16 research outputs found

    A Stochastic Approach to Shortcut Bridging in Programmable Matter

    Full text link
    In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for "shortcut bridging", in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being "shortcut" similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming - 23rd International Conference, 2017. An updated journal version will appear in the DNA23 Special Issue of Natural Computin

    Motion planning for self-reconfiguring robotic systems

    Get PDF
    Robots that can actively change morphology offer many advantages over fixed shape, or monolithic, robots: flexibility, increased maneuverability and modularity. So called self-reconfiguring systems (SRS) are endowed with a shape changing ability enabled by an active connection mechanism. This mechanism allows a mechanical link to be engaged or disengaged between two neighboring robotic subunits. Through utilization of embedded joints to change the geometry plus the connection mechanism to change the topology of the kinematics, a collection of robotic subunits can drastically alter the overall kinematics. Thus, an SRS is a large robot comprised of many small cooperating robots that is able to change its morphology on demand. By design, such a system has many and variable degrees of freedom (DOF). To gain the benefits of self-reconfiguration, the process of morphological change needs to be controlled in response to the environment. This is a motion planning problem in a high dimensional configuration space. This problem is complex because each subunit only has a few internal DOFs, and each subunit's range of motion depends on the state of its connected neighbors. Together with the high dimensionality, the problem may initially appear to be intractable, because as the number of subunits grow, the state space expands combinatorially. However, there is hope. If individual robotic subunits are identical, then there will exist some form of regularity in the resulting state space of the conglomerate. If this regularity can be exploited, then there may exist tractable motion planning algorithms for self-reconfiguring system. Existing approaches in the literature have been successful in developing algorithms for specific SRSs. However, it is not possible to transfer one motion planning algorithm onto another system. SRSs share a similar form of regularity, so one might hope that a tool from mathematical literature would identify the common properties that are exploitable for motion planning. So, while there exists a number of algorithms for certain subsets of possible SRS instantiations, there is no general motion planning methodology applicable to all SRSs. In this thesis, firstly, the best existing general motion planning techniques were evaluated to the SRS motion planning problem. Greedy search, simulated annealing, rapidly exploring random trees and probabilistic roadmap planning were found not to scale well, requiring exponential computation time, as the number of subunits in the SRS increased. The planners performance was limited by the availability of a good general purpose heuristic. There does not currently exist a heuristic which can accurately guide a path through the search space toward a far away goal configuration. Secondly, it is shown that a computationally efficient reconfiguration algorithms do exist by development of an efficient motion planning algorithm for an exemplary SRS, the Claytronics formulation of the Hexagonal Metamorphic Robot (HMR). The developed algorithm was able to solve a randomly generated shape-to-shape planning task for the SRS in near linear time as the number of units in the configuration grew. Configurations containing 20,000 units were solvable in under ten seconds on modest computational hardware. The key to the success of the approach was discovering a subspace of the motion planning space that corresponded with configurations with high mobility. Plans could be discovered in this sub-space much more readily because the risk of the search entering a blind alley was greatly reduced. Thirdly, in order to extract general conclusions, the efficient subspace, and other efficient subspaces utilized in other works, are analyzed using graph theoretic methods. The high mobility is observable as an increase in the state space's Cheeger constant, which can be estimated with a local sampling procedure. Furthermore, state spaces associated with an efficient motion planning algorithm are well ordered by the graph minor relation. These qualitative observations are discoverable by machine without human intervention, and could be useful components in development of a general purpose SRS motion planner compiler

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Virtual articulation and kinematic abstraction in robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 279-292).This thesis presents the theory, implementation, novel applications, and experimental validation of a general-purpose framework for applying virtual modifications to an articulated robot, or virtual articulations. These can homogenize various aspects of a robot and its task environment into a single unified model which is both qualitatively high-level and quantitatively functional. This is the first framework designed specifically for the mixed real/virtual case. It supports arbitrary topology spatial kinematics, a broad catalog of joints, on-line structure changes, interactive kinostatic simulation, and novel kinematic abstractions, where complex subsystems are simplified with virtual replacements in both space and time. Decomposition algorithms, including a novel method of hierarchical subdivision, enable scaling to large closed-chain mechanisms with 100s of joints. Novel applications are presented in two areas of current interest: operating high- DoF kinematic manipulation and inspection tasks, and analyzing reliable kinostatic locomotion strategies based on compliance and proprioception. In both areas virtual articulations homogeneously model the robot and its task environment, and abstractions structure complex models. For high-DoF operations the operator attaches virtual joints as a novel interface metaphor to define task motion and to constrain coordinated motion (by virtually closing kinematic chains); virtual links can represent task frames or serve as intermediate connections for virtual joints. For compliant locomotion, virtual articulations model relevant compliances and uncertainties, and temporal abstractions model contact state evolution.(cont.) Results are presented for experiments with two separate robotic systems in each area. For high-DoF operations, NASA/JPL's 36 DoF ATHLETE performs previously challenging coordinated manipulation/inspection moves, and a novel large-scale (100s of joints) simulated modular robot is conveniently operated using spatial abstractions. For compliant locomotion, two experiments are analyzed that each achieve high reliability in uncertain tasks using only compliance and proprioception: a novel vertical structure climbing robot that is 99.8% reliable in over 1000 motions, and a mini-humanoid that steps up an uncertain height with 90% reliability in 80 trials. In both cases virtual articulation models capture the essence of compliant/proprioceptive strategies at a higher level than basic physics, and enable quantitative analyses of the limits of tolerable uncertainty that compare well to experiment.by Marsette Arthur Vona, III.Ph.D

    Maritime Poetics: From Coast to Hinterland

    Get PDF
    In the past fifty years, port cities around the world have experienced considerable changes to their morphologies and their identities. The increasing intensification of global networks and logistics, and the resulting pressure on human societies and earthly environments have been characteristic of the rise of a "planetary age". This volume engages with contemporary artistic practices and critical poetics that trace an alternate construction of the imaginaries and aspirations of our present societies at the crossroads of sea and land - taking into account complex pasts and interconnected histories, transnational flux, as well as material and immaterial borders

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Enveloping Multiple Obstacles with Hexagonal Metamorphic Robots

    No full text
    The problem addressed is reconfiguration planning for a metamorphic robotic system composed of any number of hexagonal robots when multiple simple obstacles are embedded in the goal environment. Simple obstacles are defined as obstacles that have even surfaces with no pockets or indentations and that, as a group, form no narrow corridors or isolated areas. We extend our earlier work on filling multiple pockets in an obstacle to the case where the goal may contain several simple obstacles. In this paper, we present algorithms that determine how many obstacles are in the goal by logically grouping the obstacle cells in the goal into distinct connected components, order them lexicographically from north-west to south-east, and then link them by shortest path bridges to form one large obstacle with multiple pockets. We subsequently use techniques presented in our earlier papers to envelop the composite obstacle

    The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z

    Get PDF
    Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore