8,803 research outputs found

    Empowerment for Continuous Agent-Environment Systems

    Full text link
    This paper develops generalizations of empowerment to continuous states. Empowerment is a recently introduced information-theoretic quantity motivated by hypotheses about the efficiency of the sensorimotor loop in biological organisms, but also from considerations stemming from curiosity-driven learning. Empowemerment measures, for agent-environment systems with stochastic transitions, how much influence an agent has on its environment, but only that influence that can be sensed by the agent sensors. It is an information-theoretic generalization of joint controllability (influence on environment) and observability (measurement by sensors) of the environment by the agent, both controllability and observability being usually defined in control theory as the dimensionality of the control/observation spaces. Earlier work has shown that empowerment has various interesting and relevant properties, e.g., it allows us to identify salient states using only the dynamics, and it can act as intrinsic reward without requiring an external reward. However, in this previous work empowerment was limited to the case of small-scale and discrete domains and furthermore state transition probabilities were assumed to be known. The goal of this paper is to extend empowerment to the significantly more important and relevant case of continuous vector-valued state spaces and initially unknown state transition probabilities. The continuous state space is addressed by Monte-Carlo approximation; the unknown transitions are addressed by model learning and prediction for which we apply Gaussian processes regression with iterated forecasting. In a number of well-known continuous control tasks we examine the dynamics induced by empowerment and include an application to exploration and online model learning

    Tipping points in complex coupled life-environment systems

    No full text
    Simple models of complex phenomena provide powerful insights and suggest low-level mechanistic descriptions. The Earth system arises from the interaction of subsystems with multi-scale temporal and spatial variability; from the microbial to continental scales, operating over the course of days to geological time. System-level homeostasis has been demonstrated in a number of conceptual, artificial life, models which share the advantage of a thorough and transparent analysis. We reintroduce a general model for a coupled life-environment model, concentrating on a minimal set of assumptions, and explore the consequences of interaction between simple life elements and their shared, multidimensional environment. In particular stability, criticality and transitions are of great relevance to understanding the history, and future of the Earth system. The model is shown to share salient features with other abstract systems such as Ashby's Homeostat and Watson and Lovelock's Daisyworld. Our generic description is free to explore high-dimensional, complex environments, and in doing so we show that even a small increase in the environmental complexity gives rise to very complex attractor landscapes which require a much richer conception of critical transitions and hysteresi

    Simulation model for plant growth in controlled environment systems

    Get PDF
    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model

    Defining the Environment in Organism–Environment Systems

    Get PDF
    Enactivism and ecological psychology converge on the relevance of the environment in understanding perception and action. On both views, perceiving organisms are not merely passive receivers of environmental stimuli, but rather form a dynamic relationship with their environments in such a way that shapes how they interact with the world. In this paper, I suggest that while enactivism and ecological psychology enjoy a shared specification of the environment as the cognitive domain, on both accounts, the structure of the environment, itself, is unspecified beyond that of contingent relations with the species-typical sensorimotor capacities of perceiving organisms. This lack of specification creates a considerable gap in theory regarding the organization of organisms as coupled with their environments. I argue that this gap can be filled by drawing from resources in developmental systems theory, namely, specifying the environmental state-space as a developmental niche that shapes and is shaped by individual organisms over developmental and, on a population scale, evolutionary time. Defining the environment as an organism’s developmental niche makes it clearer how and why certain contingencies have arisen, in turn, strengthening a joint appeal to both enactivism and ecological psychology as theories asserting complementarity between organisms and their environments

    Mechanized experiment planning in automaton-environment systems

    Get PDF

    Empowerment as a metric for Optimization in HCI

    Get PDF
    We propose a novel metric for optimizing human-computer interfaces, based on the information-theoretic capacity of empowerment, a task-independent universal utility measure. Empowerment measures, for agent-environment systems with stochastic transitions, how much influence, which can be sensed by the agent sensors, an agent has on its environment. It captures the uncertainty in human-machine systems arising from different sources (i.e. noise, delays, errors, etc.) as a single quantity. We suggest the potential empowerment has as an objective optimality criterion in user interface design optimization, contributing to the more solid theoretical foundations of HCI.Peer reviewedFinal Accepted Versio

    Giant enhancement of quantum decoherence by frustrated environments

    Get PDF
    This Letter studies the decoherence in a system of two antiferromagnetically coupled spins that interact with a spin bath environment. Systems are considered that range from the rotationally invariant to highly anisotropic spin models, have different topologies and values of parameters that are fixed or are allowed to fluctuate randomly. We explore the conditions under which the two-spin system clearly shows an evolution from the initial spin-up - spin-down state towards the maximally entangled singlet state. We demonstrate that frustration and, especially, glassiness of the spin environment strongly enhances the decoherence of the two-spin system
    corecore