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Abstract

The emergence of scaling in transport through interconnected systems is a conse-
quence of the topological structure of the network and the physical mechanisms un-
derlying the transport dynamics. We study transport by advection and diffusion in
scale-free and Erdos-R6nyi networks. Using stochastic particle simulations, we find
anomalous (nonlinear) scaling of the mean square displacement with time. We show
the connection with existing descriptions of anomalous transport in disordered sys-
tems, and explain the mean transport behavior from the coupled nature of particle
jump lengths and transition times. Moreover, we study epidemic spreading through
the air transportation network with a particle-tracking model that accounts for the
spatial distribution of airports, detailed air traffic and realistic (correlated) waiting-
time distributions of individual agents. We use empirical data from US air travel to
constrain the model parameters and validate the model's predictions of traffic pat-
terns. We formulate a theory that identifies the most influential spreaders from the
point of view of early-time spreading behavior. We find that network topology, geog-
raphy, aggregate traffic and individual mobility patterns are all essential for accurate
predictions of spreading.
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Chapter 1

Introduction

Complex systems are very often organized under the form of networks with nodes

and edges between them. During the last decade the idea of complex networks cause

a breakthrough to the scientific community and have long been the subject of many

studies in mathematics, mathematical sociology, computer science and genetics and

medicine. Complex weblike structures describe a wide variety of systems of high

technological and intellectual importance. For example, the cell is best described

as a complex network of chemicals connected by chemical reactions; the Internet is

a complex network of routers and computers linked by various physical or wireless

links; fads and ideas spread on the social network, whose nodes are human beings

and whose edges represent various social relationships; the World Wide Web is an

enormous virtual network of Web pages connected by hyperlinks; metapopulation

networks, where the nodes represent populations and the connections flows of indi-

viduals between different areas, have used to study global epidemic spreading; cellular

functions are carried out by a complex network of genes, proteins, and metabolites

that interact through biochemical and physical interactions; These systems represent

just a few of the many examples that have recently prompted the scientific community

to investigate the mechanisms that determine the topology of complex networks.



1.1 Structure Of Real World Nets

The study of complex systems began with the effort to identify their structure and

develop models that can reproduce their characteristics. The first model was pro-

posed by Erdos and R6nyi [15] at the end of the 1950s and was at the basis of most

studies until recently. They assumed that complex systems are wired randomly to-

gether, a hypothesis that was adopted by sociology, biology, and computer science.

It had considerable predictive power, explaining for example why everybody is only

six handshakes from anybody else [38] , a phenomenon observed as early as 1929

and is well known as 'the six degrees of separation'. However, this model failed to

explain the big clustering, a common property of social networks where cliques form,

representing circles of friends or acquaintances in which every member knows every

other member. This latter property is characteristic of ordered regular lattices.

The interest in networks was however renewed in 1998 by Watts and Strogatz [40],

who extracted stylized facts from real-world networks and proposed a simple, new

model of random networks. They proposed a model that interpolates between an

ordered finite-dimensional lattice and a random graph. This model combines small

average shortest path and big clustering, characteristics of a wide variety of social

complex systems.

In the above models, the number of nodes a node is connected (node degree or

connectivity) is more or less the same for all the nodes. More specifically, the degree

distribution of a random graph is a Poisson distribution with a peak at P(< k >),

where < k > is the average degree. However, one of the most interesting developments

in our understanding of complex networks was the discovery that for most large

networks the degree distribution significantly deviates from a Poisson distribution.

In particular, for a large number of networks, including the World Wide Web [2], the

Internet [16], or metabolic networks [19], the degree distribution has a power-law tail,

P(k) ~ k--. (1.1)

Such networks are called scale free [3]. While some networks display an exponential



tail, often the functional form of P(k) still deviates significantly from the Poisson

distribution expected for a random graph.

The origin of the power-law degree distribution observed in networks was first

addressed by Barabaisi and Albert (1999) [3], who argued that the scale-free nature

of real networks is rooted in two generic mechanisms shared by many real networks:

Growth and Preferential Attachment: (i) Growth Starting with a small number (mo)

of nodes, at every time step, we add a new node with m(< mo) edges that link

the new node to m different nodes already present in the system. (ii) Preferential

Attachment When choosing the nodes to which the new node connects, we assume

that the probability that a new node will be connected to node i is proportional to

the degree ki of node i, such that

II (k -) =. (1.2)
- kj

Numerical simulations indicate that this network evolves into a scale-invariant state

with the degree of a node following a scale-free distribution with power 7YBA = 3.

1.2 Dynamical Processes in Complex Networks

Recent work has led to fundamental advances in our understanding of flow and trans-

port properties of complex networks. These include the analysis of the conductance

between two arbitrarily chosen nodes in scale-free or Erdos and Renyi networks [25]-

an analysis that has been extended to the case of multiple sources and sinks [10, 9],

and to weighted networks [23]. The dynamics of spreading through scale-free networks

have been studied by means of diffusive random walks [32, 17, 8, 18, 5], which have

led to scalings for the mean first passage time (MFPT) in terms of network central-

ity [32] and modularity [18]. Studies to date leave open, however, the question of how

directional bias impacts transport. Bias, or drift, occurs naturally in many network

systems, including advection from a flow potential [25], agent spreading in topologies

with sources and sinks, such as utility networks [11] and freely diffusing molecules in



tissue [41], and tracer diffusion in suspensions of swimming microorganisms [22].



Chapter 2

Potential Driven Diffusion in

Spatial Embedded Complex

Networks

Here, we study the scaling properties of physical transport in scale-free and Erdos-

Renyi networks. The fundamental question is whether the topology of the network,

the underlying physical mechanisms, or both, control the scaling properties of trans-

port in complex networks. Transport is physical in the sense that, as observed in

most natural settings, the spreading process is conservative and driven by the inter-

play between advection-which derives from a flow potential-and diffusion, which

we model through random walks. We show that advection leads to anomalous (non-

Fickian) transport, as evidenced by the nonlinear time scaling of the mean square

displacement (MSD) of tracer particles migrating through the network. The simula-

tion results suggest that a mean-field theory such as Continuous Time Random Walk

(CTRW), which describes transport from a joint probability distribution of particle

jump lengths and transition times [30, 35, 21, 28], may be used to capture the average

transport behavior. We show that coupling between space and time [7, 14] is essential

to describe advective transport in a complex network.



2.1 Physical Setting

To study the scaling properties of advection-driven transport, we construct scale-free

networks, characterized by a power law connectivity distribution, P(k) ~ k--7, where

k is the number of links attached to a node, and -y is the characteristic exponent

of the network, with 2 < 7y < 4.8. We generate graphs following the Molloy-Reed

scheme [29]. Given the size of the network (N nodes), the degree exponent -Y, and

fixing the minimum degree to be kmin = 2, we use the relations from Aiello et al. [1]

to obtain the degree sequence from a power law distribution. We then produce a

list of ki copies of each node i, and attach links between nodes by randomly pairing

up elements of this list until none remain. We disallow double links, as well as self-

linked nodes. This algorithm generates networks of excellent accuracy for arbitrary

exponents -y, even for relatively small network sizes. We generate an Erdos-Renyi

network by attaching a link to each pair of nodes with probability p = 0.01. We

assume for simplicity that the nodes in our model network are uniformly spaced in the

unit square (Fig. 2-1). The positioning of nodes on a square lattice is an idealization

of networks with spatial embedding that exhibit power-law connectivity, including

power and distribution networks [11], and transportation and biological systems [39].

Networks embedded in metric spaces often exhibit a decay of nodal connectivity with

distance [34, 24]-we have not included this distance-dependent connectivity in our

study which therefore allows for long-ranged links.

2.2 Potential-Driven Transport Process

Flow through the network is driven by a scalar (potential) field, and satisfies conser-

vation of mass. At every node i we impose >3 ui = 0, where uij is the flux through

the link connecting nodes i and j. The fluxes are given by

P-- P-
uij = -Aij i d. 'i (2.1)
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Figure 2-1: Schematic representation of our model network [31]. Nodes are distributed
uniformly on the unit square. Their connectivity (represented by node diameter)
follows a power law distribution. Flow through the network derives from a potential P
that varies between 1 (left boundary) and 0 (right boundary).



where Pi and P are the flow potentials at nodes i and j, respectively, and dij is the

Euclidean distance between the two nodes. This problem is exactly analogous to the

electric conductance model of [25, 10, 9, 23], except that in our model the relation

between velocity and potential difference is modulated by the inverse of link length.

Here, we assume that the conductivity is the same for all links, and takes a value

yj = 1. To elucidate the essential mechanisms governing transport, we study a simple

setting of flow from left to right by fixing the potential P = 1 at the inflow nodes

(left boundary), and P = 0 at the outflow nodes (right boundary). Flow is confined

between the top and bottom boundaries. Inserting the flux equation [Eq. (2.1)] into

the mass conservation condition at each node, and imposing the boundary conditions,

leads to a linear system of algebraic equations to be solved for the flow potential at

the nodes, {P}, which are stationary and do not evolve in time. This system of

equations is solved with a direct solution method such as Gaussian elimination.

For different values of the degree exponent 7y, the distributions of nodal potential

collapse in the range P E (0.4,0.6) [Fig. 2-2(a)]. Within this range, the flow potential

seems to be normally distributed (dashed line). The velocity at the links, u, follows

a distribution that exhibits a power law tail [Fig. 2-2(b)]. In the range -y E [2, 3.2],

the exponent of the velocity power law distribution is well approximated as V ~y + 1

[Fig. 2-2(b), inset]. As a consequence of this behavior, a slower decay in network

connectivity (smaller 'y) results in increased probability of observing large velocities

at the links. Interestingly, the flow potential distribution for a random (Erdos-Renyi)

network has a very different shape from that of scale-free networks, yet it also leads

to a power law tail distribution of the link velocities. Note that for a regular lattice,

the distribution of flow potentials is uniform, and the distribution of velocities is a

double Dirac delta function.

2.3 Random Walks

We investigate the scaling properties of transport in scale-free networks through

stochastic particle simulations. This allows us to explore the transition between the
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Figure 2-2: (a) Pressure distributions, <k(P), for scale-free networks with different
degree exponents, y, as well as for an Erd6s-Renyi network (E-R). The dashed line is
a Gaussian fit with mean P = 0.5 and standard deviation up 0.08. We use networks
of size N = 8100 nodes, and the results are averaged over 250 realizations. (b) Velocity
distributions, <D(u), for different network types. Inset: Exponent v of the velocity
distribution power-law tail plotted against the connectivity exponent 7/ E [2,3.2];
shown also is a least-squares linear interpolation v = (0.99 ± 0.02)-y + (1.03 i 0.05).



purely diffusive and advective regimes. Particles move along the links of the network

according to the local advective velocity field obtained from the steady-state poten-

tial solution, together with an additional random diffusive component sampled from

a Gaussian distribution:

XN+1 = XN + 6XN, (2.2)

6 XN = uijot + 12D 6t, (2.3)

XN+1 ' 0 (2.4)

where X denotes the coordinate along the link, D is the diffusion coefficient, and

( = N(0, 1). At t = 0, we inject particles at random at the inflow nodes. A particle

located at node i at a given time step chooses one of the outgoing links to "walk" on it.

Link selection is performed at random, with probability that is linearly proportional

to the magnitude of the link velocity. The term outgoing refers here to links with

velocity vectors pointing from the initial position of the particle (node i), to the

destination connected nodes. Constraint (2.4) forces particles walking on a link ij to

stay on it until they reach the destination node j. Particles are removed when they

reach the outflow nodes.

The key parameter in this stochastic process is the ratio between advective and

diffusive jump lengths,

A =(2.5)
/2Do5t

where i is the characteristic velocity at the links. This computational quantity plays

the role of the Peclet number (Pe = ud/D) in physical fluid flow, where d is the

characteristic length of the links. The purely advective and diffusive limits correspond

to A - oo and A = 0, respectively. A second computational parameter is e

uot/(Ad), which measures the effect of the boundary constraint (2.4). By fixing the

value of E, we impose a constant ratio between the number of advective jumps affected

by the constraint, and the average number of jumps needed for a particle to move

from one node to another. This permits a rigorous interpretation of the results from
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Figure 2-3: The particle MSD follows a power law in time during early times, before
it is influenced by boundary effects (inset). The main plot shows the scaling expo-
nent 3 of the particle MSD, for advection-dominated transport (A > 1) in scale-free
networks, plotted against the connectivity degree exponent -y. Transport is anoma-
lous, and falls in the superdiffusive regime (03 > 1). Shown also are the values of 3
for an Erdo~s-Renyi (E-R) network-for which transport is also superdiffusive-and a
regular lattice-for which transport is normal, 3 = 1. We use networks with N = 8100
nodes, and set A = 7 and E = 0.0014. We use 3000 particles and we average over
100 realizations. Within each realization, we construct the network, solve the flow
potential equation, and advance particles by advection and diffusion, according to the
flow field from the potential solution.
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particle tracking simulations. We analyze the Euclidean mean square displacement

(MSD, also known as dispersion, or variance of the particle plume) in the direction

of the mean flow: (Ax 2 (t)) = (X2(t)) - (x(t)) 2 , where () denotes averaging over all

the particles.

In the advective limit (A > 1, E < 1), the MSD follows a power law at early times,

(Ax 2 (t)) - t0, and then saturates due to finite size effects (Fig. 2-3, inset). We com-

pute the scaling exponent # in the pre-asymptotic regime for scale-free networks with

different exponents -y, as well as for an Erd6s-R6nyi (E-R) network. Our simulations

show that advection-dominated transport on scale-free networks is anomalous, and

exhibits superdiffusive behavior, # > 1 (Fig. 2-3). The exponent # increases mono-

tonically with 'y. For large 'y, it asymptotically reaches the ballistic limit, # = 2.

We have confirmed that our results are independent of network size for N > 4000

(Fig. 2-4).

2

1.9-

41.8

D1.7 .

1.6

1.51
0 5000 10000 15000

Network Size

Figure 2-4: The scaling exponent # as a function of the network size for scale-free

network with connectivity exponent -y = 2.6. We use 3000 particles, parameters value

A = 7 and E = 0.0014, and we average over 100 realizations

The scaling properties of transport in scale-free networks depend on the rela-

tive dominance between advective and diffusive mechanisms (Fig. 2-5). We perform

simulations varying the ratio between the advective and diffusive jump lengths by
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Figure 2-5: Purely diffusive transport (A < 1) in scale-free networks leads to linear
scaling of the mean square displacement (# ~ 1). As A increases, we observe a
transition from normal transport to anomalous transport, with scaling exponents, #,
that reach different asymptotic values in the superdiffusive regime, depending on the
network topology (Fig. 2-3). We use networks with N = 8100 nodes, fixed E = 0.04,
and 3000 particles. Simulation results are averaged over 100 realizations.

controlling the value of parameter A. For small values of A, transport is governed

by diffusion, while for large values advection dominates. The scaling exponent of

the MSD increases monotonically with A. This implies a transition from the normal

scaling (# = 1) of purely diffusive transport, to anomalous scaling (# > 1) in the

advection-dominated limit. The asymptotic value of # as A -+ oc is controlled by the

topology of the network (Fig. 2-3).

2.4 The Continuous Time Random Walk Frame-

work

The observed scaling can be understood within the Continuous Time Random Walk

(CTRW) framework [30, 35, 6, 20]. This model of transport assumes that the statis-

tics of particle spreading can be fully characterized by a joint probability distribu-

tion, $(X, T), of particle jump lengths, x, and waiting time between jumps, T, whose

........... -- - ----__ -____- -_



marginal distributions A(x) and w(T), respectively, can be derived by integration.

It is well understood that broad distributions of jump lengths or transition times

may lead to anomalous transport [30, 35, 6, 20]. To test the ability of CTRW to

describe transport in scale-free networks, we perform ID random walks by sampling

the empirical joint distributions @(x, T) recorded from our network simulations. In

the advection limit, the jump length can be represented by the length of the link, d.

Since the network is restricted to a finite domain, d is bounded and is found to be

well approximated by a Kumaraswamy distribution [Fig. 2-6]. In contrast-and due

1.5 .i
1.5x y=2.5

X + y=3.3
Kumaraswamy
distribution

LL se0

0.5

0
0 0.5 1 1.5

jump length (length of the link)

Figure 2-6: Distribution of link lengths in our embedded Erd6s-Renyi and scale-free
networks for different values of the degree exponent, -y = 2.5 and 3.3. This distribution
of link lengths is well approximated by a double-bounded Kumaraswamy distribution
<D(d) ~ (d/v 2)(1 - (d//2)2)4

to the broad-ranged velocity distributions-the transition times between connected

nodes, T = d/u, exhibit a wide range distribution with power law tail, w(r) ~. T(1±6)

[Fig. 2-7(a)], where 6 ~ 1.9 for all degree exponents -y. In the case of decoupled

CTRW [@(x, r) = A(X)w(T)] in an infinite lattice under a bias, we would expect an

asymptotic late-time scaling of the MSD, (Ax 2 (t)) t 1 [35, 36, 28], in contrast

with the observed scalings (Fig. 2-3) The lack of quantitative agreement between de-

coupled CTRW and the scaling observed in our network simulations highlights the

importance of the coupling between jump length and waiting time [Fig. 2-7(a), insets]

in the MSD, especially at early times [Fig. 2-7(b), bottom-right inset]. A ID coupled

....... ...... ..... ......... ...........



CTRW qualitatively recovers the monotonic increasing trend of the scaling exponent #
as a function of 'y [Fig. 2-7(b)]. Quantitative agreement requires introducing addi-

tional information from the network simulations, such as the possibility of back-flow,

and linear interpolation of the particle positions between jumps [Fig. 2-7(b), top-left

inset]. The transition to normal transport for small 7y (Fig. 2-3) is consistent with the

convergence of the joint distribution of jump lengths and transition times towards

the geometric limit T ~ d2 [Fig. 2-7(a), top-left inset]. This unexpected diffusion-like

scaling, whose origin appears to lie in the existence of very well connected nodes, is

responsible for bounding anomalous transport behavior.
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Figure 2-7: (a) Marginal distribution of waiting times for advection-dominated trans-
port and different scale-free networks. Insets: Joint distribution V)(d, 'r) for two dif-
ferent scale-free networks (y = 2.0 and 4.8). Link length and transition time exhibit
strong coupling for -y = 2.0, for which the joint distribution collapses around the
scaling r d2 . The results are for network size N = 8100 nodes and over 300
realizations. (b) MSD for coupled and unidirectional CTRW, using data from dif-
ferent network types. Bottom-right inset: MSD for coupled and uncoupled biased,
ID CTRW. Top-left inset: MSD from network simulations compared with the results
from ID coupled CTRW, and ID RW with back-flow and linear interpolation along
the jumps. By back-flow we mean that the velocity along links in the network sim-
ulations is predominantly in the positive x-direction, but the flow is 'backwards' for
some links. The ID random walk simulations with backflow are based on taking a
fraction of the jumps in the negative x-direction, to better approximate the actual
2D network simulations. In the classical CTRW framework, particles are assumed to
'wait' at a given location until they jump to a new one. By interpolation we mean
that we post-compute the mean square displacement (MSD) at a given time as if the
particles had experienced a constant velocity between jumps-a behavior that more
closely resembles the setting of the 2D particle tracking network simulations.
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Chapter 3

Influential Spreaders in Air

Transportation Network

The understanding of explosive spreading of infectious diseases is crucial to global

population health, especially given the growing connectivity of an increasingly vul-

nerable human mobility system. In this chapter, we build an agent mobility model

using single-agent modeling strategy in which each individual is tracked in time. The

system evolves following a stochastic microscopic dynamics and at each time step it is

possible to record average quantities such as the density or the geographical spreading

of infected agents. Each individual particle has its own itinerary based on real data,

latest advances in understanding human mobility patterns and on a Continuous Time

Random Walk framework with correlated waiting times. Individual mobility patterns

are essential to capture the early time spatial characteristics of an epidemic outbreak.

3.1 Available Data

We have available data that count for flights from all airlines with at least one origin

or destination inside US (including Alaska) for the period of time between January

2007 to July 2010 provided by Federal Aviation Administration 1. The data divided

in two datasets: A) T-100 Segment and B) T-100 Market. In Market, a passenger

lhttp://www.faa.gov/



Figure 3-1: World map with the location of the airports in the US database from the
Federal Aviation Administration.

is "enplaned" and is counted only once as long as he/she remains on the same flight

number up to the final destination. In segment, a passenger is "transported" and

is counted for each leg of the trip. Hence, from the Market dataset we can extract

effective flows (not everything) from one airport to the other (W matrix), while from

the segment database we can calculate exact traffic in each segment of the network

(WT, matrix). We also have available itinerary data from a major US airline, that

account for tickets have been bought for domestic travels during the period July 1

and October 3 1 st, 2004 2.

3.2 Agent Mobility Model

The Air Transportation network consist of V Airports and E edges. The network

characterized by the weighted matrix W where its entry wij gives the number of

passengers travel from the airport i with final destination j. To each airport j we

assign a population given by the empirical relation Nj - T, where a = 0.5 and

T = Ej wij is the total traffic of the airport j [12].

2Barnhart group (Transportation@MIT)
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Each individual at a given airport choose a destination airport to travel [27] ac-

cording to the effective fluxes W with probability:

Pij ~ Wij (3.1)

Based on the fact that W accounts only for travels where the individuals remain

under the same flight number, i.e. does not reflect actual flows, we set a constant

small probability for the agent to choose any other destination.

The individual travel to the final destination airport by choosing the route with

the less total cost, ie the route that minimize

do .2*0.

C L= c 3  L jo.2. (3.2)

Where the sum is over all the segments (i, j) of the trip. This formula combines the

need for small number of connection flights to the destination, routes with total large

traffic and intermediate steps, in a sense somewhere between origin and destination.

The noise I put there acounts for the different social-economic situation of each agent:

rich people care only about minimize number of connections however poor people care

about the money cost that is highly (negative) correlated with the flux in the links.

The above model based on the currently explosion of usage websites that give many

alternative choices of flight between an origin and a destination (Expedia, Orbitz etc).

If the route is with intermediate stops, at the connecting airport, the agent will

wait for a short time period chosen by real data of scheduled waiting times at con-

necting airports (Fig. 3-2) In general, when an agent is off ground, flights with the

average plane velocity of u = 650km/h.

After the agent arrives to the destination, he/she choose one waiting time from a

waiting time distribution (Fig. 3-2) and stays there. The way we assign populations in

each airport as a function of total traffic, allow us to use same waiting time distribution

for all agents.

When the waiting time elapse, the agent use the Back to Home rule: 98.5% of the

agent itineraries include only one final destination and return home (i.e. at the loca-
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Figure 3-2: Waiting time distribution at the connecting airports [4], at the final travel
destinations (individual Ticket data from a major US airline between July 1st and
September 30th, 2004 for domestic travels) and at the agent's home (artificial). We
make use of the fact that the time spent an agent home is order of magnitude larger
than the time spent at a travel destination

tion the agent assigned initially). 1.05% of the itineraries include 2 final destnation

and 0.45% include 3 final destinations. For the above rule we use the individual ticket

data (- 2.5 million round trip itineraries) from a major US airline between July 01,

2004 and September 30, 2004 for domestic flights.

If the agent is at "home", or continue his travel, he choose one destination airport

using two recently applied rules for explaining human mobility patterns: Exploration

and Preferential Visit [37]:

Exploration: the probability to visit a new airport is:

PNew = pS- (3.3)

where S is the number of unique airports an agent has visited in the past. We will

use -y = 0.21 t 0.02 and p (p > 0) from a Gaussian distribution with mean p = 0.6

that fit the mobile phone data of human mobility [37].

........... ...... .. ... ...... . ....... I - , ------ - -----
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Figure 3-3: Exploration and Preferential Visit. With star is represented the home of
the individual (Seattle) and with the hexagons, the already visited places. The size
of the hexagon represents how many times is visited by the agent in the past.

Preferential visit: With complementary probability

PRet = 1 - PS' (3.4)

the agent will visit airports that already have visited. In this case the probability

Hi to visit an airport i is chosen proportional to the number of previously visits at

location i, fi
1i= f (3.5)

We allow the agent mobility model to advance for a period of time (~ 1 year) in

order to 'train' the agents and avoid early time instability that the exploration and

preferential visit rules may cause.

..... ....... .................. ......... ....... .......... ------------- ....... ..



3.3 Infection Model

We use the compartmental SIR (Susceptible-Infected-Recovered) and SIS (Susceptible-

Infected-Susceptible) models to study epidemic spreading in our mobility model. The

SIR model is characterized by a set of reaction equations:

S + 4 21

1 4 R, (3.6)

while the SIS can be described by:

S+ I $ 21

I4 S (3.7)

The compartmental models above conserves the number of individuals and are

characterized by the reproductive number R = #/p, which determines the average

number of infectious individuals generated by one infected individual in a fully sus-

ceptible population. The epidemic is able to generate a number of infected individuals

larger that those who recovered only if R > 1, yielding the classic result for the epi-

demic threshold [33]. On the other hand, if the spreading rate is not large enough

to allow a reproductive number larger than one (that is # > p), the epidemic out-

break will affect only a negligible portion of the population and will die out in a

finite amount of time. This result is valid at the level of each subpopulation (airport)

and holds also at the metapopulation level (network of airports) where R > 1 is a

necessary condition to have the growth of the epidemic [13].

Under the assumption of homogeneous mixing within a city, contacts between

Susceptible and Infectious individuals are uniformly distributed. Let # be the contact

rate for each time step, defined as the average number of individuals with whom an

infectious individual will make sufficient conduct to pass the infection in the time

interval (t, t + 6t). The average number of new infections caused by one infectious
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Figure 3-4: Snapshot of susceptible, infected and recovered agents during airline
traffic-driven disease spreading from Los Angeles Int. Airport (LAX), after ~10 days.
In this particular simulation, we used an SIR model with parameters #=0.01 (infection
rate) and pi=0.004 (recovery rate), and a total of 50,000 agents.

person in that city on that time (t, t + dt) is equal to 3Sj(t)/Nj(t). Therefore the

expected number of newly infected persons in city i at the t + Uf is:

(3.8)itMSi(t)
Ni (t)

One infected can be recovered during the time period between t and t + oU with a

probability p,, where mu 1 is the typical duration of a decease. Hence, the expected

number of newly recovered in city i at t + Uf is:

PIi (t) (3.9)

The above formulation assume that the city is isolated and no infected come inside

and out the city during the interval (t, t + t). The SIR model can be characterized

.......... ........................ .....



by the deterministic set of equations

Sit+ t) = Sj(t) + (Sjtt)) -O # Ni(t) (3.10)
Ni(t)

Ii (t + 6t) = Ii (t) + Q (Ij (t)) + 0 i Mt) - P Ii t) (3.11)
Ni (t)

Ritt+6t) = Rjtt)+Q(Rjtt))+pIj(t), (3.12)

(3.13)

where Q(Xi) is called transport operator and represents the net change in compart-

ment X due to travel from/to city i. From the above system of equations we can

extract (by adding them) the conservation equation for the population in each city:

Ni(t + 6t) = Ni(t) + Q(Si(t)) + Q(I (t)) + Q(Ri (t)) (3.14)

Using the same formulation above we can write also down the equations that describe

the SIS model:

Si(t + 6t) = S (t) + Q(S (t)) - # S 2(t)Ii(t) + Ph1(t) (3.15)
Ni(t)

(3.16)

Ni (t)

(3.18)

3.4 Numerical Simulations - Results

As we said before we allow the mobility model to run for a period of 1 year in order to

avoid early times spreading instability that maybe will caused due to the exploration

and preferential return rules.

We choose particular values of the decease parameters # and y and we initialize the

epidemic spreading model by assigning randomly 10 infected agents at the airport of

consideration. We first consider the epidemic threshold when an epidemic starts from

different airports. The epidemic threshold defined by the reproductive number above



which the epidemic causes an outbreak [Fig. 3-5]. It is very clear that the epidemic

Z 0.2-~ --4J, AT L
.2 -0- SEA

02 -0-ANC
0.15 - '-O0- BOS

0.1 -- MCO0.1
0.05 -

0 50 100 150 2 3 4 5 6 7
time (days) R=p/p

Figure 3-5: SIR Model: (left) The density of Infected agents (i = I/N) as a function
of time for different values of # and y = 0.0412 when an epidemic started from Kansas
City Int. Airport. Each Curve is averaged over 100 realizations and we use 105 agents
for the mobility model. (right) The maximum of the desnsity imax as a function of
the reproductive number R = #/p of the process.

threshold does not depend on the initial position of the infected agents since for all

airports the reproductive number above which the epidemic causes an outbreak is the

same for all airports and near to R = 1 [13].

We next use two quantities in order to quantify early time spreading ability of the

different airports: Mean Square Displacement [31] and Entropy [12, 26]:

Mean Square Displacement: This quantity indicates the spatial spreading of the

agents at each time and can be defined:

Ax 2 (t) =< (x(t)- < x(t) >)2 >, (3.19)

where x(t) the position vector of all agents at time t and < . > indicates averaging

over all the infected agents.

Entropy: measure of the level of heterogeneity of decease prevalence and defined

.. ...... ........... -............ - ........ ..... - ....................... ...............
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Figure 3-6: SIR Model: The MSD of Infected agents plume as a function of time
for different values of R = #/p where p = 0.0412 when an epidemic started from
different airports in US. Each Curve is averaged over 100 realizations and we use 10'
agents for the mobility model.

as:

H( - p (t) log pi ( (3.20)
log V

where p1 (t) = ij(t)/ imm(t) and iy(t) = I3 (t)/Nj(t) the prevalence in each city j.

Entropy takes values between 0 at the initial time when only one city is infected, and

1 when all the airports in the world have the same density of infected agents (im = ii

for every m and 1).

We plot these two quantities as a function of time in the case of an SIR [Fig. 3-71

and SIS [Fig. 3-8] model for different airports of initialization and try to compare

airports in terms of ability to spread in the space the decease. I also report properties

like total traffic and connectivity of the airports of consideration [Fig. 3-9].

........... ... ...........
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Figure 3-7: SIR Model: The MSD of Infected agent plume as well as the Entropy as a
function of time for different values of R = #/p where p = 0.0412 when an epidemic
started from different airports in US. Each Curve is averaged over 100 realizations
and we use 10' agents for the mobility model. We concetrate at early time period
between 1 and 10 days after the infected appeard in the airport of Consideration
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started from different airports in US. Each Curve is averaged over 100 realizations
and we use 10' agents for the mobility model. We concetrate at early time period
between 1 and 10 days after the infected appeard in the airport of Consideration
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Figure 3-10: The wave front of infected agents 10 days after the epidemic started from
Los Angeles International airport. We make use of the SIS model with parameters
# = 0.01 and p- = 0.0412. Results are averaged over 100 realizatiosn and we use 105

agents for the mobility model.
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Figure 3-11: The wave front of infected agents at different times after the epidemic
started from different airport locations. We make use of the SIS model with parame-
ters # = 0.01 and p = 0.0412. Results are averaged over 100 realizatiosn and we use
10' agents for the mobility model.

From the above plots it is clear that some airports dominates in terms of ability

to spread a decease spatially around the world. This ability correlated with the con-

nectivity and the total traffic. However these two properties cannot define, only by

themselves, the ability of spreading. As future work, we will try rank all airports

in the database in terms of their spreading potential, and we will propose improved

measures of influential spreaders that incorporate the geometry, fluxes through the

network and the link orientation.
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Chapter 4

Discussion and Conclusions

The nonlinear scaling of spreading with time suggests that transport processes in

complex networks are much faster than previously estimated using purely diffusive

random walk models that neglect advective fluxes. In the presence of advection, the

topology of the network plays a central role in the spreading dynamics, while for

diffusion-dominated processes the scaling of spreading with time is independent of

network connectivity. Our interpretation in terms of transition times links transport

in complex networks with well-established models of effective transport through disor-

dered systems, and opens the door to aggregate conceptualizations of biased transport

processes in scale-free networks.

Moreover, the ability of a node to spread an information or a decease in the system

cannot be only described by its connectivity or by the total weight of its links (traffic).

However, we believe that a combination of properties like connectivity, total traffic,

betweenness, k-core degree, spatial orientation and sphericity of the links are essential

to define influential spatial spreaders in a complex system at the early times of an

outbreak.

The identification of the most influential spreaders, and whether an outbreak will

be short-lived or result in a pandemic, depend critically on our ability to predict,

in a stochastic sense, the migration and contact dynamics of individuals through

the network, which in turn must rely on a faithful characterization of the network

topology, geometry, fluxes, and individual mobility patterns.
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