2,805 research outputs found

    Activation thresholds in epidemic spreading with motile infectious agents on scale-free networks

    Get PDF
    We investigate a fermionic susceptible-infected-susceptible model with mobility of infected individuals on uncorrelated scale-free networks with power-law degree distributions P(k)∼k−γP (k) \sim k^{-\gamma} of exponents 2<γ<32<\gamma<3. Two diffusive processes with diffusion rate DD of an infected vertex are considered. In the \textit{standard diffusion}, one of the nearest-neighbors is chosen with equal chance while in the \textit{biased diffusion} this choice happens with probability proportional to the neighbor's degree. A non-monotonic dependence of the epidemic threshold on DD with an optimum diffusion rate D∗D_\ast, for which the epidemic spreading is more efficient, is found for standard diffusion while monotonic decays are observed in the biased case. The epidemic thresholds go to zero as the network size is increased and the form that this happens depends on the diffusion rule and degree exponent. We analytically investigated the dynamics using quenched and heterogeneous mean-field theories. The former presents, in general, a better performance for standard and the latter for biased diffusion models, indicating different activation mechanisms of the epidemic phases that are rationalized in terms of hubs or max kk-core subgraphs.Comment: 9 pages, 4 figure

    Description of spreading dynamics by microscopic network models and macroscopic branching processes can differ due to coalescence

    Full text link
    Spreading processes are conventionally monitored on a macroscopic level by counting the number of incidences over time. The spreading process can then be modeled either on the microscopic level, assuming an underlying interaction network, or directly on the macroscopic level, assuming that microscopic contributions are negligible. The macroscopic characteristics of both descriptions are commonly assumed to be identical. In this work, we show that these characteristics of microscopic and macroscopic descriptions can be different due to coalescence, i.e., a node being activated at the same time by multiple sources. In particular, we consider a (microscopic) branching network (probabilistic cellular automaton) with annealed connectivity disorder, record the macroscopic activity, and then approximate this activity by a (macroscopic) branching process. In this framework, we analytically calculate the effect of coalescence on the collective dynamics. We show that coalescence leads to a universal non-linear scaling function for the conditional expectation value of successive network activity. This allows us to quantify the difference between the microscopic model parameter and established macroscopic estimates. To overcome this difference, we propose a non-linear estimator that correctly infers the model branching parameter for all system sizes.Comment: 13 page

    Anomalous transport in complex networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 43-45).The emergence of scaling in transport through interconnected systems is a consequence of the topological structure of the network and the physical mechanisms underlying the transport dynamics. We study transport by advection and diffusion in scale-free and Erdős-Rényi networks. Using stochastic particle simulations, we find anomalous (nonlinear) scaling of the mean square displacement with time. We show the connection with existing descriptions of anomalous transport in disordered systems, and explain the mean transport behavior from the coupled nature of particle jump lengths and transition times. Moreover, we study epidemic spreading through the air transportation network with a particle-tracking model that accounts for the spatial distribution of airports, detailed air traffic and realistic (correlated) waitingtime distributions of individual agents. We use empirical data from US air travel to constrain the model parameters and validate the model's predictions of traffic patterns. We formulate a theory that identifies the most influential spreaders from the point of view of early-time spreading behavior. We find that network topology, geography, aggregate traffic and individual mobility patterns are all essential for accurate predictions of spreading.by Christos Nicolaides.S.M

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe
    • …
    corecore