144 research outputs found

    Measurement Based Statistical Channel Characterization of Air-to-Ground Path Loss Model at 446 MHz for Narrow-Band Signals in Low Altitude UAVs

    Get PDF
    Powered by the advances in microelectronics technologies, unmanned aerial vehicles (UAVs) provide a vast variety of services ranging from surveillance to delivery in both military and civilian domains. It is clear that a successful operation in those services relies heavily on wireless communication technologies. Even though wireless communication techniques could be considered to reach a certain level of maturity, wireless communication links including UAVs should be regarded in a different way due to the peculiar characteristics of UAVs such as agility in 3D spatial domain and versatility in modes of operation. Such mobility characteristics in a vast variety of environmental diversity render links including UAVs different from those in traditional, terrestrial mobility scenarios. Furthermore, UAVs are critical instruments for network operators in order to provide basic voice and short messaging services for narrow band communication in and around disaster areas. It is obvious that such widespread use of UAVs under different scenarios and environments requires a better understanding the behavior of the communication links that include UAVs. Therefore, in this study, details of a measurement campaign designed to collect data for large-scale propagation characterization of air-to-ground links operated by UAVs at 446MHz under narrowband assumption are given. Data collection, post-processing, and measurement results are provided.Comment: This work is accepted to 2020 IEEE 91st Vehicular Technology Conference: VTC2020-Spring on January 11, 202

    Positioning of multiple unmanned aerial vehicle base stations in future wireless network

    Get PDF
    Abstract. Unmanned aerial vehicle (UAV) base stations (BSs) can be a reliable and efficient alternative to full fill the coverage and capacity requirements when the backbone network fails to provide the requirements during temporary events and after disasters. In this thesis, we consider three-dimensional deployment of multiple UAV-BSs in a millimeter-Wave network. Initially, we defined a set of locations for a UAV-BS to be deployed inside a cell, then possible combinations of predefined locations for multiple UAV-BSs are determined and assumed that users have fixed locations. We developed a novel algorithm to find the feasible positions from the predefined locations of multiple UAVs subject to a signal-to-interference-plus-noise ratio (SINR) constraint of every associated user to guarantees the quality-of-service (QoS), UAV-BS’s limited hovering altitude constraint and restricted operating zone because of regulation policies. Further, we take into consideration the millimeter-wave transmission and multi-antenna techniques to generate directional beams to serve the users in a cell. We cast the positioning problem as an ℓ₀ minimization problem. This is a combinatorial, NP-hard, and finding the optimum solution is not tractable by exhaustive search. Therefore, we focused on the sub-optimal algorithm to find a feasible solution. We approximate the ℓ₀ minimization problem as non-combinatorial ℓ₁-norm problem. The simulation results reveal that, with millimeter-wave transmission the positioning of the UAV-BS while satisfying the constrains is feasible. Further, the analysis shows that the proposed algorithm achieves a near-optimal location to deploy multiple UVABS simultaneously

    The Performance Analysis of Spectrum Sharing between UAV enabled Wireless Mesh Networks and Ground Networks

    Full text link
    Unmanned aerial vehicle (UAV) has the advantages of large coverage and flexibility, which could be applied in disaster management to provide wireless services to the rescuers and victims. When UAVs forms an aerial mesh network, line-of-sight (LoS) air-to-air (A2A) communications have long transmission distance, which extends the coverage of multiple UAVs. However, the capacity of UAV is constrained due to the multiple hop transmissions in aerial mesh networks. In this paper, spectrum sharing between UAV enabled wireless mesh networks and ground networks is studied to improve the capacity of UAV networks. Considering two-dimensional (2D) and three-dimensional (3D) homogeneous Poisson point process (PPP) modeling for the distribution of UAVs within a vertical range {\Delta}h, stochastic geometry is applied to analyze the impact of the height of UAVs, the transmit power of UAVs, the density of UAVs and the vertical range, etc., on the coverage probability of ground network user and UAV network user. Besides, performance improvement of spectrum sharing with directional antenna is verified. With the object function of maximizing the transmission capacity, the optimal altitude of UAVs is obtained. This paper provides a theoretical guideline for the spectrum sharing of UAV enabled wireless mesh networks, which may contribute significant value to the study of spectrum sharing mechanisms for UAV enabled wireless mesh networks.Comment: 12 pages, 13 figures, IEEE Sensors Journa

    Efficient Discovery and Utilization of Radio Information in Ultra-Dense Heterogeneous 3D Wireless Networks

    Get PDF
    Emergence of new applications, industrial automation and the explosive boost of smart concepts have led to an environment with rapidly increasing device densification and service diversification. This revolutionary upward trend has led the upcoming 6th-Generation (6G) and beyond communication systems to be globally available communication, computing and intelligent systems seamlessly connecting devices, services and infrastructure facilities. In this kind of environment, scarcity of radio resources would be upshot to an unimaginably high level compelling them to be very efficiently utilized. In this case, timely action is taken to deviate from approximate site-specific 2-Dimensional (2D) network concepts in radio resource utilization and network planning replacing them with more accurate 3-Dimensional (3D) network concepts while utilizing spatially distributed location-specific radio characteristics. Empowering this initiative, initially a framework is developed to accurately estimate the location-specific path loss parameters under dynamic environmental conditions in a 3D small cell (SC) heterogeneous networks (HetNets) facilitating efficient radio resource management schemes using crowdsensing data collection principle together with Linear Algebra (LA) and machine learning (ML) techniques. According to the results, the gradient descent technique is with the highest path loss parameter estimation accuracy which is over 98%. At a latter stage, receive signal power is calculated at a slightly extended 3D communication distances from the cluster boundaries based on already estimated propagation parameters with an accuracy of over 74% for certain distances. Coordination in both device-network and network-network interactions is also a critical factor in efficient radio resource utilization while meeting Quality of Service (QoS) requirements in heavily congested future 3D SCs HetNets. Then, overall communication performance enhancement through better utilization of spatially distributed opportunistic radio resources in a 3D SC is addressed with the device and network coordination, ML and Slotted-ALOHA principles together with scheduling, power control and access prioritization schemes. Within this solution, several communication related factors like 3D spatial positions and QoS requirements of the devices in two co-located networks operated in licensed band (LB) and unlicensed band (UB) are considered. To overcome the challenge of maintaining QoS under ongoing network densification and with limited radio resources cellular network traffic is offloaded to UB. Approximately, 70% better overall coordination efficiency is achieved at initial network access with the device network coordinated weighting factor based prioritization scheme powered with the Q-learning (QL) principle over conventional schemes. Subsequently, coverage information of nearby dense NR-Unlicensed (NR-U) base stations (BSs) is investigated for better allocation and utilization of common location-specific spatially distributed radio resources in UB. Firstly, the problem of determining the receive signal power at a given location due to a transmission done by a neighbor NR-U BS is addressed with a solution based on a deep regression neural network algorithm enabling to predict receive signal or interference power of a neighbor BS at a given location of a 3D cell. Subsequently, the problem of efficient radio resource management is considered while dynamically utilizing UB spectrum for NR-U transmissions through an algorithm based on the double Q-learning (DQL) principle and device collaboration. Over 200% faster algorithm convergence is achieved by the DQL based method over conventional solutions with estimated path loss parameters

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time

    Unmanned aerial vehicles (UAVs) for wireless communication and networks : potentials and design challenges

    Get PDF
    Unmanned aerial vehicles (UAVs) are mostly considered by the military for surveillance and reconnaissance operations, and by hobbyists for aerial photography. However, in recent years, the UAV operations have been extended for civilian and commercial purposes due to their agile and cost-effective deployment. UAVs appear to be more prolific platforms to enable wireless communication due to their better line-of-sight (LOS) channel conditions as compared with the fixed base stations (BSs) in terrestrial communication which suffer from severe path loss, shadowing, and multipath fading in more challenging propagation environments. In UAV-enabled wireless communications, the UAV can either act as a complementary aerial BS to provide on-demand communication or as an aerial user equipment (UE) which is operated by the existing cellular network. Several challenges exist in the design of UAV communications which include but not limited to channel modeling, optimal deployment, interference generation, performance analysis, limited on-board battery lifetime, trajectory optimization, and unavailability of regulations and standards which are specific for UAV communication and networking. This thesis particularly investigates some important design challenges for safe and reliable functionalities of UAV for wireless communication and networking. UAV communication has its own distinctive channel characteristics compared to the widely used cellular or satellite systems. However, several challenges exist in UAV channel modeling. For example, the propagation characteristics of UAV channels are under explored for spatial and temporal variations in non-stationary channels. Therefore, first and foremost, this thesis provides an extensive review of the measurement methods proposed for UAV channel modeling and discusses channel modeling efforts for air-to-ground and air-to-air channels. Furthermore, knowledge-gaps are identified to realize accurate UAV channel models. The efficient deployment strategy is imperative to compensate the adverse impact of interference on the coverage area performance of multiple UAVs. As a result, this thesis proposes an optimal deployment strategy for multiple UAVs in presence of downlink co-channel interference in the worst-case scenario. In particular, this work presents coordinated multi-UAV strategy in two schemes. In the first scheme, symmetric placement of UAVs is assumed at a common optimal altitude and transmit power. In the second scheme, asymmetric deployment of UAVs with different altitudes and transmit powers is assumed. The impact of various system parameters, such as signal-to interference-plus-noise ratio (SINR) threshold, separation distance between UAVs, and the number of UAVs and their formations are carefully studied to achieve the maximum coverage area inside and to reduce the unnecessary coverage expansion outside the target area. Fundamental analysis is required to obtain the optimal trade-off between the design parameters and performance metrics of any communication systems. This thesis particularly considers two emerging scenarios for evaluating performance of UAV communication systems. In the first scenario, the uplink UAV communication system is considered where the ground user follows the random waypoint (RWP) model for user mobility, the small-scale channel fading follows the Nakagami-m model, and the uplink interference is modeled by Gamma approximation. Specifically, the closed-form expressions for the probability density function (PDF), the cumulative distribution function (CDF), the outage probability, and the average bit error rate (BER) of the considered UAV system are derived as performance metrics. In the second scenario, the downlink hybrid caching system is considered where UAVs and ground small-cell BSs (SBSs) are distributed according to two independent homogeneous Poisson point processes (PPPs), and downlink interference is modeled by the Laplace transforms. Specifically, the analytical expressions of the successful content delivery probability and energy efficiency of the considered network are derived as performance metrics. In both scenarios, results are presented to demonstrate the interplay between the communication performance and the design parameters

    End-to-end delay analysis for routing protocols in VANETs

    Get PDF
    Vehicular ad-hoc network (VANET) technology enables communication between vehicles, or vehicles and road-side units (RSUs) through wireless communication devices installed on the vehicles. One of the most important goals of VANETs is providing safety applications for passengers. In addition, VANETs provide comfort applications to users. Guaranteeing a reliable and stable routing protocol over VANETs is a very important step. The proposed research attempts to improve routing protocols that decrease the end-to-end delay to suit VANET communication characteristics. In addition, it proposes analysis of the end-to-end delay probability distribution. More specifically, we derive a closed-form expression for the probability distribution of the re-healing delay in a VANET conditioned on the distance between two VANET clusters. Furthermore, we propose a closed-form expression for the probability distribution of the unconditional re-healing delay. Moreover, we develop a mathematical model to calculate the probability distribution of the end-to-end delay. On the other hand, using Unmanned Aerial Vehicles (UAVs) or drones in wireless communications and Vehicular Ad-hoc Networks (VANETs) has started to attract attention. We propose a routing protocol that uses infrastructure drones for boosting VANET communications to achieve a minimum vehicle-to-drone packet delivery delay. In addition, we propose a closed-form expression for the probability distribution of the vehicle-to-drone packet delivery delay on a two-way highway. Moreover, based on that closed-form expression, we can calculate the minimum drone density (maximum separation distance between two adjacent drones) that stochastically limits the worst case of the vehicle-to-drone packet delivery delay. Furthermore, we propose a drones-active service (DAS) that is added to the location service in a VANET. This service dynamically and periodically obtains the required number of active drones based on the current highway connectivity state by obtaining the maximum distance between each two adjacent drones while satisfying a probabilistic constraint for vehicle-todrone packet delivery delay. Our analysis focuses on two-way highway VANET networks with low vehicular density. The simulation results show the accuracy of our analysis and reflect the relation between the drone density, vehicular density and speed, other VANET parameters, and the vehicle-to-drone packet delivery delay. In addition, we propose a new routing protocol called multi-copy intersection-based routing (MCIR) for vehicular ad-hoc networks (VANETs) in urban areas. MCIR is an intersectionbased routing protocol that forwards multiple copies of the packets in different road segments. Moreover, it is a beacon-less routing protocol with a carry-and-forward strategy. We show via simulation that the MCIR protocol is superior to other existing routing protocols, especially in low vehicular density scenarios. The results show that MCIR achieves a shorter end-to-end delay and a higher packet delivery ratio in urban VANET communications
    • 

    corecore