 176 ± 56.0 31.5 ±

25.5

22.0±

18.0

19.0±

15.0

79.0±

20.0

56.5±

17.5

23.0±

14.0

Table 3.2: Event and state durations for patients. Durations of epoch (pre-seizure / seizure)

and states are averaged over all events in each patient; ± represent standard error.
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Chapter 4

Recurring functional sub-networks

during ictal and interictal periods

4.1 Abstract

Patients with drug-resistant, neocortical epilepsy suffer from spontaneous seizures, which

originate in cortical structures that could also sub-serve normal function. Current clini-

cal practice for localizing seizure-generating brain regions entails monitoring changes from

background, interictal patterns of neural activity as seizure begin. A significant challenge

with this approach is discerning which cortical pathways lead to seizures and which are

important for normal function. We developed a novel technique to disentangle functional

sub-networks comprising cohesive cortical pathways from time-varying functional networks

constructed from intracranial recordings. Using a consensus clustering scheme, we identi-

fied stable clusters of functional pathways expressed during ictal and interictal periods.

Our results suggest that cortical pathways involving seizure-onset areas are expressed dur-

ing both periods and may be predicted by the average strength of connections in the sub-

network. Meanwhile, the time-varying expression of cortical pathways from functional

sub-networks differentially explains network dynamics during ictal and interictal periods.
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We found that functional sub-networks are more transiently expressed during ictal periods

and more persistently expressed during interictal periods. Collectively, our observations

implicate a complex and consistent functional relationship between seizure-generating and

“normal” structures. Although dysfunction within the epileptic network persists during in-

terictal periods, pathologic regions of the network can be reliably predicted many hours

before seizures begin.

4.2 Introduction

For approximately 60 million epilepsy patients, recurring, spontaneous seizures have crip-

pling impact on daily life. In ≈ 26% of patients, drivers of seizure activity have been

linked to abnormal focal networks located in the neocortex or mesial temporal structures

(83). While the most common treatment strategy is surgical resection to remove cortical

tissue generating seizures, newer options such as laser ablation and implantable devices

have emerged to selectively target abnormal regions in epileptic networks (28, 62, 64, 90).

When discrete lesions coinciding with abnormal electrophysiology are not evident on MRI,

only ≈ 40% of patients attain seizure freedom following resective surgery. To improve post-

surgical outcome, clinicians are increasingly interested in tailoring novel, targeted therapy

to affect network regions involved in seizure generation and spread (49).

To describe mechanisms of seizure generation and evolution, several prior studies have

studied the dynamics of epileptic networks, where network nodes are intracranial sensors

measuring the electrocorticogram (ECoG) and network connections are statistical relation-

ships between sensors (32, 40). Most recent approaches map topologically important net-

work regions within clinically-defined seizure-onset zones and track network dynamics dur-

ing ictal (seizure) and interictal (normal baseline) epochs (16, 41, 43, 47, 79, 80, 99). Net-

work hubs of strong connectivity have also emerged adjacent to seizure-onset zones and

may localize broader epileptogenic regions (34, 75, 78, 98, 105). Together, these studies
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reveal that network dysfunction underlies complex interactions between drivers of patho-

logic seizure activity and functional pathways linking cortical regions and that evidence of

abnormality exists well before clinically-manifested seizures. This theory aligns well with

the popular perspective that the brain is comprised of a number of modular functional sub-

networks, recruiting different cortical regions, of which a subset are likely to be expressed

at any given time based on functional demand (21, 22, 38). Which begs the following

questions: (i) Are functional sub-networks expressed during phases of ictal epochs similar

to those expressed during baseline, interictal epochs, and (ii) Do functional sub-networks

have a stereotypic pattern of temporal expression that differentiates their mechanism of

cortical recruitment between ictal and interictal epochs?

In this work, we applied a novel approach for disentangling functional sub-networks

and their temporal likelihood of expression to answer the general question: "How are func-

tional pathways differentially expressed during ictal and interictal epochs?" We hypothesize

that a common set of cortical pathways underlie functional communication during ictal and

interictal epochs, but that the temporal expression of these pathways is different between

the two epochs. We posit that stereotypic network architecture might explain why interictal

epileptiform activity follows propagation pathways reminiscent to seizure onset and evolu-

tion (2, 45, 53, 77, 100, 103). Therefore, functional sub-networks that connect different

cortical regions during normal function may coincide with pathways responsible for seizure

initiation and spread. Our results support this hypothesis, demonstrating that functional

sub-networks during interictal epochs predict the stereotypic sub-networks expressed dur-

ing different stages of ictal epochs. Although similar functional pathways phenotype ictal

and interictal network architecture, the time-varying expression of sub-networks differenti-

ate the two epochs.
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4.3 Results

To disentangle functional sub-networks and their time-varying expression from epileptic

brain, we retrieved ECoG recorded during ictal and interictal epochs from 22 neocortical

epilepsy patients undergoing routine pre-surgical evaluation of their epilepsy (see Table 4.1

for patient-specific information) through the International Epilepsy Electrophysiology Portal

(IEEG Portal, http://www.ieeg.org). We defined an ictal epoch as the period of ECoG signal

between – seizure-onset – as characterized by the earliest electrographic change (EEC)

(60) – and seizure termination and an interictal epoch as a continuous 5 minute period of

ECoG signal at least 2 hours preceding or following seizure-onset. We analyzed all possible

interictal epochs, which amounted to 105± 17 hours of ECoG signal per patient.

In each epoch, we estimated weighted functional connectivity using a normalized cross-

correlation metric (see Methods) applied to non-overlapping, 1s time windows of ECoG

(Fig. 4.1). This procedure results in a symmetric, N × N connectivity matrix (specifying
N(N − 1)

2 unique connections in the upper or lower triangle of the symmetric connectivity

matrix), where N is the number of network nodes, for each of T time windows analyzed.

The pattern of unique network connections over all time windows in the epoch is a config-

uration matrix of size N(N − 1)
2 × T .

To extract functional sub-networks from the epileptic network model, we applied a sub-

network learning technique called non-negative matrix factorization (NMF) to the configu-

ration matrix (see Methods). This technique enabled us to soft-partition the time-varying

network configuration into modular sub-networks with time-varying expression coefficients.

Each sub-network is an additive component of the original network, representing communi-

cation pathways between a subset of network regions, that is accompanied by time-varying

expression coefficients, measuring the degree to which each sub-network is expressed at a

given point in time.

To better understand normal and dysfunctional architecture in the epileptic network,

we study the functional sub-networks and time-varying expression coefficients during ictal
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and interictal epochs.
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Patient
(IEEG Portal)

Sex Age Seizure Onset Etiology Seizure
Type

Seizures
(N)

Imaging Outcome

HUP64_phaseII M 03/20 Left frontal Dysplasia CP+GTC 01 L ENGEL-I

HUP65_phaseII M 02/36 Right temporal Auditory
reflex

CP+GTC 03 N/A ENGEL-I

HUP68_phaseII F 15/26 Right temporal Meningitis CP,
CP+GTC

05 NL ENGEL-I

HUP70_phaseII M 10/32 Left
perirolandic

Cryptogenic SP 08 L NR

HUP72_phaseII F 11/27 Bilateral left Mesial
temporal
sclerosis

CP+GTC 01 L NR

HUP73_phaseII M 11/39 Anterior right
frontal

Meningitis CP+GTC 05 NL ENGEL-I

HUP78_phaseII M 00/54 Anterior left
temporal

Traumatic
injury

CP 05 L ENGEL-III

HUP79_phaseII F 11/39 Occipital Meningitis CP 01 L NR

HUP86_phaseII F 18/25 Left temporal Cryptogenic CP+GTC 02 NL ENGEL-II

HUP87_phaseII M 21/24 Frontal Meningitis CP 02 L ENGEL-I

Study 004-2 F 14/27 Right temporal
occipital

Unknown CP+GTC 01 NL ILAE-IV

Study 006 M 22/25 Left frontal Unknown CP 02 NL NR

Study 010 F 00/13 Left frontal Unknown CP 02 L NF

Study 011 F 10/34 Right frontal Unknown CP,
CP+GTC

02 NL NF

Study 016 F 05/36 Right temporal
orbitofrontal

Unknown CP+GTC 03 NL ILAE-IV

Study 019 F 31/33 Left temporal Unknown CP+GTC 15 NL ILAE-V

Study 020 M 05/10 Right frontal Unknown CP+GTC 04 NL ILAE-IV

Study 023 M 01/16 Left occipital Unknown CP 04 L ILAE-I

Study 026 M 09/09 Left frontal Unknown CP 10 NL ILAE-I

Study 031 M 05/05 Right frontal Unknown CP+GTC 05 NL NF

Study 033 M 00/03 Left frontal Unknown GA 07 L ILAE-V

Study 037 F 45/?? Indeterminate Unknown CP 02 NL NR

Table 4.1: Patient information. Patient data sets accessed through IEEG Portal

(http://www.ieeg.org). Age (years) at first reported onset and at phase II monitoring. Local-
ization of seizure onset and etiology is clinically-determined through medical history, imaging,

and long-term invasive monitoring. Seizure types are SP (simple-partial), CP (complex-partial),
CP+GTC (complex-partial with secondary generalization), or GA (generalized atonic). Counted

seizures were recorded in the epilepsy monitoring unit. Clinical imaging analysis concludes L,

Lesion; NL, non-lesion. Surgical outcome was based on either Engel score or ILAE score (scale:
I-IV/V, seizure freedom to no improvement; NR, no-resection; NF, no follow-up). M, male; F,

female.
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Figure 4.1: Sub-network learning pipeline for dynamic epileptic networks. (Top Left) We

identify ictal and interictal epochs from ECoG signals collected from patients with drug-resistant
neocortical epilepsy implanted with intracranial electrodes. An ictal epoch is the period between

seizure-onset – as characterized by the earliest electrographic change (EEC) (60) – and seizure
termination. An interictal epoch is a continuous, 5 minute period at least 2 hours preceding or

following seizure-onset. To measure time-varying functional networks, we divide each epoch

into 1s time windows and estimate connectivity in each time window. In our model, each
electrode sensor is a network node, and weighted functional connectivity between sensors,

interpreted as degree of synchrony, is represented as a network connection. (Top Right) For
each epoch, we estimated functional connectivity by applying a magnitude normalized cross-

correlation between each pair of sensor time series in each time window). (Bottom Right) For
time-varying functional connectivity, we extract all unique connections between nodes and con-

catenate over time windows to generate a time-varying network configuration matrix. (Bottom

Left) We apply NMF to the time-varying configuration matrix from each epoch, resulting in a set

of co-expressed network regions, sub-networks, with associated expression coefficients for each
time window.

60



4.3 Results

4.3.1 Ictal Network Architecture Emerges During Interictal epochs

Are modular sub-networks expressed during ictal epochs quantifiably similar to those ex-

pressed during interictal epochs? To answer this question, we developed a consensus clus-

tering technique to evaluate the degree of similarity between sub-networks of ictal and

interictal epochs (see Methods). We first generated an ensemble of sub-networks, learned

from time-varying functional connectivity of each patient’s ictal and interictal epochs. This

procedure yielded a patient-specific ensemble matrix representing the unique pairwise con-

nectivity between network nodes for every sub-network learned over all epochs (Fig. 4.2).

To compute a null distribution of sub-networks for each epoch, we applied a randomly

weighted, linear combination of the sub-networks and constructed a surrogate ensemble

matrix.

Using the true and surrogate ensemble matrices, we next asked whether sub-networks

of ictal and interictal epochs reliably cluster together. To test for co-clustering probability

between ictal and interictal epochs in each patient, we applied a second stage NMF to the

ensemble matrix and tracked the number of times each possible pair of sub-networks were

assigned in the same cluster over 100 random initializations. We optimized the number

of sub-network clusters per patient by repeating the co-clustering procedure over a range

of number of clusters (see Supplemental Information). For each patient, this technique

yielded a co-clustering probability matrix (Fig. 4.2) capturing the frequency with which

pairs of sub-networks over all epochs clustered together. Across the 22 patient cohort, we

identified 5 – 20 clusters consisting of ictal and interictal sub-networks (see Supplemental

Information).
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Figure 4.2: Consensus clustering for ensemble of sub-networks. (Top) For each patient,

we constructed an ensemble matrix, representing the N(N − 1)
2 unique connections for each

sub-network learned over all ictal and interictal epochs. The ensemble matrix aggregates cor-
tical sub-regions that are expressed during the patients’ long-term intracranial recording. We

also constructed a surrogate ensemble matrix by computing randomly-weighted superposition of
sub-networks from each epoch. (Bottom) To quantify similarity between cortical sub-regions ex-

pressed during interictal and ictal epochs, we employed consensus clustering by applying NMF
to the ensemble matrix over a range of number of sub-network clusters each with 100 random

initializations. This resulted in a co-clustering probability matrix representing the frequency

with which sub-networks from ictal and interictal epochs in the ensemble matrix are clustered
together.
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To analyze the similarity between ictal and interictal sub-networks, we applied mul-

tidimensional scaling to project each patient’s co-clustering probability matrix on a two-

dimensional Euclidean space for true (Fig. 4.3A) and surrogate sub-networks (Fig. 4.3B).

This technique projects topographically similar sub-networks closer together (i.e. shorter

Euclidean distance). To test whether clusters are significantly more cohesive amongst true

sub-networks than surrogate sub-networks, we measured the average Euclidean distance

from each sub-network to its cluster centroid, normalized by the distance of the sub-network

the population centroid (Fig. 4.3C). Using a One-Way Repeated Measures ANOVA, we found

that true clusters are significantly more cohesive than surrogate clusters (F1,21 = 1387,

p < 2 × 10−16). This suggests that sub-networks of true clusters are significantly more

similar than sub-networks of surrogate clusters.

Based on our finding of cohesive clustering amongst true ictal and interictal sub-networks,

we asked how tightly integrated are ictal sub-networks within their assigned clusters. To

quantify cluster integration of ictal sub-networks, as before, we measured the average nor-

malized Euclidean distance from each ictal and interictal sub-network to its cluster centroid,

solely for clusters that contained sub-networks of both epochs (Fig. 4.3D). Using a One-Way

Repeated Measures ANOVA, we found that ictal sub-networks are significantly more distant

from their cluster centroid than interictal sub-networks (F1,21 = 11.42, p < 0.005). This

suggests that ictal sub-networks are less integrated within the cluster than interictal sub-

networks. Based on our observation of bridge-like transitions in the two-dimensional pro-

jection space of clusters (Fig. 4.3A), we believe ictal sub-networks may represent cortical

pathways that lay at the transition between interictal epochs.
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Figure 4.3: Ictal sub-networks are recapitulated during interictal epochs. (A) Example
two-dimensional projection of one patient’s co-clustering probability matrix, where shorter

Euclidean distances between circles indicates greater co-clustering probability between ex-

pressed sub-networks. Bolded circles represent sub-networks expressed during ictal epochs,
and colors represent consensus cluster assignments for each sub-network. (B) Example two-

dimensional projection of same patient’s surrogate co-clustering probability matrix. The surro-
gate co-clustering probability matrix, was generated after applying consensus clustering to the

surrogate ensemble matrix. (C) Average projection distance from each sub-network to its clus-
ter centroid, normalized by distance to the population centroid, for true and surrogate clusters

of each patient. True clusters were significantly more cohesive than surrogate clusters for all
22 patients (One-Way Repeated Measures ANOVA; F1,21 = 1387, p < 2 × 10−16). (D) Average

projection distance from ictal and interictal sub-networks to its cluster centroid, normalized by

distance to the population centroid. Ictal sub-networks were significantly further from the clus-
ter centroid than interictal sub-networks (One-Way Repeated Measures ANOVA; F1,21 = 11.42,

p < 0.005)
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4.3.2 Interictal Sub-Networks Stereotype Epileptic Network

In the preceding analyses, we observed that: (i) sub-networks within the same cluster are

more similar than sub-networks assigned to other clusters, (ii) ictal sub-networks co-cluster

with interictal sub-networks, yet ictal sub-networks tend to be further from the cluster cen-

troid. Next, we investigated to what extent interictal sub-networks can stereotype epileptic

network architecture. To address this question, we tested whether interictal sub-networks

are capable of predicting pathways related to seizure foci. In accord with routine clinical

work-up of patients’ epilepsy, a team of neurologists successfully identified the sensors on

the seizure-onset zone (SOZ) based on visual inspection of the intracranial recordings.

We first quantified the extent to which interictal sub-networks express seizure-onset

pathways, by computing the SOZ expression index as C̄SOZ − C̄OUT
C̄SOZ − C̄OUT

– C̄SOZ is average con-

nection strength between SOZ nodes in the sub-network andC̄OUT is average connection

strength between nodes outside the SOZ in the sub-network – where values range from 0 to

1, representing minimal to strong differential expression between SOZ-SOZ and OUT-OUT

connections. To study whether clusters containing interictal sub-networks capture epileptic

network architecture, we computed the average SOZ expression index within clusters and

sorted the clusters in decreasing order. In an example patient we observed focal expres-

sion of SOZ connections in interictal sub-networks with broader expression in ictal sub-

networks from the same cluster (Fig. 4.4A). To test whether clusters stereotype interictal

sub-networks that express SOZ connectivity, we constructed a linear mixed effects model

with no fixed effects and with random effects modeled as intercepts for nested clusters

within subjects (Fig. 4.4B). We applied the linear mixed effects model to predict SOZ ex-

pression index in true sub-networks and in null sub-networks, where connection strengths

within each sub-network were randomly permuted. Using the likelihood ratio test, we

found that the observed clusters are more likely to generate true SOZ expression indices

(r2 = 0.287) than null SOZ expression indices (χ̃2(1) = 36091, p < 2×10−16). These results

65



4.3 Results

imply that clusters comprised of interictal sub-networks capture network regions involved

in seizure-onset, and that some clusters have greater predictive power than others.

While interictal sub-networks can distinguish epileptic network architecture, thus far

we only tested the case where we had priori knowledge regarding seizure onset regions.

We next asked whether global topological measures can distinctly predict which interictal

sub-networks express SOZ connectivity strongly with no prior knowledge of seizure on-

set regions. To test this hypothesis, we computed and appended the averaged connection

strength of each interictal sub-network as a fixed effect to our previous linear mixed effects

model (with random effects modeled as intercepts for nested clusters with subjects). Using

the likelihood ratio test, we found that the modified linear mixed effects model is signifi-

cantly more likely to generate the observed values of SOZ expression index than the previ-

ous model without fixed effects (χ̃2(4) = 5952, p < 2× 10−16). For our modified model, we

evaluated the marginal goodness-of-fit, where average connection strength (fixed effects)

alone explain 30.9%, and the conditional goodness-of-fit, where the full model (fixed ef-

fects and random effects) explain 79.6%, of the overall variance in SOZ expression index

amongst interictal sub-networks (Fig. 4.4C). These results presented strong evidence that

interictal sub-networks expressing strong SOZ connectivity can be predicted by a global

measure of average connection strength. Furthermore, predictability improved by 48.7%

when accounting for clusters of interictal sub-networks that express similar network path-

ways.
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Figure 4.4: Interictal sub-networks express emergent architecture of the epileptic net-

work. (A) First three clusters in order of decreasing SOZ expression index, averaged over all

sub-networks within a cluster, for an example patient. Ictal and interictal sub-networks shown
are closest to cluster centroids. (B) Distribution of average SOZ expression index over clusters,

ranked in decreasing order, from each patient for sub-networks with true (blue) and randomly
permuted, null connection strengths (gray). Using a linear mixed effects model to predict SOZ

expression index for sub-networks with no fixed effects and with random effects modeled as
intercepts for nested clusters within subjects, we found that consensus clusters explain 28.7%

of variance for true SOZ expression index as compared to 17.9% of variance for null SOZ acti-
vation index. (C) Relationship between SOZ expression index and average connection strength

in sub-networks from an example patient. Using a linear mixed effects model to predict SOZ

expression index with average connection strength as a fixed effect and with random effects
modeled as intercepts for nested clusters within subjects, we found that the fixed effects alone

explain 29.6% of the overall variance in SOZ expression index and the full model (fixed effects
with random effects) explains 81.4%.
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4.3.3 Functional Sub-Networks Differentially Expressed During Ictal epochs

We have presented evidence that (i) ictal sub-networks express similar pathways as in-

terictal sub-networks, and (ii) seizure-onset can be predicted by the topology of interictal

sub-networks. Logically, we finally ask "If ictal and interictal sub-networks express similar

network architecture, how are ictal epochs different from interictal epochs?"

To answer this question, we analyzed the time-varying expression of sub-networks dur-

ing ictal and interictal epochs. Based on the understanding that seizures are characterized

by a dynamic progression of well-defined epochs, we hypothesized that sub-networks are

more transiently expressed, perhaps sequentially, during ictal epochs, and more persistently

expressed during interictal epochs. To quantify temporal transience and persistence, we

computed the skew of the distribution of time-varying coefficients for each ictal and interic-

tal sub-network, after smoothing with a 5-second moving average filter to reduce spurious

noise (Fig. 4.5A). The skew for transient expression was greater than zero, while the skew

for persistent expression was less than or equal to zero. Using a One-Way Repeated Mea-

sures ANOVA, we found that the skew for ictal time-varying coefficients was significantly

greater than for interictal time-varying coefficients (F1,21 = 18.81, p < 0.001). These results

suggest that ictal sub-networks are more transiently expressed than interictal sub-networks,

and explains how similar cortical pathways are differentially expressed between ictal and

interictal epochs.
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Figure 4.5: Persistent and transient temporal expression differentiates ictal and interictal

epochs. (A) First three clusters in order of increasing skew of temporal coefficients, averaged

over all sub-networks within a cluster, for an example patient. Sub-networks with smaller skew
in their temporal coefficients are expressed more persistently as compared to epochs that are

expressed more transiently. Temporal coefficients for ictal and interictal sub-networks shown

are closest to cluster centroids. (B) Distribution of skew of temporal coefficients for all ictal and
interictal sub-networks in an example patient. Using a One-Way Repeated Measures ANOVA,

we found that the skew for ictal sub-networks is significantly greater than the skew for interictal
sub-networks (F1,21 = 18.81, p < 0.001). These results suggest that the similar network path-

ways expressed during ictal and interictal epochs, undergo more transient expression during
ictal epochs and are persistent during interictal epochs.
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4.4 Discussion

In this work we asked, "Are similar cortical pathways expressed during ictal and interictal

epochs?" To answer this question, we designed and applied a novel tool to disentangle

sub-networks and their time-varying expression from dynamic functional connectivity. Our

work supports the notion that ictal and interictal epochs traverse a similar set of cortical

pathways, but differ in how those pathways are expressed over time.

4.4.1 Modular Cortical Pathways Comprise Epileptic Network Architecture

A common notion in epilepsy is that isolated cortical regions emit epileptiform activity that

can generate seizures. However, network theorists now believe that dysfunction may, in

part, arise when epileptiform activity between cortical regions interact, creating the "perfect

storm" that leads to seizures. Previous studies have identified discrete network states that

describe shifts in the global interactions between all cortical regions (16, 75). However,

these approaches assume that all pathways in the network switch state simultaneously and

discretely

Building upon prior work (24, 58, 59), in this study we disentangled the epileptic net-

work into modular sub-networks, or cohesive cortical pathways, that function separately.

Logically, different cortical pathways may be variably and continuously expressed to meet

functional demand. Our results demonstrated that the epileptic network expresses a small

set of functional sub-networks that recur during ictal and interictal epochs. We specu-

late that the epileptic network consists of stable cortical pathways that contribute to normal

function during interictal epochs, and seizure onset and evolution during ictal epochs. Such

a theory is corroborated by our finding that these sub-networks are expressed persistently

during interictal epochs and transiently during ictal epochs.
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4.4.2 Predicting Pathways of the Epileptic Network

We observed that functional pathways forming the epileptic network are highly predicted

by average connection strength and topological clustering of interictal sub-networks. While

our results agree with prior studies demonstrating network synchrony is predictive of seizure

onset regions during interictal epochs (45, 97), we also observed cortical pathways connect-

ing regions outside seizure onset areas that may lead to broader dysfunction (75, 78, 98,

105).

Interestingly, these results suggest that functional connectivity linking seizure-onset re-

gions are sustained over long periods of time and persist during functionally normal brain

epochs. The appearance of dysfunctional pathways linking cortical regions during inter-

ictal epochs can potentially impact cognitive performance in patients with epilepsy. The

approach we developed can be used to study looming questions regarding the complex

network interactions between epileptic and eloquent cortical regions.

Methodological Limitations and Extensions The first important clinical consideration

related to this work is the sampling error inherent in any intracranial implantation pro-

cedure. Any of the techniques used to map epileptic brain usually yield incomplete rep-

resentations of the epileptic network. As a consequence, the sub-networks we measured

may represent just a portion of larger cortical pathways that extend further throughout the

brain.

Secondly, our methods of predicting epileptic network architecture from interictal epochs

relies on accurate delineation of seizure-onset regions. Because of sampling error and vari-

ability in clinical decision-making, the seizure-onset region may be under or oversampled.

However, we believe the high correlation between our model and observed connectivity

within seizure-onset regions is reliable based on rigorous statistical testing. Our belief is

that unsupervised algorithms to objectively localize network structures may reduce sam-

pling error in the future.
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4.4.3 Clinical Impact

Mapping architecture of the epileptic network presents significant challenges for clinicians.

In patients with neocortical epilepsy, we showed that cortical pathways expressed during

seizures are highly similar to those pathways traversed during normal function. These find-

ings are relevant for (i) optimizing treatment strategies to reduce dysfunction and preserve

normal function and (ii) reducing morbidity and mortality associated with extended du-

ration of invasive intracranial electrode implantation. By predicting seizure-onset regions

from interictal epochs, clinical monitoring may be shortened, or potentially even conducted

intraoperatively during implant phase.

4.5 Methods

4.5.1 Patient Data Sets

4.5.1.1 Ethics Statement

All patients included in this study gave written informed consent in accordance with the

Institutional Review Board of the University of Pennsylvania.

4.5.1.2 Electrophysiology Recordings

Twenty-two patients undergoing surgical treatment for medically refractory epilepsy be-

lieved to be of neocortical origin underwent implantation of subdural electrodes to localize

the seizure onset zone after noninvasive monitoring was indeterminate. De-identified pa-

tient data was retrieved from the online International Epilepsy Electrophysiology Portal

(IEEG Portal) (93). ECoG signals were recorded and digitized at either 512 Hz (Hospital of

the University of Pennsylvania, Philadelphia, PA) or 500 Hz (Mayo Clinic, Rochester, MN)

sampling rate. Surface electrode (Ad Tech Medical Instruments, Racine, WI) configura-

tions, determined by a multidisciplinary team of neurologists and neurosurgeons, consisted
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of linear and two-dimensional arrays (2.3 mm diameter with 10 mm inter-contact spacing)

and sampled the neocortex for epileptic foci (depth electrodes were first verified as being

outside the seizure onset zone and subsequently discarded from this analysis). Signals were

recorded using a referential montage with the reference electrode, chosen by the clinical

team, distant to the site of seizure onset and spanned the duration of a patient’s stay in the

epilepsy monitoring unit.

4.5.1.3 Description of Ictal and Interictal epochs

Ictal epochs were identified by a team of neurologists as a part of routine clinical work and

spanned the period between clinically-marked earliest electrographic change (EEC) (60)

and termination. Interictal epochs spanned 5 minutes in duration and were at least two

hours removed from any ictal onset. We analyzed all possible interictal epochs from patient

recordings.

4.5.2 Extracting Time-Varying Functional Networks

Signals from each epoch were divided into 1-second, non-overlapping, wide-sense station-

ary time windows in accord with other studies (47) and subsequently pre-processed. To test

the biasing effect of high-amplitude spiking on signal connectivity measurements, we also

investigated windows 0.5-seconds in duration to sample more of the non-biasing temporal

space and found similar results. In each time window, signals were re-referenced to the

common average reference (47, 91) to account for variation in reference location across

patients and to avoid broad field effects that may bias connectivity measurements erro-

neously in the positive direction. Each window was filtered at 60 Hz to remove line-noise,

and low-pass and high-pass filtered at 120 Hz and 1 Hz, respectively, to account for noise

and drift. To limit sources of volume conduction from introducing spurious connectivity, we

pre-whiten signals in each window using a first-order autoregressive model to account for

slow dynamics. This accomplishes two goals: (i) flattening of the signal power spectrum
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to enhance higher-frequency content that contains local neural population dynamics that is

less affected by volume conduction, and (ii) decreases the influence of independent node

dynamics when computing correlation-based connectivity measurements (3, 14, 61, 91).

Time-varying functional networks were formed by applying a normalized cross-correlation

similarity function ρ between the time series of two sensors in the same time window using

the formula

ρxy(k) = argmax
τ

E[(xk(t)− µxk
)(yk(t+ τ)− µyk

)] (4.1)

where x and y are signals from one of N sensors or network nodes, k is one of T non-

overlapping, one-second time windows, and xk = yk = 0. The NxNxT similarity matrix is

also known as a network adjacency matrix A. In our weighted network analysis approach,

we retain and analyze all possible connection weights between nodes.

4.5.3 Learning Functional Sub-Networks

Sub-networks, or cohesive modules of network pathways, were disentangled from time-

varying functional connectivity by clustering the time-varying network configuration ma-

trix through an unsupervised learning algorithm called non-negative matrix factorization

(NMF) (55).

For each ictal or interictal epoch, we constructed the time-varying network configuration

matrix Â by unraveling the upper triangle of A resulting in the connection weights of
N(N − 1)

2 connections across T time windows. Using NMF, we approximated Â by two

low-rank, non-negative matrices, such that:

Â ≈ WH (4.2)

where W is the sub-network connectivity matrix (with dimensions N(N − 1)
2 × k), and

H is the time-varying expression coefficients matrix (with dimensions k × T ), and k is the

optimized number of sub-networks learned. To compute the NMF, we used the alternating
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non-negative least squares with block-pivoting method and 200 iterations for fast and effi-

cient factorization of large matrices (44) and initialized W and H using the non-negative

double singular value decomposition (12). Given our deterministic initialization for the

NMF algorithm, we were guaranteed consistent W and H on any run – thus we only per-

formed one run of the NMF algorithm per time-varying network configuration matrix (i.e.

one run per ictal or interictal epoch).

For each patient, we determined an optimal number of sub-networks k by the following

procedure: (i) randomly sampled 30 epochs from the ictal and interictal pool, (ii) applied

NMF for k in the range of 2 to 15 sub-networks independently for each epoch, (iii) com-

puted the Frobenius error between Â and WH for each k, (iv) retained the value for k that

occurs at the elbow of the resulting curve (See Fig. 4.6 for distribution of k for each pa-

tient), (v) used the average k from 30 epochs as the representative number of sub-networks

to learn from all ictal and interictal epochs of the patient. In sum, the sub-network learning

procedure yielded M × k̄ total sub-networks per patient, where M is the total number of

ictal and interictal epochs.

4.5.4 Consensus Clustering of Sub-Network Ensembles

Consensus clustering is a general method of testing robustness and stability of clusters over

many runs of one or more non-deterministic clustering algorithms (63). In this work, we

studied the nature of clusters amongst the M × k̄ sub-networks per patient. First, we

compiled sub-networks from all of a patients’ epochs and constructed the ensemble matrix

E (with dimensions N(N − 1)
2 × (M × k̄)).

To find consensus clusters in E, we next applied NMF over 100 runs with matrix factors

initialized randomly from a uniform distribution between 0 and 1, such that:

E ≈ VG (4.3)
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where G represents the likelihood cluster assignment for each sub-network (with dimen-

sions j × (M × k̄), where j is the number of patient-wide clusters of sub-networks). After

every NMF run, we retrieved the cluster assignment with maximum likelihood for each sub-

network and counted the number of times each possible pair of sub-networks was assigned

to the same cluster – and by extension the probability that any two sub-networks co-cluster.

These probabilities are tabulated in a symmetric co-clustering probability matrix P (with

dimensions (M × k̄) × (M × k̄)). For every patient we repeated this process for a range of

j between 5 and 20, and used a proportion of ambiguous clustering (PAC) metric to deter-

mine the optimal number of clusters j̄ (82)(see Fig. 4.7 for optimal PAC distribution for real

and surrogate ensemble matrices). Finally, we assigned each sub-network to its consensus

cluster by applying one run of NMF, with j̄ clusters, to P, and retrieving the maximum likely

clusters as before (see Fig. 4.8). As suggested by previous work, P is a similarity matrix

(63) that we used to analyze and visualize sub-network clustering via multi-dimensional

scaling methods (11).
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Figure 4.6: Optimizing number of learned sub-networks. For each patient, we analyzed
the distribution of Frobenius normed error between the network configuration matrix Â and

the learned sub-networks WH in 30 randomly sampled ictal or interictal epochs. Each graph
represents the distribution of error as a function of the number of sub-networks learned k. The

mean (black) and ±1 standard deviation (gray) over the 30 epochs are plotted. The optimal
number of sub-networks k̄ for each patient was computed to be the elbow of this curve (dashed

red line).
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Figure 4.7: Optimizing number of consensus clusters from sub-network ensemble. For
each patient, we computed co-clustering probability matrices for a range of number of con-

sensus clusters j. To optimize the number of consensus clusters, we computed a cumulative
distribution function (CDF) of co-clustering probability for each j, quantified the proportion of

ambiguous clusters (PAC) as given by CDFj(0.9)−CDFj(0.1), and retained j̄ that resulted in the
minimum PAC. The CDF for the optimum number of clusters j̄ in red. The CDF for the same

number of clusters for the surrogate co-clustering probability matrix is in black. We observed

more clustering ambiguity in the surrogate population than the real population.
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Figure 4.8: Optimum co-clustering probability of sub-networks. For each patient, we as-
signed each ictal and interictal sub-network to a consensus cluster and re-ordered the co-

clustering probability based on assigned clusters. We observed high co-clustering probability
between clusters of sub-networks (block diagonal elements) and low co-clustering probability

between clusters (off-diagonal blocks).
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Chapter 5

Virtual cortical resection reveals

push-pull network control

mechanism

5.1 Abstract

For ≈20 million people with drug-resistant epilepsy, recurring, spontaneous seizures have

devastating impact on daily life. Current treatment options for these patients are resective

surgery, and more recently, implantable devices to control seizures. The efficacy of these

therapies is hindered by a poor understanding of how some seizures spread to surrounding

tissue while others remain focal and confined. Network mechanisms that regulate syn-

chronization between connected brain regions may explain differential seizure dynamics.

To pinpoint network regions that regulate seizure evolution, we present a novel method

to assess changes in synchronizability in response to virtually lesioning cortical areas in a

validated computational network model. We apply our virtual cortical resection technique

to time-varying functional networks measured in 10 human patients implanted with elec-

trocorticographic sensors for clinical localization of their epilepsy. Our results suggest that
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network synchronizability prior to seizure onset predicts the extent of seizure evolution.

Using virtual cortical resection, i.e. selectively removing nodes from the computational

model, we identify important control regions that drive network behavior by individually

desynchronizing or synchronizing distinct cortical areas.

5.2 Introduction

Functional architecture of the epileptic neocortex has been studied extensively to better

identify optimal targets for surgical resection and, more recently, the optimal location for

focal ablation or implantable devices (62, 64, 90). The prospect of patient-centric algo-

rithms that modulate brain state to abort seizures is exciting to clinicians and researchers

alike (1, 85, 86). However, the best targets for chronic devices remain elusive, partly

because functional brain networks, including epileptic networks, reorganize dynamically

(5, 8, 16, 75). Such reorganization appear to follow a specific progression through net-

work states unique to the patient’s seizures (16, 104). The mechanisms that drive seizures

through network states can inform neural control paradigms that aim to stop or contain

propagation of seizure activity. Such a capability is vital, clinically, because epileptogenic

regions cause symptoms not only through their own dysfunction, but also through their

ability to recruit and disrupt normal brain regions (49). However, understanding and trans-

lating network mechanisms of seizure evolution to identify targets for therapy requires

further dissection of functional epileptic network architecture.

Conventional school of thought divides epileptic brain into clinically-defined regions

where seizures presumably originate (74). Recent models describe connectivity between

seizure-onset and surrounding cortical regions in the framework of a broader dysfunctional

epileptic network, where network nodes are neural populations measured by intracranial

sensors and network connections are statistical relationships between neural activation pat-

terns (16, 47, 66, 97, 101) (Fig. 5.1a). For example, partial seizures that begin in the
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seizure-onset zone can evolve, spreading spatially as they modulate in dominant frequency,

via local connections to the surrounding tissue, implicating a distributed epileptic network

(45, 47, 66, 84). In the extreme case these seizures secondarily generalize to encompass

the entire brain.

Given the distributed nature of epileptic activity, it is critical to isolate underlying prop-

agation mechanisms. Leading hypotheses suggest that either (i) seizure evolution is driven

by strong, synchronizing activity from the seizure-generating network impinging outward

on the surrounding tissue (43, 46, 47, 80), or (ii) seizure evolution is caused by a dimin-

ished ability of the surrounding tissue to regulate, or contain, abnormal activity (13, 66).

While little evidence exists to determine which of these hypotheses accurately reflect seizure

dynamics, both mechanisms can be succinctly summarized as abnormalities of synchroniz-

ability, a description of how easily neural processes, such as rhythmic activity, can diffuse

through a network.

Theoretical work demonstrates that diffusion of dynamics through the network can be

regulated through a push-pull control mechanism, where desynchronizing and synchroniz-

ing nodes operate antagonistically in a “tug-of-war.”. When synchronizing nodes exert

greater push than desynchronizing nodes, synchronizability increases and dynamic pro-

cesses may diffuse through the network more easily (39) (Fig. 5.1b). Such mechanisms

are particularly successful in heterogeneous networks like the brain, where some nodes are

sparsely connected and other nodes are densely connected (96). Does the brain utilize such

a control mechanism for seizure regulation? And if so, what regions of the brain affect this

control?

To address these questions, we present a novel method we call virtual cortical resection,

which offers a statistically robust means to pinpoint putative control nodes in the epileptic

network that may regulate seizure dynamics, based on the network’s response to virtual

lesioning (95, 96). We use this method to test the hypothesis that the epileptic network

contains a native regulatory system (Fig. 5.1c) whose connectivity to the seizure-generating
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area accounts for differential seizure dynamics, including (i) the constrained dynamics ob-

served in partial seizures that remain focal (Fig. 5.1d), and (ii) the unconstrained dynamics

observed in partial seizures that generalize to surrounding tissue (Fig. 5.1e).

More specifically, using electrocorticography recorded from 10 patients diagnosed with

drug-resistant neocortical epilepsy undergoing routine pre-surgical evaluation, we con-

structed time-evolving functional networks across events, each of which included a seizure

epoch preceded by a pre-seizure epoch. The seizure epoch spanned the period between the

clinically-marked earliest electrographic change (60) and the seizure termination, while

the pre-seizure epoch was identical in duration to the seizure and ended immediately prior

to the earliest electrographic change. In each epoch we divided the ECoG signal into 1s

non-overlapping time-windows and estimated functional connectivity in high-γ (95–105

Hz) and low-γ (30–40 Hz) frequency bands using multitaper coherence estimation (see

Methods). We implemented virtual cortical resection on this dynamic epileptic network by

independently removing electrode sites from the network model. This was done to assess

the synchronizability of (i) the distributed epileptic network in partial seizures that gener-

alize to surrounding tissue, versus (ii) the focal epileptic network in those that do not. By

removing electrode sites from the network model, we were able to probe the importance

brain regions, in their presence and absence, to seizure generation and propagation.
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Figure 5.1: Hypothesized Mechanism of Seizure Regulation (a) We created functional

networks based on electrophysiology from patients with drug-resistant neocortical epilepsy

implanted with intracranial electrodes. Each sensor is represented as a network node, and
weighted functional connectivity between sensors, interpreted as degree of coherence, is rep-

resented as a network connection. (b) Rope-stretching diagram demonstrating push-pull con-
trol, where greater antagonism between opposing synchronizing and desynchronizing forces

(nodes) improves rope-tightness (network stability) in the blue rope compared to the red rope.
(c) Schematic of the epileptic network composed of a seizure-generating system and a hypoth-

esized regulatory system that controls the spread of pathologic seizure activity. (d) Example
partial seizure that remains focal: the seizure begins at a single node and evolves to and per-

sists within a focal area. (e) Example partial seizure that generalizes to surrounding tissue: the

seizure begins at two nodes and evolves to the broader network. We hypothesize that these two
types of dynamics are determined by differences in the regulatory system.

84



5.3 Results

5.3 Results

5.3.1 Network Homogeneity Improves Synchronizability

We first asked the question, “How easily do seizures diffuse through distributed and fo-

cal epileptic networks?” We hypothesized that spread of seizures can be quantified by the

network synchronizability, or potential for the network to synchronize due to seizures. To

quantify network synchronizability, we estimated the time-varying Laplacian matrix L(t)

whose entries lij(t) quantify how easily information can diffuse between nodes i and j (see

Methods). Using the Laplacian matrix, we computed the synchronizability st =
λ2
λmax

, where

λ2 and λmax are the second-smallest eigenvalue and the largest eigenvalue, respectively,

of L(t) (see (4) and Supplementary Note). Intuitively, greater network synchronizability

implies greater ease for neural populations to synchronize their dynamics – such as during

seizures. We observed significantly greater synchronizability in the distributed epileptic net-

work than in the focal epileptic network during the pre-seizure epoch, suggesting that high-

γ networks have a greater potential to synchronize prior to seizures that spread (Fig. 5.2a).

In contrast, we observed synchronizability in low-γ networks effectively captured spread

through the distributed epileptic networks after seizure-onset (see Supplemental Informa-

tion: Fig. 5.6a).

Next, we asked if network synchronizability, or predisposition to seizure spread, might

be explained by heterogeneity in network topology. That is, "Does heterogeneity in node

strength weaken the network’s ability to synchronize?" To measure heterogeneity, we com-

puted a non-parametric, normalized measure of node strength dispersion d(t) for each time-

window t (see Methods). More heterogeneous network topologies would incur greater node

strength dispersion, suggesting nodes might either be highly connected or highly isolated

(whereas lower node strength dispersion suggests nodes are more evenly connected in the

network). Our results demonstrated a significant linear relationship between synchroniz-

ability and node strength dispersion (pearson correlation; ρ = −0.811, p < 1e− 16), where
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greater heterogeneity in node strength lead to lower synchronizability (Fig. 5.2b). The cor-

relation between synchronizability and node strength dispersion was also observed in low-γ

functional networks, suggesting a fundamental and robust relationship between these topo-

logic measures.

More generally, our results suggest that seizure spread in the distributed epileptic net-

work may result from a vulnerability to synchronize easily, a vulnerability that is not present

in partial seizures that do not generalize to surrounding tissue. Furthermore, the height-

ened synchronizability of distributed epileptic networks may be driven by homogenous dis-

tributions of connectivity amongst network nodes.
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Figure 5.2: Differential Pre-Seizure Synchronizability Predicts Seizure Spread. (a) Time-
dependent synchronizability captures the potential for seizure spread through high-γ func-

tional networks. Distributed epileptic networks describe seizures with secondary generaliza-
tion (N = 16), focal epileptic networks describe seizures without secondary generalization

(N = 18). Analyzed epileptic events spanned the clinically-defined seizure and period of
time equal in duration to the seizure, immediately preceding seizure-onset. Events were time-

normalized with each pre-seizure and seizure period divided into 5 equally-spaced time bins

(10 bins per event). Synchronizability was averaged within each bin. Synchronizability was
significantly greater in distributed epileptic networks than in focal epileptic networks prior to

seizure-onset (functional data analysis, ppre-seizure = 1.7×10−4, pseizure = 3.1×10−1). Thick lines
represent mean, shaded area represents standard error around mean. P -values are obtained via

functional data analysis (FDA) where event labels (two seizure types) were permuted uniformly
at random (see Methods): ***p < 0.001. (b) Relationship between synchronizability and dis-

persion of node strengths in high-γ functional networks across population of distributed and
focal epileptic network events. Each point represents average synchronizability and dispersion

of average node strengths from a single time bin (N = 340). Greater synchronizability was

strongly related to greater network heterogeneity, or lower node strength dispersion (pearson
correlation; ρ = −0.811, p < 1e − 16). (c) Schematic demonstrating that distributed epileptic

networks have greater synchronizability and more homogeneous topology than focal epilep-
tic networks. Seizures may spread more easily in distributed epileptic networks due to more

homogeneous connectivity between network nodes.
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5.3.2 Network Controllers of Synchronizability

How might network nodes regulate levels of synchronizability? Do a subset of nodes act as

key controllers, or do all nodes contribute equally? To answer this question, we developed

a novel method to assess the influence of a node on synchronizability. We define the control

centrality ci of node i to be the fractional change in synchronizability following removal of

node i from the network (Fig. 5.3a): ci = si−s
s

where s is the original synchronizability and

si is the synchronizability after node removal. The magnitude of ci can be interpreted as

the overall strength of the node as a controller of synchronizability. If ci is positive, then

synchronizability increases upon node removal, and the node is said to be a desynchronizing

node. If ci is negative, then synchronizability decreases upon node removal, and the node

is said to be a synchronizing node. As illustrated in Fig. 5.3a, both desynchronizing and

synchronizing network controllers are characteristic of heterogeneous networks, and tend

to be located in the network periphery and network core, respectively.

88



5.3 Results

a
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Figure 5.3: Virtual Cortical Resection Localizes Network Controllers. (a) Effect of node
removal on network synchronizability (control centrality) in a toy network. Highlighted node

removals resulting in increased synchronizability (desynchronizing node; green), decreased
synchronizability (synchronizing nodes; purple and orange). The strongest desynchronizing

node increased synchronizability by 5.8% and was present in the network periphery, while
the strongest synchronizing nodes decreased synchronizability by 27.2% and 16.1% and were

located in the network core. (c) Virtual cortical resection applied to example distributed (and

(d) focal) high-γ epileptic network events. Control centrality of nodes is indicated by color in
each time window, and ECoG signal is overlayed and normalized by maximum amplitudei (red

signals are clinically-defined seizure onset nodes). Control centrality values are positive/red
(negative/blue) for desynchronizing (synchronizing) nodes.
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We used control centrality to assess the presence of desynchronizing and synchronizing

controllers in the epileptic network, and to define their putative role in regulating syn-

chronizability, a hallmark of seizure spread. We observed that controller roles differed in

their temporal dynamics, and in spatial distribution. In an example of a distributed epilep-

tic network (see Fig. 5.3b), we found clusters of desynchronizing nodes that switched to

synchronizing nodes as the seizure began (and desynchronizing controllers appear else-

where), and then switched back to desynchronizing nodes as the seizure terminated (and

synchronizing controllers appear elsewhere). Interestingly, these coordinated dynamics oc-

curred away from seizure-generating areas. In an example of a focal epileptic network (see

Fig. 5.3c), we observed less coordinated dynamics; preceding the seizure, desynchronizing

and synchronizing controllers appeared dispersed across the network, while, after seizure-

generation, more apparent clustering of desynchronizing and synchronizing nodes emerged

away from the seizure-generating areas.

5.3.3 Regulatory System Controls Seizure Dynamics

Next, we asked whether synchronizing and desynchronizing nodes are differentially dis-

tributed amongst network regions during focal and distributed events. Specifically, we ex-

plored regional control of seizure spread in high-γ functional networks (see Supplemental

Information for analysis of low-γ functional networks). To address this question, a team of

neurologists successfully identified the sensors on the seizure onset zone (SOZ) based on

visual inspection of the intracranial recordings. Sensors within the SOZ were grouped as

the seizure onset region, while sensors outside the SOZ were labelled as the surrounding

region. Within each region, we computed control centrality for the 10% strongest desyn-

chronizing and synchronizing nodes during pre-seizure and seizure epochs.

First, we compared control centrality of nodes within the seizure-onset region during

the pre-seizure epoch (Fig. 5.4a). In focal epileptic networks, desynchronizing nodes

exerted significantly greater control than synchronizing nodes (wilcoxon rank-sum; z =
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2.53, p = 0.011). In distributed epileptic networks, no significant difference between con-

trol exerted by desynchronizing and synchronizing nodes was found (wilcoxon rank-sum;

z = 1.58, p = 0.113). However, SOZ nodes of the distributed network were significantly

more synchronizing than similar nodes of the focal network (wilcoxon rank-sum; z = 2.03,

p = 0.041). No significant difference in desynchronizing strength of SOZ nodes was found

between focal and distributed networks (wilcoxon rank-sum; z = 0.03, p = 0.972). We then

compared control centrality of nodes within the surrounding region during the pre-seizure

epoch (Fig. 5.4b). In focal epileptic networks, desynchronizing nodes exerted significantly

greater control than synchronizing nodes (wilcoxon rank-sum; z = 2.27, p = 0.023). In

distributed epileptic networks, no significant difference between control exerted by desyn-

chronizing and synchronizing nodes was found (wilcoxon rank-sum; z = 1.54, p = 0.122).

These findings suggest that (i) SOZ nodes are more synchronizing in distributed net-

works than focal networks, (ii) SOZ nodes exert stronger desynchronizing control than

synchronizing control in focal networks, and (iii) surrounding regions are more strongly

desynchronizing than synchronizing in focal networks (Fig. 5.4c-d).
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Figure 5.4: Regional Control Centrality Differentiates Seizure Type in Pre-Seizure Epoch.

(a) Distribution of control centrality in 10% strongest synchronizing and desynchronizing nodes

within the seizure onset region of focal (N = 18) and distributed (N = 16) events. Focal net-
works have stronger desynchronizing nodes than synchronizing nodes. Distributed networks

have stronger synchronizing nodes than focal networks. *p<0.05. (b) Distribution of control
centrality in 10% strongest synchronizing and desynchronizing nodes within the surrounding

region of focal (N = 18) and distributed (N = 16) events. Focal networks have stronger desyn-
chronizing nodes than synchronizing nodes. (c) Schematic of strong synchronizing control in

seizure onset and surrounding region of distributed networks that may ease seizure spread. (d)

Schematic of strong desynchronizing control in seizure onset and surrounding region of focal
networks that may regulate seizure spread.
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Next, we compared control centrality of nodes within the seizure-onset region during

the seizure epoch (Fig. 5.5a). In focal epileptic networks, desynchronizing nodes exerted

significantly greater control than synchronizing nodes (wilcoxon rank-sum; z = 2.34, p =

0.019). In distributed epileptic networks, no significant difference between control exerted

by desynchronizing and synchronizing nodes was found (wilcoxon rank-sum; z = 1.17,

p = 0.243). However, SOZ nodes of the distributed netwoek were significiantly more

synchronizing than similar nodes of the focal network (wilcoxon rank-sum; z = 2.76,

p = 0.005). No significant difference in desynchronizing strength of SOZ nodes was found

between focal and distributed networks (wilcoxon rank-sum; z = 0.66, p = 0.512). We

then compared control centrality of nodes within the surrounding region during the seizure

epoch (Fig. 5.5b). We observed significantly stronger synchronizing nodes in distributed

networks compared to focal networks (wilcoxon rank-sum; z = 2.76, p = 0.038). We also

observed significantly stronger desynchronizing nodes in distributed networks compared to

focal networks (wilcoxon rank-sum; z = 2.31, p = 0.021).

These findings suggest that during seizures control centrality of SOZ nodes maintain

their respective roles as synchronizing in distributed networks and desynchronizing in focal

networks (Fig. 5.5c-d). However, critical changes in the surrounding region occurs after

seizures begin: (i) all controller types become stronger, (ii) distributed networks exhibit

stronger synchronizing and desynchronizing control than focal networks, and (iii) strong

desynchronizing control in focal networks is countered by strong synchronizing control.

Overall, virtual resection of network nodes revealed putative controllers of synchroniz-

ability during seizures. We observed strong desynchronizing control within seizure onset

and surrounding regions of focal networks that may play a mechanistic role in the regula-

tion of seizure spread by lowering network synchronizability prior to the start of seizures.

In contrast, synchronizing control effectively counter-balanced desynchronizing control in

distributed networks that demonstrated seizure spread.
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Figure 5.5: Regional Control Centrality Differentiates Seizure Type in Seizure Epoch. (a)
Distribution of control centrality in 10% strongest synchronizing and desynchronizing nodes

within the seizure onset region of focal (N = 18) and distributed (N = 16) events. Focal net-
works have stronger desynchronizing nodes than synchronizing nodes. Distributed networks

have stronger synchronizing nodes than focal networks. *p<0.05. (b) Distribution of control
centrality in 10% strongest synchronizing and desynchronizing nodes within the surrounding

region of focal (N = 18) and distributed (N = 16) events. Distributed networks have stronger

synchronizing and desynchronizing nodes than focal networks. (c) Schematic of strong syn-
chronizing control in seizure onset and surrounding region of distributed networks that may

ease seizure spread. (d) Schematic of strong desynchronizing control in seizure onset and sur-
rounding region of focal networks that may regulate seizure spread.
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5.4 Discussion

In this work we asked, “Is there a network-level control mechanism that regulates seizure

evolution?” To answer this question, we designed and applied a novel computational tool

– virtual cortical resection – to predict network response to removing regions in the epilep-

tic network. Our work supports the notion that a regulatory system located outside the

seizure-generating area consists of synchronizing and desynchronizing nodes, which con-

strain seizure evolution using an antagonistic, push-pull control mechanism.

5.4.1 Spatial Extent of Seizure Evolution

The spatial extent of the epileptic network driving seizure dynamics has been elusive.

Epilepsy experts conventionally implicate the seizure-generating region as the underlying

source of network dysfunction, and the surrounding irritative zone as a secondary site of

abnormality that is not itself capable of independently generating seizures (66, 74). Oth-

ers have identified strong, tightly connected network hubs localized in areas outside the

seizure-generating region that indicate a wider extent of network damage (75, 78, 105).

Our results support the view that tissue surrounding the seizure-generating area displays

abnormalities that support seizure evolution. Specifically, we observe the presence of pu-

tative control nodes within a broader heterogeneous network that may serve to discourage

seizure spread by limiting synchronizability of healthy activity states.

These findings may also have important neurobiological implications for epilepsy re-

search. They raise questions such as, "What is the neuroanatomical substrate for network

nodes that drive or contain seizures?" Might there be direct anatomical dysfunction such as

loss of inhibiting inter-neurons, aberrant fiber-sprouting or changes in local gap junctions or

ion channel expression that correlate with desynchronizing or synchronizing functional re-

gions? Relating correlates of dysfunction from node resection and electrophysiologic studies
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to underlying neuroanatomy in applications of targeted drug-delivery remains a promising

area of epilepsy research.

5.4.2 Push-Pull Control as a Regulatory Mechanism

Controllability of functional brain networks is a burgeoning area of network neuroscience,

particularly in the study of large-scale brain areas and the distributed circuits they consti-

tute (5, 36? ). However, these principles may have even greater impact in meso-scale brain

networks, where local neural populations frequently switch between a wide variety of nor-

mal and abnormal rhythmic neural processes. Using virtual cortical resection, we observed

the presence of specific nodes whose placement in the wider network suggests their criti-

cal role in controlling synchronization and desynchronization in seizure dynamics. These

key areas display antithetical potential for controlling activity dynamics, and therefore we

speculate that they may employ an antagonistic, push-pull control mechanism similar to

that described in theoretical work in other systems (39). Mechanistically, synchronizing

controllers might pull the network towards a particular synchronous state, and, conversely,

desynchronizing controllers might push the network away from these states. Such a mech-

anism also aligns with the recently proposed Epileptor model of seizure dynamics, where

any brain network might be capable of seizure generation depending on its vulnerability

to crossing a critical separatrix barrier (42, 67). In the framework of the Epileptor, our re-

sults suggest that synchronizing and desynchronizing nodes might regulate a critical level of

network synchronizability and prevent the extent to which the network crosses a separatrix.

5.4.3 Methodological Limitations and Extensions

An important clinical consideration related to this work is the sampling error inherent in

any intracranial implantation procedure. Any of the techniques used to map epileptic brain

usually yield incomplete representations of the epileptic network. It is not possible to fully
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record from the entirety of cortex in affected patients. In some cases this might mean that

neither seizure onset zones nor all regions of seizure spread are fully delineated.

The virtual cortical resection approach can be extended to model other complex dy-

namics beyond independent node contributions to network synchronization. For example,

we could iterate over all possible node resections to find the network configuration that

optimizes synchronizability. Furthermore, in this work we apply virtual cortical resection

to study a single topological metric, network synchronizability. Additional quantities of

interest include measures of causal information flow (45).

5.4.4 Clinical Impact

Isolating the natural control mechanisms of brain function is critical for clinical translation.

Enhancing and disrupting these natural control mechanisms could be a viable approach for

introducing therapy with implantable devices for network disorders like epilepsy. Current

methods of treating drug-resistant epilepsy rely on surgical resection or, more recently, im-

plantable devices. However, predicting network response to therapy remains challenging.

The virtual cortical resection technique is a novel, objective method of probing robustness

and fragility upon removing components of the epileptic network. Using this method, we

pinpointed putative network controllers that may be crucial for seizure evolution – sug-

gesting that resection of these regions may compromise key mechanisms to contain seizure

activity.

This technique will require careful retrospective, and perhaps eventually prospective,

trials to validate its utility. There are frequent examples of patients in whom seizures ap-

pear to be localized on intracranial EEG who go on to have recurrent or persistent seizures

despite surgical resection or device placement. Despite the promise of virtual resection

techniques, critical challenges remain: (i) how to target functional connections based upon

removal of cortical tissue? And, (ii) can network models account for neural plasticity after

node removal, such as unmasking of latent cortical connectivity ((? ))? By honing network
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models to better capture structural and functional relationships in the brain, it is our hope

that virtual cortical resection may allow clinicians to predict response to therapy and pro-

vide a quantitative guide to what is now a process guided by manual interpretation of ECoG

recordings.

There may also be clinical implications beyond just guiding electrode placement for anti-

epileptic devices. These studies might open the way towards more accurate electrophysiologically-

guided cortical resection or perhaps pinpointed thermal ablation to specific network re-

gions, similar to procedures done by cardiac electrophysiologists. These potential applica-

tions, while far off, offer considerable clinical advantage over the large cortical resections

performed currently, with modest seizure-freedom rates.

5.5 Methods

5.5.1 Patient Data Sets

5.5.1.1 Ethics Statement

All patients included in this study gave written informed consent in accordance with the

Institutional Review Board of the University of Pennsylvania.

5.5.1.2 Electrophysiology Recordings

Ten patients undergoing surgical treatment for medically refractory epilepsy believed to be

of neocortical origin underwent implantation of subdural electrodes to localize the seizure

onset zone after presurgical evaluation with scalp EEG recording of ictal epochs, MRI, PET

and neuropsychological testing suggested that focal cortical resection may be a therapeutic

option. Patients were then deemed candidates for implantation of intracranial electrodes to

better define epileptic networks. De-identified patient data was retrieved from the online

International Epilepsy Electrophysiology Portal (IEEG Portal) (93).
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ECoG signals were recorded and digitized at 500 Hz sampling rate using Nicolet C64

amplifiers and pre-processed to eliminate line noise. Cortical surface electrode (Ad Tech

Medical Instruments, Racine, WI) configurations, determined by a multidisciplinary team

of neurologists and neurosurgeons, consisted of linear and two-dimensional arrays (2.3 mm

diameter with 10 mm inter-contact spacing) and sampled the neocortex for epileptic foci

(depth electrodes were first verified as being outside the seizure onset zone and subse-

quently discarded from this analysis). Signals were recorded using a referential montage

with the reference electrode, chosen by the clinical team, distant to the site of seizure onset

and spanned the duration of a patient’s stay in the epilepsy monitoring unit. See Table 5.1

for demographic and clinical information.
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Patient
(IEEG Portal)

Sex Age Seizure Onset Etiology Seizure
Type (N)

Imaging Outcome

HUP64_phaseII M 03/20 Left frontal Dysplasia CP+GTC
(1)

L I

HUP65_phaseII M 02/36 Right temporal Auditory
reflex

CP+GTC
(3)

N/A I

HUP68_phaseII F 15/26 Right temporal Meningitis CP (1),
CP+GTC

(4)

NL I

HUP70_phaseII M 10/32 Left
perirolandic

Cryptogenic SP (8) L NR

HUP72_phaseII F 11/27 Bilateral left Mesial
temporal
sclerosis

CP+GTC
(1)

L NR

HUP73_phaseII M 11/39 Anterior right
frontal

Meningitis CP+GTC
(5)

NL I

HUP78_phaseII M 00/54 Anterior left
temporal

Traumatic
injury

CP (5) L III

HUP79_phaseII F 11/39 Occipital Meningitis CP (3) L NR

HUP86_phaseII F 18/25 Left temporal Cryptogenic CP+GTC
(2)

NL II

HUP87_phaseII M 21/24 Frontal Meningitis CP (2) L I

Table 5.1: Patient information. Patient data sets accessed through IEEG Portal
(http://www.ieeg.org). Age at first reported onset and at phase II monitoring. Localization

of seizure onset and etiology is clinically-determined through medical history, imaging, and
long-term invasive monitoring. Seizure types are SP (simple-partial), CP (complex-partial),

CP+GTC (complex-partial with secondary generalization). Counted seizures were recorded in
the epilepsy monitoring unit. Clinical imaging analysis concludes L, Lesion; NL, non-lesion.

Surgical outcome was based on Engel score (scale: I-IV, seizure freedom to no improvement;

NR, no-resection; NF, no follow-up). M, male; F, female.

5.5.1.3 Description of Epileptic Events

We analyzed 19 partial seizures (simple and complex) and 16 partial seizures that general-

ized to surrounding tissue, forming a population of focal and distributed epileptic networks,

respectively. Seizure type, onset time, and onset localization were marked as a part of rou-
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tine clinical workup.

The seizure state spanned the period between clinically-marked earliest electrographic

change (EEC) (60) and termination; and the pre-seizure state spanned a period equal in

duration to the seizure state and ended immediately prior to the EEC (we refer to each pair

of pre-seizure and seizure states as an event).

5.5.2 Functional Network Construction

5.5.2.1 Pre-Processing

ECoG signals from each event were divided into 1-second, non-overlapping, wide-sense

stationary time-windows in accord with related studies (47). In each time window, signals

were re-referenced to the common average reference (47, 91) to account for variation in

reference location across patients and to avoid broad field effects that may bias connectivity

measurements erroneously in the positive direction.

5.5.2.2 Coherence Estimation

We constructed functional networks in each time-window using multitaper coherence esti-

mation, which defines a network connection between electrode pairs as the power spectral

similarity of signal activity over a specific frequency band. We applied the mtspec Python

implementation (72) of multitaper coherence estimation with time-bandwidth product of 5

and 8 tapers in accord with related studies (48). Based on vast literature implicating high-

frequency oscillations and γ activity as drivers of epileptic activity, we primarily studied

functional connectivity in the high-γ band (95–105 Hz). This frequency range represents

relatively local neural population dynamics that are largely unaffected by volume conduc-

tion.
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5.5.3 Metrics of the Time-Varying Functional Network

5.5.3.1 Network Geometry

In our network analysis, we refer to heterogeneity of network architecture in the context

of node strength, also known as weighted degree. We measure a time-varying quantity

of heterogeneity: the dispersion of the degree distribution in each time window. We use

a non-parametric, interquartile distance measure to quantify dispersion. The interquartile

distance is the 75th percentile subtracted by the 25th percentile of a distribution.

5.5.3.2 Network Synchronizability

A recent trend in studying functional networks is to model dynamic geometric structure

that evolves through states (16, 75, 104). Building on the classical notion of stability of the

synchronized state in static networks, we fit a popular synchronizability model for dynamic

networks (37) to account for time-varying structure of the functional networks in our study.

As a simplification for our analysis, we assume functional networks between time-windows

are independent.

To quantify synchronizability, we first estimated the time-varying Laplacian matrix L(t)

for each time-window t of the functional network. Intuitively, each entry lij(t) of L(t) quan-

tifies how easily information could diffuse between nodes i and j based on the relative

connectivities of both nodes to all other nodes in the network. Next, we computed the

eigenspectrum of L(t) and calculated the ratio of the second-smallest eigenvalue λ2 to the

largest eigenvalue λmax for each t, resulting in network synchronizability st =
λ2
λmax

(larger

values of s(t) correspond to greater state stability) (4). The Supplementary Note provides

details of the master stability function formalism behind synchronizability and its relation-

ship to state stability.
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5.5.3.3 Virtual Cortical Resection

To model potential effects of resecting or lesioning regions of brain networks, we develop a

virtual cortical resection technique. Generally, the approach allows us to ask how network

topology might change upon removing one or more nodes or connections in the network.

In time-varying networks, virtual cortical resections may be useful in patterned lesioning

schemes for implantable devices that continuously modulate brain state away from seizures

(1, 86).

Here, we tailored virtual cortical resection to study putative controllers that regulate

synchronizability in the epileptic network. We measure the control centrality, the contribu-

tion of a node to network synchronizability, by applying virtual cortical resection to each

node in each time-window of the functional network. The control centrality identifies a

node as a desynchronizing (ci > 0) or synchronizing (ci < 0) controller. The Supplemen-

tary Material explores the relationship between control centrality and other topological

properties of networks.

5.5.3.4 Statistical analysis

We compared time-varying network metrics between partial seizures that remain focal and

partial seizures that generalize to surrounding tissue. We performed this comparison by (i)

normalizing each seizure event into 20 sequential time-bins spanning the pre-seizure and

seizure states and (ii) employing functional curve analysis to statistically test differences in

temporal dynamics between seizure type, independently in each state. We assigned p-values

to each state by re-assigning events uniformly at random to seizure types up to 1,000,000

times and computing the mean area between the resulting functional curves.
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5.7 Supplemental Information

5.7.1 Network Synchronizability

5.7.1.1 Master Stability Function

The traditional notion of connectivity in brain networks is the statistical relationships be-

tween cortical regions and how such relationships change with time (32, 40). In addition to

describing topology, connectivity can be used to query how neural processes at each node

diffuse along pathways between cortical areas. The latter study of network organization

asks the nature of diffusive dynamics on static or time-varying networks.

Modeling diffusion of processes over the network is critical for asking pertinent ques-

tions in neuroscience more generally and epilepsy more specifically, such as "How does

brain activity synchronize during seizures?" As functional brain networks re-organize, the

ability for neural processes at each node to synchronize also changes, a property known as

104



5.7 Supplemental Information

synchronizability (4). These attributes are captured by a generative model for diffusion over

the networks, called the master stability function (37, 70) – defined as:

ẋi(t) = f(xi(t)) + σ(t)

N
∑

j=1

Aij(t)(xj(t)− xi(t)) (5.1)

where xi(t) represents the dynamical state of node i, f is a function describing independent

node dynamics, σ is a diffusion constant, A(t) is an N ×N adjacency matrix of connection

weights between N network nodes. For a time-varying functional network, where each

time window is assumed independent, the solution of Eqn. (5.1) is given by:

ẋ(t) = −L(t)x(t) (5.2)

where L is the graph Laplacian whose entries lij quantify how easily neural processes can

diffuse between nodes i and j. For a given network configuration, the potential for dynamics

at each node to achieve equivalence around a state q(t) such that q(t) = x1(t) = x2(t) =

... = xN (t) is the network synchronizability s(t). The stability of the synchronized state q(t)

is quantified by the eigenvalues of L such that:

s(t) =
λ2

λmax
(5.3)

where λ2 and λmax are the second-smallest and largest eigenvalues, respectively. Larger

values of s(t) correspond to greater potential for the network to stably synchronize.

5.7.1.2 Synchronizability of Low-γ Functional Networks

We explored synchronizability in high-γ (95–105 Hz; see Main Text) and low-γ (30–40 Hz)

functional networks. We observed that synchronizability of low-γ functional networks effec-

tively captured spreading dynamics characteristic of distributed epileptic networks during

the seizure (Fig. 5.6a). These findings suggest that synchronizability in high-γ plays a
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role in controlling seizure spread prior to seizure-onset, while synchronizability in low-γ

functional networks facilitates spreading as it occurs.

Similar to high-γ functional networks, we also found that synchronizability held a

strong linear relationship with node strength dispersion (pearson correlation; ρ = −0.747,

p < 1e − 16) (Fig. 5.6b). These findings suggest that the relationship between network

heterogeneity and synchronizability is not specific to functional networks derived from any

specific frequency band.
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Figure 5.6: Synchronizability of Low-γ Functional Networks Captures Seizure Spread. (a)

Time-dependent synchronizability captures network diffusivity in low-γ functional networks.
Distributed epileptic networks describe seizures with secondary generalization (N = 16), fo-

cal epileptic networks describe seizures without secondary generalization (N = 18). Analyzed
epileptic events spanned the clinically-defined seizure and period of time equal in duration

to the seizure, immediately preceding seizure-onset. Events were time-normalized with each
pre-seizure and seizure period divided into 5 equally-spaced time bins (10 bins per event).

Synchronizability was averaged within each bin. Synchronizability was significantly greater in
distributed epileptic networks than in focal epileptic networks only after seizure-onset (func-

tional data analysis, ppre-seizure = 2.4 × 10−1, pseizure = 9.4 × 10−3). Thick lines represent mean,

shaded area represents standard error around mean. P -values are obtained via functional data
analysis (FDA) where event labels (two seizure types) were permuted uniformly at random

(see Methods): ***p < 0.001. (b) Relationship between synchronizability and dispersion of
node strengths in low-γ functional networks across population of distributed and focal epilep-

tic network events. Each point represents average synchronizability and dispersion of average
node strengths from a single time bin (N = 340). Greater synchronizability was strongly re-

lated to greater network heterogeneity, or lower node strength dispersion (pearson correlation;
ρ = −0.747, p < 1e− 16).
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5.7.2 Virtual Cortical Resection

5.7.2.1 Uniqueness of Control Centrality

In the previous subsection we explored methods to query how easily diffusion dynamics

on a network can synchronize. Synchronizability is governed by network organization,

and as the network reconfigures over time so does its potential to synchronize. In this

work we ask a non-trivial question regarding network synchronizability, "Which nodes are

most important controllers for regulating synchronizability?" Answering this question may

have significant impact in understanding which regions of the network naturally maintain

stability in the synchronized state.

Our approach was to independently remove network regions (virtual cortical resection)

and measure change in the ability of the modified network to stably synchronize. The

removed region was assigned a control centrality equal to the fractional change in synchro-

nizability in the modified network from the original network. Based on the relative increase

or decrease of synchronizability, we found that individual nodes can assist in stabilizing the

synchronized state by either desynchronizing or synchronizing the network.

Importantly, we investigated whether control centrality is an emergent property of net-

work topology or simply related to the average strength of connections from that node. To

this end, we computed the amount of variance in control centrality that is explained by

nodal strength during the pre-seizure and seizure epochs in the example focal (Fig. 5.7a)

and distributed epileptic networks (Fig. 5.7b). In both events we observed low linear re-

lationships between control centrality and degree centrality in the pre-seizure and seizure

epochs. These results suggest control centrality is a novel measure of network geometry

specifically related to the synchronization of dynamic processes.
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Figure 5.7: Control Centrality as a Network Measure. (a) Relationship between control
centrality and weighted degree centrality over all time-windows during pre-seizure (left) and

seizure (right) epochs in a sample event from the distributed epileptic network. (b) Relationship

between control centrality and weighted degree centrality over all time-windows during pre-
seizure (left) and seizure (right) epochs in a sample event from the focal epileptic network. r2

measures the amount of variance in control centrality explained by weighted degree centrality.
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5.7.2.2 Regulation of Synchronizability in Low-γ Networks

We explored regional control of synchronizability in high-γ (95–105 Hz; see Main Text)

and low-γ (30–40 Hz) functional networks. In low-γ functional networks, we first asked

whether synchronizing and desynchronizing nodes are differentially distributed amongst

network regions during focal and distributed events.

First, we compared control centrality of nodes within the seizure-onset region during

the pre-seizure epoch (Fig. 5.8a). In focal epileptic networks, desynchronizing nodes ex-

erted significantly greater control than synchronizing nodes (wilcoxon rank-sum; z = 3.48,

p = 5.4e − 4). In distributed epileptic networks, no significant difference between con-

trol exerted by desynchronizing and synchronizing nodes was found (wilcoxon rank-sum;

z = 2.18, p = 0.029). However, SOZ nodes of the distributed network were significantly

more synchronizing than similar nodes of the focal network (wilcoxon rank-sum; z = 2.00,

p = 0.045). No significant difference in desynchronizing strength of SOZ nodes was found

between focal and distributed networks (wilcoxon rank-sum; z = 0.58, p = 0.557). We then

compared control centrality of nodes within the surrounding region during the pre-seizure

epoch (Fig. 5.4b). In focal epileptic networks, desynchronizing nodes exerted significantly

greater control than synchronizing nodes (wilcoxon rank-sum; z = 2.24, p = 0.025). In

distributed epileptic networks, desynchronizing nodes exerted significantly greater control

than synchronizing nodes (wilcoxon rank-sum; z = 2.07, p = 0.038).

These findings suggest that in low-γ functional networks (i) distributed and focal net-

works exert more desynchronizing control than synchronizing control in SOZ and surround-

ing regions, but (ii) SOZ nodes are more strongly synchronizing in distributed networks as

compared to focal networks.
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Figure 5.8: Regional Control Centrality in Pre-Seizure Epoch. (a) Distribution of control

centrality in 10% strongest synchronizing and desynchronizing nodes within the seizure onset
region of focal (N = 18) and distributed (N = 16) events. Focal and distributed networks have

stronger desynchronizing nodes than synchronizing nodes. Distributed networks have stronger
synchronizing nodes than focal networks. *p<0.05, ***p<0.001. (b) Distribution of control

centrality in 10% strongest synchronizing and desynchronizing nodes within the surrounding
region of focal (N = 18) and distributed (N = 16) events. Focal and distributed networks have

stronger desynchronizing nodes than synchronizing nodes.

Next, we compared control centrality of nodes within the seizure-onset region dur-

ing the seizure epoch (Fig. 5.9a). In focal epileptic networks, desynchronizing nodes ex-

erted significantly greater control than synchronizing nodes (wilcoxon rank-sum; z = 3.79,

p = 1.4e − 4). In distributed epileptic networks, no significant difference between con-

trol exerted by desynchronizing and synchronizing nodes was found (wilcoxon rank-sum;

z = 1.02, p = 0.309). However, SOZ nodes of the distributed network were significantly

more synchronizing than similar nodes of the focal network (wilcoxon rank-sum; z = 3.04,

p = 2.4e − 3). No significant difference in desynchronizing strength of SOZ nodes was

found between focal and distributed networks (wilcoxon rank-sum; z = 0.89, p = 0.369).
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We then compared control centrality of nodes within the surrounding region during the

seizure epoch (Fig. 5.9b). In focal epileptic networks, no significant difference between

control exerted by desynchronizing and synchronizing nodes was found (wilcoxon rank-

sum; z = 1.08, p = 0.282). In distributed epileptic networks, desynchronizing nodes ex-

erted significantly greater control than synchronizing nodes (wilcoxon rank-sum; z = 2.30,

p = 0.022).

These findings suggest that during seizures, SOZ nodes in low-γ functional networks

are synchronizing during distributed events and desynchronizing during focal events. Fur-

thermore, surrounding regions remain predominantly desynchronizing during distributed

events. In focal networks, synchronizing nodes of the surround region strengthen from the

pre-seizure period and evenly balance desynchronizing nodes.
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Figure 5.9: Regional Control Centrality in Seizure Epoch. (a) Distribution of control central-

ity in 10% strongest synchronizing and desynchronizing nodes within the seizure onset region
of focal (N = 18) and distributed (N = 16) events. Focal networks have stronger desynchroniz-

ing nodes than synchronizing nodes. Distributed networks have stronger synchronizing nodes
than focal networks. *p<0.05, **p<0.01, ***p<0.001. (b) Distribution of control centrality in

10% strongest synchronizing and desynchronizing nodes within the surrounding region of focal
(N = 18) and distributed (N = 16) events. Distributed networks have stronger desynchronizing

nodes than synchronizing nodes.
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Chapter 6

Conclusions and Discussion

6.1 Contributions

In this thesis, we modeled functional networks of epileptic neocortex in human patients

and studied functional pathways that drive the generation, propagation, and termination of

seizures. The primary goal of this thesis was to characterize epilepsy as a network disorder

of dysfunctional brain circuitry by abstracting beyond current clinical practice of localizing

isolated islands of pathologic cortical tissue. Addressing this goal might relieve the clin-

ical burden of identifying targets for surgical intervention, which in many cases leads to

little reduction in a patient’s seizures, and may pave the road for integrating novel neu-

rotechnologies capable of controlling network dysfunction into clinical practice. To this

end, we developed and applied graph theoretic and machine learning algorithms for objec-

tively mapping functional network pathways between distributed cortical structures related

to conventional clinically-defined targets.

In Chapter 3, we modeled time-varying functional connectivity of the epileptic network

and applied a novel community detection algorithm for clustering patterns of connection

geometry into discrete, time-dependent network states preceding and during seizures. We

found that the network states corresponded to stages of seizure generation, propagation
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and termination and connections between cortical structures in the seizure-onset zone are

persistently stronger than all other network connections. Results from these investigations

suggest that clustering time-varying network architecture can parse seizures and robustly

pinpoint seizure-onset regions, potentially improving the inter-rater reliability currently hin-

dering interpretation of electrophysiology from patients with neocortical epilepsy.

In Chapter 4, we disentangled modular sub-networks from time-varying functional con-

nectivity and applied an ensemble clustering technique for quantifying similarity of cortical

pathways engaged during seizures and normal, interictal periods. We found that functional

connections of the epileptic network form cohesive, stable sub-networks that are expressed

during seizures and recapitulated during interictal periods. These sub-networks form clus-

ters that reliably predict functional pathways incorporating clinically-defined seizure-onset

regions. Secondly, we find that functional sub-networks are persistently expressed during

interictal periods and more transiently expressed during seizures. Our findings have clini-

cal implications in delineating sub-networks generating seizures during interictal periods,

many hours prior to seizure onset.

In Chapter 5, we developed a simulation technique for conducting virtual resections on

regions of the epileptic network and applied the approach to a data set of two types of

seizures, those that spread over cortex and others that remain contained to a local cortical

region. We found that specific network controllers in cortical regions outside clinically-

defined seizure onset nodes, regulate the future spread of seizures. These findings suggest

network regions outside of conventional clinical targets regulate seizure spread, suggesting

the epileptic network is more complex and distributed than originally believed.

Taken together, this thesis work demonstrated that functional connectivity derived from

activity of neural populations at millimeter scale explains, at least in part, functional archi-

tecture of the epileptic network. Our findings suggested that regions generating seizures

exhibit stereotyped patterns of connectivity, which may be predicted many hours before
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epileptic events. Finally, we generated a notion of network stability that may be used for

probing cortical controllers of seizure evolution.

6.2 Future Studies

While this work yields many insights regarding the architecture of the epileptic network,

clinical translation of these tools requires further validation. Many of the network properties

studied in this thesis were related back to “gold-standard” markings of seizure-onset regions

in a data set of highly varying patient outcome. This poses several problems: (i) a consensus

definition of seizure-onset is lacking and unreliable across clinicians and institutions, (ii)

well-defined seizure-onset may still lead to poor outcome, and (iii) resection margins may

only partially overlap with the seizure-onset region.

To reliably validate objective algorithms for mapping dysfunction in epileptic networks,

we should differentiate functional connectivity within the resection zone of patients who

experienced good and bad seizure reduction. This study would enable a more direct com-

parison of network architecture with a variable closest to seizure reduction. We hypothesize

that spatially distributed, strongly connected nodes, which significantly corresponded to

cortical structures within seizure-onset zone, may have a large overlap with resected nodes

in patients with good outcome. Alternatively, we can test whether resecting controllers in

regions outside the seizure-onset nodes leads to better containment of seizure activity –

verifying the utility of the developed virtual cortical resection technique.

Along a similar line of thought, we speculate that network architecture may predict

post-surgical seizure freedom. In patients with seizures generated near network hubs con-

necting many distributed cortical structures, we hypothesize resective surgery may not lead

to favorable outcome. To test this hypothesis, we could use linear mixed effects models

to stratify clinical scales of seizure freedom (Engel or ILAE) based upon network measures

such as stability (synchronizability), number of sub-networks, or spatial extent of strongest
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6.2 Future Studies

connections. These studies can have potential clinical impact in screening patients who are

good candidates for resective surgery.

Another line of work that requires validation is using functional architecture of the

epileptic network to pinpoint stimulation targets for implantable devices. We hypothesize

that functional connections within the network can be leveraged to deliver stimulation to

specific cortical structures. Testing this hypothesis might involve tracking the effects of

stimulation on functional architecture to predict whether stimulating at one node results

in changes in neural activity at a connected node. We can then assess whether stimulating

nodes with connections leading to seizure-onset areas might abort seizure evolution.

All facets of this important future work will be essential for introducing the findings of

this dissertation into clinical practice.
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