693 research outputs found

    Improving Message Dissemination in Opportunistic Networks

    Full text link
    Data transmission has become a need in various fields, like in social networks with the diverse interaction applications, or in the scientific and engineering areas where for example the use of sensors to capture data is growing, or in emergency situations where there is the imperative need to have a communication system to coordinate rescue operations. Wireless networks have been able to solve these issues to a great extent, but what can we do when a fixed supporting infrastructure is not available or becomes inoperative because of saturation? Opportunistic wireless networks are an alternative to consider in these situations, since their operation does not depend on the existence of a telecommunications infrastructure but they provide connectivity through the organized cooperation of users. This research thesis focuses on these types of networks and is aimed at improving the dissemination of information in opportunistic networks analyzing the main causes that influence the performance of data transmission. Opportunistic networks do not depend on a fixed topology but depend on the number and mobility of users, the type and quantity of information generated and sent, as well as the physical characteristics of the mobile devices that users have to transmit the data. The combination of these elements impacts on the duration of the contact time between mobile users, directly affecting the information delivery probability. This thesis starts by presenting a thorough "state of the art" study where we present the most important contributions related to this area and the solutions offered for the evaluation of the opportunistic networks, such as simulation models, routing protocols, simulation tools, among others. After offering this broad background, we evaluate the consumption of the resources of the mobile devices that affect the performance of the the applications of opportunistic networks, both from the energetic and the memory point of view. Next, we analyze the performance of opportunistic networks considering either pedestrian and vehicular environments. The studied approaches include the use of additional fixed nodes and different data transmission technologies, to improve the duration of the contact between mobile devices. Finally, we propose a diffusion scheme to improve the performance of data transmission based on extending the duration of the contact time and the likelihood that users will collaborate in this process. This approach is complemented by the efficient management of the resources of the mobile devices.La transmisión de datos se ha convertido en una necesidad en diversos ámbitos, como en las redes sociales con sus diversas aplicaciones, o en las áreas científicas y de ingeniería donde, por ejemplo, el uso de sensores para capturar datos está creciendo, o en situaciones de emergencia donde impera la necesidad de tener un sistema de comunicación para coordinar las operaciones de rescate. Las redes inalámbricas actuales han sido capaces de resolver estos problemas en gran medida, pero ¿qué podemos hacer cuando una infraestructura de soporte fija no está disponible o estas se vuelven inoperantes debido a la saturación de peticiones de red? Las redes inalámbricas oportunísticas son una alternativa a considerar en estas situaciones, ya que su funcionamiento no depende de la existencia de una infraestructura de telecomunicaciones sino que la conectividad es a través de la cooperación organizada de los usuarios. Esta tesis de investigación se centra en estos tipos de redes oportunísticas y tiene como objetivo mejorar la difusión de información analizando las principales causas que influyen en el rendimiento de la transmisión de datos. Las redes oportunísticas no dependen de una topología fija, sino que dependen del número y la movilidad de los usuarios, del tipo y cantidad de información generada y enviada, así como de las características físicas de los dispositivos móviles que los usuarios tienen para transmitir los datos. La combinación de estos elementos influye en la duración del tiempo de contacto entre usuarios móviles, afectando directamente a la probabilidad de entrega de información. Esta tesis comienza presentando un exhaustivo estudio del ``estado del arte", donde presentamos las contribuciones más importantes relacionadas con esta área y las soluciones existentes para la evaluación de las redes oportunísticas, tales como modelos de simulación, protocolos de enrutamiento, herramientas de simulación, entre otros. Tras ofrecer esta amplia compilación de investigaciones, se evalúa el consumo de recursos de los dispositivos móviles que afectan al rendimiento de las aplicaciones de redes oportunísticas, desde el punto de vista energético así como de la memoria. A continuación, analizamos el rendimiento de las redes oportunísticas considerando tanto los entornos peatonales como vehiculares. Los enfoques estudiados incluyen el uso de nodos fijos adicionales y diferentes tecnologías de transmisión de datos, para mejorar la duración del contacto entre dispositivos móviles. Finalmente, proponemos un esquema de difusión para mejorar el rendimiento de la transmisión de datos basado en la extensión de la duración del tiempo de contacto, y de la probabilidad de que los usuarios colaboren en este proceso. Este enfoque se complementa con la gestión eficiente de los recursos de los dispositivos móviles.La transmissió de dades s'ha convertit en una necessitat en diversos àmbits, com ara en les xarxes socials amb les diverses aplicacions d'interacció, o en les àrees científiques i d'enginyeria, en les quals, per exemple, l'ús de sensors per a capturar dades creix en l'actualitat, o en situacions d'emergència en què impera la necessitat de tenir un sistema de comunicació per a coordinar les operacions de rescat. Les xarxes sense fil han sigut capaces de resoldre aquests problemes en gran manera, però què podem fer quan una infraestructura de suport fixa no està disponible, o bé aquestes es tornen inoperants a causa de la saturació de peticions de xarxa? Les xarxes sense fil oportunistes són una alternativa que cal considerar en aquestes situacions, ja que el funcionament d'aquestes xarxes no depèn de l'existència d'una infraestructura de telecomunicacions, sinó que la connectivitat s'hi aconsegueix a través de la cooperació organitzada dels usuaris. Aquesta tesi de recerca se centra en aquest tipus de xarxes, i té com a objectiu millorar la difusió d'informació en xarxes oportunistes tot analitzant les principals causes que influeixen en el rendiment de la transmissió de dades. Les xarxes oportunistes no depenen d'una topologia fixa, sinó del nombre i la mobilitat dels usuaris, del tipus i la quantitat d'informació generada i enviada, i de les característiques físiques dels dispositius mòbils que els usuaris tenen per a transmetre les dades. La combinació d'aquests elements influeix en la durada del temps de contacte entre usuaris mòbils, i afecta directament la probabilitat de lliurament d'informació. Aquesta tesi comença amb un estudi exhaustiu de l'estat de la qüestió, en què presentem les contribucions més importants relacionades amb aquesta àrea i les solucions oferides per a l'avaluació de les xarxes oportunistes, com ara models de simulació, protocols d'encaminament o eines de simulació, entre d'altres. Després de mostrar aquest ampli panorama, s'avalua el consum dels recursos dels dispositius mòbils que afecten l'acompliment de les aplicacions de xarxes oportunistes, tant des del punt de vista energètic com de la memòria. A continuació, analitzem l'acompliment de xarxes oportunistes considerant tant els entorns de vianants com els vehiculars. Els enfocaments estudiats inclouen l'ús de nodes fixos addicionals i diferents tecnologies de transmissió de dades per a millorar la durada del contacte entre dispositius mòbils. Finalment, proposem un esquema de difusió per a millorar el rendiment de la transmissió de dades basat en l'extensió de la durada del temps de contacte, i de la probabilitat que els usuaris col·laboren en aquest procés. Aquest enfocament es complementa amb la gestió eficient dels recursos dels dispositius mòbils.Herrera Tapia, J. (2017). Improving Message Dissemination in Opportunistic Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86129TESI

    Infrastructure-less D2D Communications through Opportunistic Networks

    Get PDF
    Mención Internacional en el título de doctorIn recent years, we have experienced several social media blackouts, which have shown how much our daily experiences depend on high-quality communication services. Blackouts have occurred because of technical problems, natural disasters, hacker attacks or even due to deliberate censorship actions undertaken by governments. In all cases, the spontaneous reaction of people consisted in finding alternative channels and media so as to reach out to their contacts and partake their experiences. Thus, it has clearly emerged that infrastructured networks—and cellular networks in particular—are well engineered and have been extremely successful so far, although other paradigms should be explored to connect people. The most promising of today’s alternative paradigms is Device-to-Device (D2D) because it allows for building networks almost freely, and because 5G standards are (for the first time) seriously addressing the possibility of using D2D communications. In this dissertation I look at opportunistic D2D networking, possibly operating in an infrastructure-less environment, and I investigate several schemes through modeling and simulation, deriving metrics that characterize their performance. In particular, I consider variations of the Floating Content (FC) paradigm, that was previously proposed in the technical literature. Using FC, it is possible to probabilistically store information over a given restricted local area of interest, by opportunistically spreading it to mobile users while in the area. In more detail, a piece of information which is injected in the area by delivering it to one or more of the mobile users, is opportunistically exchanged among mobile users whenever they come in proximity of one another, progressively reaching most (ideally all) users in the area and thus making the information dwell in the area of interest, like in a sort of distributed storage. While previous works on FC almost exclusively concentrated on the communication component, in this dissertation I look at the storage and computing components of FC, as well as its capability of transferring information from one area of interest to another. I first present background work, including a brief review of my Master Thesis activity, devoted to the design, implementation and validation of a smartphone opportunistic information sharing application. The goal of the app was to collect experimental data that permitted a detailed analysis of the occurring events, and a careful assessment of the performance of opportunistic information sharing services. Through experiments, I showed that many key assumptions commonly adopted in analytical and simulation works do not hold with current technologies. I also showed that the high density of devices and the enforcement of long transmission ranges for links at the edge might counter-intuitively impair performance. The insight obtained during my Master Thesis work was extremely useful to devise smart operating procedures for the opportunistic D2D communications considered in this dissertation. In the core of this dissertation, initially I propose and study a set of schemes to explore and combine different information dissemination paradigms along with real users mobility and predictions focused on the smart diffusion of content over disjoint areas of interest. To analyze the viability of such schemes, I have implemented a Python simulator to evaluate the average availability and lifetime of a piece of information, as well as storage usage and network utilization metrics. Comparing the performance of these predictive schemes with state-of-the-art approaches, results demonstrate the need for smart usage of communication opportunities and storage. The proposed algorithms allow for an important reduction in network activity by decreasing the number of data exchanges by up to 92%, requiring the use of up to 50% less of on-device storage, while guaranteeing the dissemination of information with performance similar to legacy epidemic dissemination protocols. In a second step, I have worked on the analysis of the storage capacity of probabilistic distributed storage systems, developing a simple yet powerful information theoretical analysis based on a mean field model of opportunistic information exchange. I have also extended the previous simulator to compare the numerical results generated by the analytical model to the predictions of realistic simulations under different setups, showing in this way the accuracy of the analytical approach, and characterizing the properties of the system storage capacity. I conclude from analysis and simulated results that when the density of contents seeded in a floating system is larger than the maximum amount which can be sustained by the system in steady state, the mean content availability decreases, and the stored information saturates due to the effects of resource contention. With the presence of static nodes, in a system with infinite host memory and at the mean field limit, there is no upper bound to the amount of injected contents which a floating system can sustain. However, as with no static nodes, by increasing the injected information, the amount of stored information eventually reaches a saturation value which corresponds to the injected information at which the mean amount of time spent exchanging content during a contact is equal to the mean duration of a contact. As a final step of my dissertation, I have also explored by simulation the computing and learning capabilities of an infrastructure-less opportunistic communication, storage and computing system, considering an environment that hosts a distributed Machine Learning (ML) paradigm that uses observations collected in the area over which the FC system operates to infer properties of the area. Results show that the ML system can operate in two regimes, depending on the load of the FC scheme. At low FC load, the ML system in each node operates on observations collected by all users and opportunistically shared among nodes. At high FC load, especially when the data to be opportunistically exchanged becomes too large to be transmitted during the average contact time between nodes, the ML system can only exploit the observations endogenous to each user, which are much less numerous. As a result, I conclude that such setups are adequate to support general instances of distributed ML algorithms with continuous learning, only under the condition of low to medium loads of the FC system. While the load of the FC system induces a sort of phase transition on the ML system performance, the effect of computing load is more progressive. When the computing capacity is not sufficient to train all observations, some will be skipped, and performance progressively declines. In summary, with respect to traditional studies of the FC opportunistic information diffusion paradigm, which only look at the communication component over one area of interest, I have considered three types of extensions by looking at the performance of FC: over several disjoint areas of interest; in terms of information storage capacity; in terms of computing capacity that supports distributed learning. The three topics are treated respectively in Chapters 3 to 5.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Claudio Ettori Casetti.- Secretario: Antonio de la Oliva Delgado.- Vocal: Christoph Somme

    An Analytical Model Based on Population Processes to Characterize Data Dissemination in 5G Opportunistic Networks

    Get PDF
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] The scarcity of bandwidth due to the explosive growth of mobile devices in 5G makes the offloading messaging workload to Wi-Fi devices that use opportunistic connections, a very promising solution. Communications in mobile opportunistic networks take place upon the establishment of ephemeral contacts among mobile nodes using direct communication. In this paper, we propose an analytical model based on population processes to evaluate data dissemination considering several parameters, such as user density, contact rate, and the number of fixed nodes. From this model, we obtain closed-form expressions for determining the diffusion time, the network coverage, and the waiting time. Newer 5G wireless technologies, such as WiGig, can offer multi-gigabit speeds, low latency, and security-protected connectivity between nearby devices. We therefore focus our work on the impact of high-speed and short-range wireless communications technologies for data dissemination in mobile opportunistic networks. Moreover, we test whether the coexistence with a fixed infrastructure can improve content dissemination, and thus justify its additional cost. Our results show that, when user density is high, the diffusion is mainly performed through the opportunistic contacts between mobile nodes, and that the diffusion coverage is close to 100%. Moreover, the diffusion is fast enough to dynamically update the information among all the participating members, so users do not need to get closer to fixed spots for receiving updated information.This work was supported in part by the Ministerio de Economa y Competitividad, Spain, under Grant TEC2014-52690-R, Grant MTM 2016-75963-P, and Grant SEV-2013-0323, in part by Generalitat Valenciana, Spain, under Grant AICO/2015/108 and Grant ACOMP/2015/005.Hernández-Orallo, E.; Murillo Arcila, M.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM.; Conejero, JA.; Manzoni, P. (2018). An Analytical Model Based on Population Processes to Characterize Data Dissemination in 5G Opportunistic Networks. IEEE Access. 6:1603-1615. https://doi.org/10.1109/ACCESS.2017.2779748S16031615

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    FALCON: A New Approach for the Evaluation of Opportunistic Networks

    Full text link
    [EN] Evaluating the performance of opportunistic networks with a high number of nodes is a challenging problem. Analytical models cannot provide a realistic evaluation of these networks, and simulations can be very time-consuming, sometimes requiring even weeks only to provide the results of a single scenario. In this paper, we present a fast evaluation model called FALCON (Fast Analysis, using a Lattice Cell model, of Opportunistic Networks) that is computationally very efficient and precise. The model is based on discretising space and time in order to reduce the computation complexity, and we formalised it as a discrete dynamic system that can be quickly solved. We describe some validation experiments showing that the precision of the obtained results is equivalent to the ones obtained with standard simulation approaches. The experiments also show that computation time is reduced by two orders of magnitude (from hours to seconds), allowing for a faster evaluation of opportunistic networks. Finally, we show that the FALCON model is easy to adapt and expand to consider different scenarios and protocols.This work was partially supported by Ministerio de Economia y Competitividad, Spain, grant TEC2014-52690-R.Hernández-Orallo, E.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2018). FALCON: A New Approach for the Evaluation of Opportunistic Networks. Ad Hoc Networks. 81:109-121. https://doi.org/10.1016/j.adhoc.2018.07.004S1091218

    Data Delivery in Delay Tolerant Networks: A Survey

    Get PDF
    corecore