

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429719726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS

1

2Abstract. Robots that can actively change morphology o�er many advantages over �xed shape,or monolithic, robots: �exibility, increased maneuverability and modularity. So called self-recon�guring systems (SRS) are endowed with a shape changing ability enabled by an activeconnection mechanism. This mechanism allows a mechanical link to be engaged or disengagedbetween two neighboring robotic subunits. Through utilization of embedded joints to change thegeometry plus the connection mechanism to change the topology of the kinematics, a collectionof robotic subunits can drastically alter the overall kinematics. Thus, an SRS is a large robotcomprised of many small cooperating robots that is able to change its morphology on demand.By design, such a system has many and variable degrees of freedom (DOF).To gain the bene�ts of self-recon�guration, the process of morphological change needs tobe controlled in response to the environment. This is a motion planning problem in a highdimensional con�guration space. This problem is complex because each subunit only has a fewinternal DOFs, and each subunit's range of motion depends on the state of its connected neighbors.Together with the high dimensionality, the problem may initially appear to be intractable, becauseas the number of subunits grow, the state space expands combinatorially. However, there is hope.If individual robotic subunits are identical, then there will exist some form of regularity in theresulting state space of the conglomerate. If this regularity can be exploited, then there may existtractable motion planning algorithms for self-recon�guring system.Existing approaches in the literature have been successful in developing algorithms for speci�cSRSs. However, it is not possible to transfer one motion planning algorithm onto another system.SRSs share a similar form of regularity, so one might hope for mathematical tools that wouldidentify the common properties that are exploitable for motion planning. So, while there existsa number of algorithms for certain subsets of possible SRS instantiations, there is no generalmotion planning methodology applicable to all SRSs.In this thesis, we �rst evaluate the best existing general motion planning techniques appliedto SRS motion planning problem. Greedy search, simulated annealing, rapidly exploring randomtrees and probabilistic roadmap planning were found not to scale well with respect to computationtime as the number of subunits in the SRS increased. The planners performance was limited bythe availability of a good general purpose heuristic. There does not currently exist a heuristicwhich can accurately guide a path through the search space toward a far away goal con�guration.Second, we show that computationally e�cient recon�guration algorithms do exist by develop-ment of an e�cient motion planning algorithm for an exemplary SRS, the Claytronics formulationof the Hexagonal Metamorphic Robot (HMR). The developed algorithm was able to solve a ran-domly generated shape-to-shape planning task for the SRS in near linear time as the number ofunits in the con�guration grew. Con�gurations containing 20,000 units were solvable in underten seconds on modest computational hardware. The key to the success of the approach wasdiscovering a subspace of the motion planning space that corresponded with con�gurations withhigh mobility. Plans could be discovered in this sub-space much more readily because the risk ofthe search entering a blind alley was greatly reduced.Thirdly, in order to extract general conclusions, we analyzed the computationally e�cientsubspace discovered in the HMR state space, and other e�cient subspaces utilized in other works,using graph theoretic methods. We �nd that the high mobility is observable as an increasein the state space's Cheeger constant, which was estimated using a local sampling procedure.Furthermore, state spaces associated with an e�cient motion planning algorithm are well orderedby the graph minor relation. This opens the door for automated methods for discovery of e�cientplanning subspaces for SRS motion planning, and suggest an avenue for future work towarddevelopment of a general purpose SRS motion planner compiler.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 3Contents1. Introduction 52. Self-Recon�guring Robot Architectures 83. Previous Work On Discrete SRS Planning 113.1. Compressible 123.2. Lattice 153.3. Chain Type 193.4. Hybrid 203.5. General Theory 214. General Motion Planning Methods for Self-Recon�guration Planning [44] 244.1. Models 254.2. Heuristics 264.3. Planners 304.4. Experiments 334.5. Discussion 374.6. Conclusion 395. An E�cient Algorithm for Self-Recon�guration Planning in a Modular Robot [45] 405.1. Surface model 405.2. Planning 435.3. Results 535.4. Discussion 546. A Characterization of the Recon�guration Space of Self-Recon�guring Robotic Systems[46] 556.1. Introduction 556.2. Preliminaries 556.3. Background 576.4. A Surface-to-Surface Planner 586.5. The Surface Space is Highly Connected 626.6. Graph Minor Sub-Structure 666.7. Discussion 776.8. Conclusion 797. Conclusion 808. Future Work 83Appendix 1: Random con�guration generation 921.1. Generator 1 941.2. Generator 2 951.3. Candidate Generator 3 951.4. Discussion 96Appendix 2: The C4.5 data mining algorithm and its application 99

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 42.5. The ID3 algorithm 992.6. Application 1002.7. Results 1012.8. Conclusion 102References 106

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 51. IntroductionSelf-recon�guring robots are robotic systems that are comprised of many cooperating roboticsubunits. Thus, a self-recon�guring robot is specialized form of a modular robot. The uniquefeature of self-recon�guring robots that distinguish them from other modular robotic systems is theability of subunits to actively engage/disengage a mechanical connection between each other. Thisability allows the complete system to alter its physical topology and its kinematics. By chainingsequences of kinematic alterations together, a self-recon�guring robotic system is able to drasticallyalter its overall morphology.A robot that can autonomously alter its morphology has many advantageous over an alternativemonolithic robotic system [53, 82]. For example, the robot can alter shape to suit environmentalchallenges e.g. turning into a snake-like con�guration in order to squeeze through a narrow passage,or dynamically altering the workspace to manipulate an awkward work piece. The ability of self-recon�guring robots to move constituent components around the internal structure could be utilizedto replace broken parts without human intervention; broken parts can be recon�gured o� thestructure and replaced with working versions. In addition, accuracy [43] and strength [81] can beautonomously scaled through the use of parallel actuation.There are, however, several technical obstacles that prevent self-recon�guration technology frombeing adopted. One important set of issues regard the engineering of SRSs. SRSs inherentlycontain a lot of redundancy in the hardware, and this makes the power-to-weight ratio a problemfor realization. The repetition of functionality also makes the robotic units cost more, so SRSsdevelopment is currently very expensive. These are hard issues being addressed by experts inmechanical engineering, materials science etc. In addition to these issues there is a unique planningin for the domain.The issue addressed here is the question of how to control the robotic conglomerate. For an SRSto be a bene�cial alternative to a monolithic robot implementation, it must use its unique abilityto achieve something that the monolithic robot could not. For an SRS this means recon�guring inresponse to some form of input. So far there is no agreement within the academic community onwhat form the input should be. Most researchers to date have focused on the problem of given adesired con�guration, the SRS must be able to autonomously change from its current con�gurationinto the desired one [2, 72, 11, 66, 5]. This is the main focus of the thesis here, but there are otherpossibilities, such as: move a held tool while respecting some workspace (but ignoring the exactplacement of the body units), move a tool at a speci�c level of strength/accuracy [81, 43] or otherhigh level commands such as locomote the entire aggregate over rough terrain [7].This thesis concentrates on the shape-to-shape recon�guration tasks. That is, determining asequence of individual subunit commands that change the whole from a starting shape into adesired goal shape. A general purpose shape-to-shape motion planner could be used as a low levelbuilding block for higher level control systems for SRSs, in the same way that the PID controller ifoften the last computation in building a navigation system.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 6Control of continuous system is often driven by an error term which can be di�erentiated or inte-grated. SRS are characterized by their ability to connect/disconnect components from one another;connectivity changes are discrete events in time, and so SRSs are combinatorial objects. Becausethe systems dynamics are driven by discrete events, the continuous concepts used in classical controlhave no direct analogy. For an SRS, in order to reduce the di�erence between a current shape anda desired shape, there no simple derivative to take to provide a direction to move. As we will seelater, it turns out that determining a move to apply to drive an SRS towards a goal is, in-fact, avery challenging problem indeed, with no general computationally e�cient solution available.Generally speaking, combinatorial objects are harder to plan with. If all combinations need tobe enumerated, then the computation time to explore the space scales exponentially with problemcomplexity. However, SRS are comprised of repetitions of identical unit classes, and intuitionsuggests there must be some form of exploitable structure in the problem space to take advantageof. In chapter 2 we describe the broad categories of SRS architectures. We describe how the princi-ples of motion planning for lattice based SRS is important for a diverse range of SRS architectures,including those that might be useful in an engineering context. This thesis is focused on �ndinggeneral principles that apply to motion planning for all lattice based SRS.In chapter 3 we review salient planning research for lattice based SRSs. A number of workshave achieved O(n2) worst case time complexity for a variety of di�erent SRS. However, it is notclear from the literature that modern sampling based planning methodologies might not solve thegeneral problem.In chapter 4 we evaluate a wide range of general planning methodologies, including rapidly-exploring random trees and probabilistic roadmap planning, to two di�erent lattice SRS modelsderived from the hexagonal metamorphic robot (HMR) [13], in the hope that new advances inplanning might prove useful in the SRS planning domain. However, this investigation shows thatgeneral search, even modern methodologies, are not feasible for solving shape-to-shape recon�gura-tion tasks. There is no room for error, and therefore backtracking, when the problem scales above30 DOFs.In chapter 5 we �ll a gap in the literature by developing a very e�cient planner for the HMR. Weshow this planner empirically has close to O(n) average case performance (clearly sub quadratic).This planner, unlike many other e�cient algorithms, does not meta-modularize the state space intocoarse planning units, and thus can solve a high percentage of the underlying state space o�eredby the particular HMR motion constraints. The key reason for its e�ciency was the identi�cationof a subspace within the underlying state space that was large and highly amenable to e�cientplanning.While both chapter 5 and 4 focus on speci�c SRS models. In chapter 6 we abstract the problemusing graph theoretic tools. The e�cient state space of chapter 6 is analyzed as an undirected,unlabeled graph. By ignoring the labeling of vertices of the state space, the SRS architecture speci�cinformation is lost, and general conclusions, applicable to a wide range of SRSs, are appreciable.It was discovered that state spaces relating to existing e�cient algorithms, have a low Cheeger

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 7constant, suggesting the state spaces tend not to contain bottlenecks that could lead to large localminima. Furthermore, e�cient state spaces have an special ordering across the family of spacesgenerated sequentially by adding a subunit, which is not apparent in state spaces with no knowne�cient algorithms. An e�cient state space, relating to the motion of n subunits, is a graph minorof the state space corresponding to the motion of n+ 1 subunit. The consequence of this orderingis that high dimensional planning problems can be decomposed and solved in a computationallye�cient manner. In chapter 8 we sketch how future researchers might utilize the graph minorordering observation to build a motion planning compiler for general SRS motion models.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 8

Figure 2.1. An example of what was hoped for CEBOT, taken from[24]. In thevision, individual modules could be inserted into a pipe opening, which wouldthen self-assemble into a complex pipe cleaning robot. A variety of modules weresketched, wheel modules, articulated modules and gripper modules.2. Self-Reconfiguring Robot ArchitecturesModularity and �exibility have been enshrined principles in engineering since the industrial rev-olution. Even quite early in robot technology it was understood that the same robot manipulatorcould do multiple tasks if it had the ability to change tools [37]. Tool changers allowed roboticarms and tools to be interchangeable, and they were the exemplars of modularity within robotictechnology. In 1988 Fukuda and Nakagawa extended the idea of swapping tools on a �xed manip-ulation platform, to swapping the joints too [23]. This idea was implemented in CEBOT, the �rstattempt at producing a self-recon�guring robot [24].CEBOT was comprised of many di�erent types of modules each with their own specialization, andan analogy was drawn to cells within multi-cellular organisms (hence the name CEllular roBOT).Every major type of joint had its own unique module, and their were module types to providelocomotion (�gure 2). While this approach provides the ultimate �exibility in what can be builtfrom the constituent components, determining what is a good con�guration to carry out a speci�ctask requires picking a con�guration from a huge state space, which was computationally infeasible.Two following robotic architectures, Polypod [81] and the metamorphic robot [12] were shortlyformulated afterwards and both approaches similarly di�ered from the heterogeneous CEBOT bybeing either unipartite (Metamorphic) or bipartite (Polypod). By using only one or two classesof modules, the number of possible con�gurations was drastically reduced. The two approachesdi�ered, however, in important ways too. Chirikjian's metamorphic robot de�ned, what is nowreferred to as, a lattice based SRS, while Yim's Polypod became a prototypical example of a chaintype SRS.Chain type SRS are characterized by the structure containing sub-sequences of units that kine-matically resemble robotic arms, in that they contain continuous joints. Sometimes two classes of

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 9units are used in chain type SRSs, one class contains joints and the other class is unactuated, buthas more than two connectors. The unactuated component can connect to three or more neighborsand so introduces branching into the connectivity topology. Yim's Polypod was this type of chainSRS, with the unactivated component being a cube.Chain type self-recon�guring robots are able to reach and interact with objects in 6DOF realspace, and thus could potentially carry out the same type of tasks industrial robot arms are currentlyused for. Lattice type self-recon�guring robots, in contrast, can only be located at locations onsome regular lattice. Lattice based robots lose mobility, but have the bene�t of a simpler statespace. Yet despite the model of recon�guration being the simplest, lattice SRS are still di�cult toplan for. Lattice based SRSs, while probably not being of direct practical in engineering, providea mathematical benchmark that must be vaulted before tackling the planning problem for morepragmatic SRSs.Murata et al. developed two more lattice based SRSs (Fracta and Fracta3D) [40, 54] beforea third category of SRS was developed by D. L. Rus, M. Vona in the form of an SRS calledCrystalline [66]. Crystalline subunits featured linear actuators which altered the two side lengthsof the rectangular subunits. Crystalline was known as a unit-compressible system, and was oneof the earliest systems that e�cient, scalable planning algorithms were developed for [65]. Severalother unit compressible SRS have since been developed [74].Unit compressible systems, in general, are aligned with an underlying lattice for planning. Thismakes them strongly related to lattice based systems. The important di�erence, is that the volumeof each subunit can be actively adjusted whereas in other lattice based systems each units size iscompletely �xed. The packing then of a unit-compressible system on the embedding lattice has toaccommodate di�erent sized subunits placed on a �xed sized lattice.An implication of laying units upon a lattice (including the unit-compressible case) is subunitshave their position and orientation discretized. Chain SRSs do not have this restrictions, and areable to assume standard manipulator morphologies that are like traditional robot arms [31, 10].This is a signi�cant advantage for engineering applications that chain type SRSs posses. It becameapparent though, that the increased �exibility of chain SRS caused problems when subunits tried toposition themselves to engage the connection mechanism [34, 60, 59, 64, 71]. Connection mechanismreliability was reduced for chain SRSs. This issue inspired a new type of SRS called the hybridarchitecture.Hybrid systems are chain SRSs that restrict themselves to a lattice when recon�guring. Thesesystems often butt against one-another physically when in a lattice adhering shape, and thus do notrequire the actuators to hold position. This passive positioning removes a large source of positionalerror found in chain SRSs caused by actuator control in-precision. Hybrid systems [55, 68] have sofar been constructed with rotational DOFs that allow the system to manipulate using continuousvariables. The body of the subunits though, are designed around a tight natural packing of the unitson a lattice. The idea is that subunits alter their morphology when aligned with the lattice, but afterthe desired connection topology is achieved, the system can leave the lattice restriction and operatein more general space. Engaging the connection mechanism is more reliable, because subunits are

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 10butted against one another, and positional errors caused by gravity are zeroed passively. Thisresults in systems that can change between a 4 legged walker and a long snake and other radicallocomotive phase transition [42], feats that has not been possible on chain type SRSs so far (andimpossible for lattice SRSs).Hybrid systems appear to be the best physical instanciation of an SRS which has the potentialto be useful in the �eld. During changes of morphology, hybrid SRSs, for planning purposes, adhereto a lattice. However, the planning problem for hybrid systems is complex compared to the basiclattice SRSs �rst developed. Early lattice systems could be represented as a labeled lattice. Onlytwo labels were required, occupied or empty, and it was assumed that subunits could activelydock with any adjacent subunit. By contrast, successful hybrid systems such as M-TRAN, eachsubunit occupies two lattice locations simultaneously, and have di�erent types of faces that canintact with adjacent subunits in di�erent ways. Furthermore, these faces can be actively orientatedin di�erent relative poses. While both lattice and hybrid SRSs can be represented by labels ona lattice and motion represented by labeling operations, the number of labels, and the number ofpossible relabeling operations are greatly increased for hybrid systems built so far. This increase incomplexity of the motion rules, has meant that human algorithm designers have only been successfulin creating e�cient, scalable motion planners for the simpler types of lattice based systems.It is desirable that we develop general purpose motion planning algorithms, so that we canbuild motion plan synthesizers for complex SRSs like M-TRAN. These are the forms of systemthat are most likely to be deployed in the �eld and perform useful tasks. The core shape-to-shaperecon�guration problem for hybrid SRSs shares similarities to the planing task for basic latticebased SRSs. By understanding lattice based systems better, we hopefully will reveal new insightsthat will have practical rami�cations in the hybrid SRS planning use-case.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 113. Previous Work On Discrete SRS PlanningDevelopment of motion planning algorithms has often been carried in parallel to development of aphysical SRS robot prototype. Thus, the domain of the planner tends to be focused on the particularset of local constraints that the developing robot has. This has tended to segment motion planningalgorithms according to the type of the SRS architecture used, be it unit-compressible, lattice, chainor hybrid. Unit-compressible and lattice systems are represented as discrete combinatoric objects(e.g. a labeled lattice).Chain and hybrid systems contain rotational joints. The movement of a single joint can alter therelative arrangement of all subunits either side of the joint. This global transform can mean theconnectivity graph can alter drastically per individual recon�guration event. Optimal relabeling inthis scenario has been shown to be NP-hard [30], and may mean planning is a di�erent problemthan in the lattice case. However, chain and hybrid SRS systems can arti�cially restrict their statespace to a lattice, so insights into motion planning for lattice based SRS are relevant for all thearchitectures so far mentioned.When SRS are viewed as combinatoric objects, it is natural to use motion planning techniquesfrom classic AI, such as search. The spatial aspect of SRS also permits the use of graph theoreticmetrics (spanning tree, Hamiltonian paths etc.) derived from the placement of the labels on thelattice e.g. the connectivity graph of occupied locations. Much of SRS planning literature can bebroadly summarized as �nding the right set of graph metrics to derive a heuristic that makes asearch run fast.The capability of the subunits in the SRS though, strongly a�ect the state space and thereforewhat the heuristic should be composed of. Some SRS super�cially appear have the same grossbehavior, such as subunits moving only over the perimeter, but subtle di�erences, such as certainlocal scenarios that prevent a subunit from locomoting. Thus, the old adage �the Devil is in thedetail� is particularly astute for development of SRS motion planners.There are several di�erent questions to ask when evaluating a planning algorithm.- What are the time and memory requirements when forming a motion plan?- Is the planner complete i.e. is it guaranteed to be capable of forming a plan betweenany start and goal con�guration? Has the SRS state space been arti�cially restricted,in order to be complete?- Is it parallel? Do subunits move one at a time or can multiple subunits move in eachiteration of time?- Does the planner utilize distributed computation, and in particular, is the distributedcomputation model designed to be run on the same SRSs topology of computationresources?Early research focused on time complexity, but at the cost of restricting the state space severely.Later works either lessened state space restrictions, focused on distributing the computation tomake further computational gains, or parallized the movements of subunits. While most researchhas explicitly used graph theoretic constructs, sometimes the inspiration of a planner has come

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 12
Figure 3.1. Crystalline modelfrom biology or physics, such as Shen's hormone inspired control, or Claytronics' movements ofspace by Brownian motion (novel for its stochasticity).In this thesis our focus is on deterministic lattice based SRS motion planning, but there are otherhighly interesting architectures not yet discussed. White et al. suggest that a stochastic model ofrecon�guration may be useful for designing an SRSs made of chemical components [79]. Flexiblemodular robots have been made from compliant joints [85]. SRSs have been built from holonomicvehicles, both wheeled [33, 52] and �ying [57]. The �eld of swarm robotics deals with organizinglarge numbers of robots in a spatial domain, however, the di�cult local constraints typical of SRSsare not present, so swarm robotics research focuses on di�erent problems than those addressed here[51].In the following subsections, salient motion planning algorithms are described that are of rele-vance to lattice based planning. While most planning research has focused on speci�c algorithmsfor speci�c SRSs, there have been a few attempts to �nd general insights across the domain ofSRSs. Of particular note is Ghrist and Peterson's work, who developed the nomenclature we useextensively in this thesis. General insights are discussed in the �nal subsection.3.1. Compressible. Unit compressible SRSs have subunits that can alter their linear diametersactively, commonly by a factor of 0.5. Despite the concept of unit-compressible modules beingdeveloped after Chain type and lattice based SRSs, e�cient unit compressible planning algorithms(O(n2) or less) were available for this architecture �rst [66]. Furthermore, motion planning algo-rithms for unit-compressible SRSs have tended to lead the SRS �eld in general ever since. Thissuggests that unit-compressible systems are somehow easier to plan with; this could be for a fun-damental mathematical reason, or it may be that unit-compressible modules are easier to mentallyvisualize in researchers minds. We are of the opinion that it is the latter.Rus and Vona developed the �rst shape-to-shape motion planning algorithm with provable O(n2)bounds for the Crystalline unit-compressible SRS [66]. In the work a Crystalline module is presentedas a 2D unit with rectangular unit with connectors on the edges. A subunit could halve its lengthin one of the two possible axes at any point in time. The set of units must remain connectedat all times, see Figure 3.1. Their Melt-Grow algorithm features two important concepts, meta-modularization and recon�guring via an intermediate con�guration.Recon�guration planning was simpli�ed by dividing the start and end shapes into 4x4 axis alignedgrids of units (Figure 3.2), a strategy later given the term meta-modularization. This allowedrecon�guration planning to be split into two levels of abstraction, the motion of the n coarse 4x4

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 13
Figure 3.2. A, a shape. B the 4x4 axis aligned division of the shape. C therealization of the shape in Crystalline robots

1

3

4

2

5

678

9

1 23 4 5 6 7 8 9Figure 3.3. Melting the start con�guration (black) into the intermediate loca-tion, green. Mobile meta-modules of the initial con�guration are shown in blue(a removal of a blue subunit will not disconnect the structure in iteration 1). Anexample of a possible order of mobile unit migration is shown by numbering theremoval locations in white and black, and the add locations in blue. The values ofthe removal locations were determined by performing a depth �rst search, startingat position 9, and counting down. When the lower left subunit (9) is chosen as themelt location, the 8th unit to move will always be the penultimate unit to move,because its removal earlier would disconnect the structure. Earlier subunits in themeting process as shown here (e.g. 1 and 2) may be melted in a slightly di�erentorder depending on implementation. However, 7 will always be melted after 6,2,3or 4 because of the con�gurations structure.groups of meta-modules to realize the recon�guration task, and the movements of individual 16nunits to realize the meta-module movements.In order to change a start con�guration S into a goal con�gurationGmade out of 4x4 axis alignedgrids of units, S was �rst �melted� into an intermediate con�guration I and then grown into thegoal con�guration G, hence the name of the algorithm, melt-grow. Meta-modules were considered�mobile� if their removal did not disconnect the structure. The intermediate con�guration waschosen to be a linear chain of meta-modules starting below the lowest meta-module of the startcon�guration. A subroutine was developed that allowed mobile units to move to any adjacentlocation in the current con�guration (we shall describe this sub-routine later). It is easy to see thatwith the underlying sub-routine providing a high degree of mobility for meta-modules, it is simpleto turn a given con�guration into a linear chain (Figure 3.3) in O(n). It is clear that identifying thelocation to start I can be done in O(n) time by iterating all meta-module locations and keeping thelowest. Identifying the order in modules should be removed can be achieved by running a depth

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 14

Figure 3.4. How an individual subunit of a meta-module can be transportedthrough a path within the volume of a con�guration. The meta-module highlightedin red is to be moved to the area highlighted in green. Top right, stage one:space is made at path turns by halving the length of two adjacent modules, aswell as sucking one subunit from the remove location into the internal structure.Bottom left, di�erent pair of units expand again into di�erent location, in e�ecttransporting the hole through the structure. Bottom right, the �nal pair of unitsexpand expand, and a subunit appears in the target location.�rst search starting at I and reversing the order in which subunits are encountered, at a one timecost of O(n). Turning I into G is a similar algorithm but in reverse, also at a cost of O(n). Overallthe process of meting and growing requires an O(n) number of underlying meta-module repositions.The high level melt-grow algorithm delegates instructions to move meta-modules through pathswithin the structure. One unit could be removed from a location by absorbing its volume into thestructure. By chaining these absorption moves together the volume of the unit could e�ectivelybe moved through the structure on via the a provided path. Note though, that the actual unitthat appears in the target location is not the actual unit absorbed. Figure 3.4 shows an equivalentexample provided by the authors in [66]. The middle pair of contracted units shown in the topright location cannot expand until the �rst does, and therefore the time to implement the completemove is O(t) where t represents the number of turns in the path. It should be clear however, thatsome set of motions can be constructed that moves each of the 16 subunits along the internal pathby moving them one at a time. The reason for the 4x4 meta-modularization becomes apparent,with this number of subunits in each 4x4 square, there is always enough maneuvering room for thecenter 2x2 subunits to butt against in order to propagate mass in any direction. The time requiredto reposition a meta-module is related to the number of turns (�gure [66]), but as this quantityis bounded from above by the number of modules, n, the worst case execution time is O(n). As

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 15the higher level melt-grow algorithm requires O(n) of these meta-module repositions, the overallalgorithm has a worse case time complexity of O(n2).Butler et al. developed the PacMan algorithm for the Crystalline robot. Their algorithm didnot meta-modularize the space, nor planned to an intermediate con�guration, at the cost that thealgorithm sometimes became stuck. However, they had quite an intricate coordinating mechanismthat allowed a number of subunits to be in motion at the same time. subunit also determinedpath through the structure to follow through network communication, so while the bounds for thealgorithm were undetermined, the work was the �rst distributed, parallel algorithm for an SRS,and was successfully run on a hardware platform.The Telecubes SRS was a similar SRS to the Crystalline robot but in 3D. In a series of works,Vassilvitskiil et al. [75] used 2x2x2 meta-modules to create a distributed algorithm where unitsmoved in parallel. Unlike Butler et al. [5] this algorithm was complete, in the sense it would neverget stuck, and unlike melt-grow it did not require an intermediate con�guration to plan between.The algorithm had a provable worse case complexity of O(n2), but the authors noted this couldnot take into account the parallel actuation very well, and was likely to be a loose upper bound.The general approach to planning was very similar to the two previously mentioned methods, aset of motion primitives were developed that allowed meta-modules to virtually propagate throughthe structure. Their meta-module de�nitions di�ered by subunits being partially contracted bydefault, whereas in the Melt-grow algorithm and the PacMan algorithm the subunits were fullyexpanded. This subtle di�erence seemed to simplify the underlying motion primitives considerably,and lead to compact meta-module and less issues in the global planner (no need for an intermediatecon�guration to plan between).3.2. Lattice. Lattice based SRS di�er from unit-compressible by the subunits having a �xed vol-ume. The location of each subunit must lie on unique locations on a discrete lattice. Thus thepresence of a unit blocks the movement of another unit. Planning for lattice SRSs seems harderthen, because the process of getting units out of the way to move another subunit on a path throughthe embedding space seems to require global coordination, as getting the units out of the way alsomay need other units to be got out of the way ad in�nitum. Unit-compressible subunits in contrasthave the ability to create space locally without disrupting the whole. That said, it is possible toconstruct a meta-module de�nition of a collection of lattice subunits that include space, and thenrun similar planning algorithms as were previously developed for unit-compressible SRSs.Lattice based SRSs were invented by Chirikjian as a concept known as a Metamorphic robot[12]. For an SRS to be a metamorphic robot it had to be comprised of identical subunits, tightlypacked on a lattice, remaining connected at all times. Although several di�erent SRSs couldsatisfy this de�nition, their work on planning concentrated on the hexagonal metamorphic robot,named so because the embedding lattice the subunits reside on is hexagonal [13]. Their physicalimplementation of the robot was comprised of 6 bar linkages, which meant that a unit was able tomove to an adjacent location if it had a robot neighbor to pivot upon, and that the moving unit wasnot an articulation vertex w.r.t the connectivity graph. Figure 3.5-A shows (top) the 6 bar linkage

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 16

Figure 3.5. Chirikjian et al.'s Hexagonal Metamorphic Robot. Top how the 6 barlinkage mechanism deforms during a movement. Bottom left, how the labels of thelattice change. Bottom right, Ghrist's diagrammatic notation for describing thelocal context required for a move to be valid, as moves are symmetric w.r.t time, itis enough to show the trace of the move in green, indicating where a subunit couldmove between.mechanism allowing a subunit to deform its hexagonal shape in order to relocate to an adjacentlocation. As the details of how the mechanical implementation executes a move is not importantfrom a planning perspective, a discrete planning model can be used, whereby subunits move toadjacent locations each iteration of time if the local constraints permit. The local conditions atsome location (a rigid body transform) on the embedding space required for a move to be valid isshown in Figure 3.5 bottom left, as well as the resulting state of the embedding space. As movesare symmetric across time it is simply necessary to identify which locations are changing state. Thelocal constraints then can be written as a motion catalog of move generators , shown in �gure 3.5bottom right, a graphical nomenclature penned by Ghrist et al. [25].As well as building prototypes for metamorphic robots, the group developed planning algorithmsfor the system that for shape-to-shape recon�guration tasks. Pamecha and Chirikjian developed aplanning strategy for the Hexagonal Metamorphic Robot (HMR) built upon simulated annealing[58]. Their variety of simulated annealing started at the start con�guration, and took moves thatimproved a local heuristic function, or chose a random move if no improvement could be found untileither the goal was found or a well de�ned maximum moves bound was exceeded. Their simulatedannealing algorithm was prevented from back tracking to the immediately previously seen stateas a speed optimization. They provided two strict base metrics for use as the guiding heuristicfunction, the overlap heuristic and the optimal assignment heuristic. They also made compositeheuristics from the bases by linearly weighting, which was found to improve the performance of theheuristic for di�erent classes of tasks. The optimal assignment heuristic cost O(n3) to compute ateach iteration [8], but it is clear that even on some basic cases of recon�guration tasks the overalltime was growing exponentially with the number of subunits.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 17

Figure 3.6. Top, The Claytronics platform 2D circular subunits roll over oneanother. Bottom left, the subunits can be viewed as operating on a hexagonallattice, where locally a stationary neighbor muse be present to roll around, andspace to accommodate the move transiently. Bottom right, in Ghrist's graphicalnomenclature.Walter et al. develop a planning algorithm for a modi�ed version of Chirikjian's HMR [77]. Intheir model a unit can only move to an adjacent space if it, like Chirikjian's, had a neighboringsubunit to pivot around, and, unlike Chirikjian's, had space opposite the pivot location. In thisthesis we will refer to this motion model for the HMR as the Claytronics HMR motion modelbecause the Claytronics project build a hardware implementation adhering to these very sameconstraints [27]. The extra space opposite the pivot simpli�ed the hardware from a 6 bar linkagemechanism in Chirikjian's prototype, to a rigid circle (Figure 3.6 top) for the Claytronics. As wewill see in Chapter 4 although the hardware implementation is simpler, the extra space makes theplanning task more di�cult.Fitch and Butler propose in [20] propose solving task-to-task parallel motion planning usinganalytical techniques borrowed from reinforcement learning. In particular, they used a dynamicprogramming methodology to solve the parallel motion path planning problem. The convergencetime for the dynamic programming step is dependent on the task geometry, and it is not possibleto guarantee the task will be solved at all.Zack Butler et al. [7] developed an motion algorithm for a cube based lattice SRS. Novel to themethod was that it was not a motion planning algorithm to change a given shape into a desiredshape, instead, it moved a connected collection of subunits in a desired direction. With just 5local rules operating in parallel, Butler et al. elegantly proved that the aggregate would movein the desired direction, without individual subunits ever needing to know the underlying globalstructure of the aggregate. As no global planning algorithm was involved, it can be argued that theplanner was of O(1) time and space complexity that achieved a planning task without recourse tospeci�cally describing the necessary shape to achieve the task. They also argued in the paper thatthe planning method was not tied to any particular model of SRS, because the 3D cubic model

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 18used could be de�ned in terms of meta-module motions that could be implemented by di�erent SRSmotion catalogs. In chapter 6 we will speci�cally provide a mathematical notation for describingwhen one SRS planning algorithm can be instantiated on another.The 3D cube model was used as a lattice motion model of recon�guration for subsequent workby Fitch et al. that solved shape-to-shape recon�guration tasks [21]. They reused many ideas fromthe MeltGrow algorithm originally designed for unit-compressible modules, but a key di�erence wasthat this algorithm was designed for labeled subunits. Their method was called the MeltSortGrowalgorithm. Like the MeltGrow, mobile units were recon�gured into a linear chain, without checkingthe labellings. Then the 1D chain was sorted, in O(n2), and then melted into the desired labeledshape. As the original MeltGrow has a time complexity of O(n2), the sorting step did not disturbthe worst case bounds. Unlike MeltGrow, where meta-modules could be tunneled through thestructure, the 3D cube model did not contain compressible modules so subunits moved aroundthe perimeter. In later work [22], a sub-procedure was added that permitted a subunit to tunnelthrough the structure by moving units out of the way and returning them to their original position.This increased the worst case complexity bounds O(n4), but allowed the algorithm to operate inamongst dense obstacles without the need to recon�gure via a 1D straight chain.Tunneling can be seen as a method for ensuring a subunit is able to move regardless of the currentgeometry. Støy and Nagpal approached this issue in quite a di�erent way. They constrained thegeometry of the con�guration to be a 3D sca�old shape[72]. The separated units into two classes,sca�old units and mobile units. Sca�old units were motionless, whose position adhered to thesca�old structure. They were able to sense if their should be another sca�old unit adjacent tothem according to the goal, and could dictate to nearby mobile units to traverse into the location.The nearest mobile unit was guaranteed to be able to traverse to the location, because the localsca�olding structure implied it had the correct local conditions for its motion catalog, providingthere were no other mobile-units in the way. The motion could not be blocked by another mobileunit though, because the recruited subunit was the nearest. So the process of convergence could beguaranteed. Thus a global sca�old could be constructed in any shape, from any initial conditions.The main drawback of the approach was that the goal con�guration had to adhere to the sca�oldingshape [73].As part of the Claytronics [27] project's planning e�orts, and interesting and novel stochasticmethod for SRS shape planning was developed by De Rosa et al. called shape sculpting via holemotion [17]. This approach did not attempt to determine the precise placement of every subunit,rather instead aimed at moving the units within an approximate boundary of a target shape. Themotion constraints of the SRS were the Claytronics HMR. The volume of any shape was maintainedto be �porous� by intrusions of enclosed space (holes). The holes were spontaneously created ordestroyed at the perimeter of the shape, and wandered internally via Brownian di�usion dynamics.The existence of mobile holes uniformly within the structure meant that the perimeter of the shapecould be moved by adjustment of the rate of hole removal/creation at particular boundary areas.However, only toy examples of recon�guration were presented, and it remains to be seen whether

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 19this method can be adjusted to handle complex shape recon�guration tasks in a computationallye�cient manner.%CHANGE1%Walter et al. produced a number of algorithms designed for recon�guration planning for theClaytronics HMR motion catalog. These planners determined valid plans in linear time complexity,in a distributed manner using just local information, and were designed for parallel execution.However, these algorithms were only applicable for specialized classes of the more general motionplanning space. In [76] plans were formed for a serial chain of HMR units to envelope an obstacle,with some loose restrictions on what shape the enveloped object could be. In [78] plans were formedbetween a serial chain to a di�erent serial chain, and also between a serial chain and a restrictedset of branched chains. While the e�ciency and distributed nature of the algorithms are desirable,their main drawback is that they do not cover a large proportion of the potential motion planningstate space of the HMR.3.3. Chain Type. In chain type architectures, the subunits that make up the robot have internaldegrees of freedom, joints, that alter the relative positions of the connection mechanisms. Thiscreates two separate planning problems that need to be addressed. First, control of the internaldegrees of freedom to achieve a pose. Second, chaining connection mechanism events to alter thekinematics of the system. The second problem actually requires the �rst to be solved because, inorder to align connection mechanisms for a docking event, the con�guration needs to be posed insome way. Existing literature largely follows these two major problem classes. The �rst problem,posing the SRS, has been addressed primarily to explore the locomotion abilities of chain typerobots, with signi�cant successes [70, 69]. The second problem, the core shape-to-shape planningproblem has not been solved satisfactorily for any chain type SRS instantiation.As the shape-to-shape recon�guration problem for chain-type SRSs is a composite problem it ismore di�cult than for in the lattice case. A single joint motion in a chain-type SRS may displacethe absolute positions of several subunits. Consequently, absolute position based heuristics donot work well. To further complicate matters, chain type architectures can contain loops in thekinematics which make the e�ective degrees of freedom less than the actual degrees of freedom.Recon�guration planning in the chain case has been shown to be NP hard [30].Yim attempted to address the issue of kinematic loops with Hierarchical Substructure Decom-position [9]. In his example of an HSD implementation, two low level substructures were de�ned,loop and chain. A con�guration was de�ned as an interconnected tree of the lower level primitives.Kinematic loops could be accommodated if the loop could be isolated inside the low level loopprimitive. So the notation could not represent arbitrary con�gurations in general, in-fact, a validinterpretation of this work would be that the notation forced con�gurations to be of a boundedtree width. A recon�guration algorithm was presented that ignores the issue of self-intersectionand provides no time complexity details.Later Yim et al. [80] develop a di�erent kind of chain-type recon�guration algorithm thatguarantees a plan in O(log(n)) steps. However, it must be noted this algorithm assumes that

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 20a subunit can arbitrarily be disconnected and reconnected anywhere else on the structure. Theplans formed change from a current connectivity graph into another, without concern for the poseproblem, in a sub-optimal number of connectivity changes.For the ATRON chain-type SRS, a number of recon�guration strategies were tried out. ATRONunits are identical but only contain 1DOF, which means individual units cannot displace themselvessigni�cant distances without the coordinated help from neighboring subunits. One approach forATRON was to allow meta-modules contain three units connected in series to spontaneously emergeas a single logical entity from the structure, to locomote, and then to merge back with the structureagain [15]. There seems to be some granularity advantage of planning in this manner over �xedsized grains as in the Melt-Grow algorithm [66], because the system as a whole does not have to beaxis aligned into a course lattice, but it appears that some low level detail in the algorithm could notbe determined and arbitrary shape-to-shape recon�guration planning could not be demonstrated.Further investigations tried di�erent meta-module de�nitions [15, 4], but convergence to a desiredshape could not be guaranteed for any meta-module de�nitions tried. It is worth nothing that theshape-to-shape planning experiments were driven by a Euclidean absolute position distance basedheuristic which does not map to the problem well.Further work to investigate whether the choice of the planning algorithm a�ects recon�gurationshape-to-shape success for the ATRON was carried about by Brandt et al. [3]. A* [67] and amodi�ed RRT-connect [38] algorithms were compared. Both algorithms performed poorly, with anexponential amount of time required to get to a desired shape as more modules are added. RRT-Connect was marginally more successful than the A* algorithm, but both were far from satisfactory.However, again the use of an absolute distance based heuristic was probably the true reason whyboth algorithms performed poorly. RRT-Connect is more tolerant of a bad heuristics than A*,because it emphasizes random exploration, which explains the results somewhat.Recon�guration planning for chain-type robots has not been solved adequately yet, no goodheuristic has been found that can accommodate both the connectivity planning problem and thephysical constraints of a particular system. Few algorithms have been tested at arbitrary shape-to-shape planning, and the few that have, take an exponential amount of time as more subunits areadded.3.4. Hybrid. Hybrid SRSs architectures aim to gain the advantages of lattice type SRSs and Chaintype SRSs without the drawbacks. Hybrid SRSs are characterized by the units being able to bepacked inside a regular lattice, which greatly aids physical alignment issues for docking/undockingunits, as well as being simpler to plan with (reduced pose problem than for Chain-type recon�gu-ration planning). However, subunits, like their chain type counterparts, still have internal degreesof freedom, so are able to leave the lattice's regularity; enabling them to locomote like chain typeSRSs. Thus, to a degree, the composite recon�guration problem of Chain type SRS planning isdecoupled for hybrid SRSs.Arguably one of the most successful series of SRSs is the hybrid SRS the M-TRAN (I, II andIII) robot [39, 55, 41]. Early attempts for solving the planning problem used genetic algorithms

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 21[83] for sequencing connectivity changed to solve the recon�guration problem. The scalability ofthe methodology is dubious. For locomotion, the team used a di�erent evolutionary algorithm togenerate central pattern generators (CPGs) that could be run in a distributed manor upon therobotic hardware [84].Evolutionary techniques, like other global optimization, su�er from the curse of dimensionality soare unable to scale to SRSs containing 30 or more units. Ostergaard et al. developed an alternativetechnique for controlling M-TRAN that avoids the the scaling issue. Their techniques involvesbuilding shapes from concatenations of a few basic hand designed structures. Using only localinformation, individual M-TRAN have an hand crafted action policy that is able allow the globalsystem to exhibit an interesting emergent behavior. One example they presented was a 1D snake,climbing up steps, which utilized sensor information to detect the steps corners. However, while itis clear that the examples they presented were self-recon�guring in a scalable manner in responseto the environment, it remains to be seen whether the software controllers can by synthesized bymachine in a scalable manner as well [56].3.5. General Theory. While most theoretical work to-date has focused on developing planningstrategies focused on a particular SRS, there have been a number of notable works whose insightsare not tied to a speci�c architecture of SRS. Unsurprisingly, general SRS conclusions have beendrawn at a slower pace than SRS speci�c counterparts. Clearly several observations have to bemade in di�erent SRSs before a broader general conclusion can be con�dently elucidated.Butler et al. [6] observed that a speci�c planning algorithm could be instantiated on di�erent SRSarchitectures. The planning algorithm was completely decentralized and local; subunits followed aprede�ned set of local rules that depended only on immediate neighbors states. Using local rulesonly, the aggregate was able to remain connected, and move in a global direction whilst navigatingobstacles. The state of the system was represented on a 2D square lattice, so the planning algorithmappears tied to a square lattice based SRS. However, the general aspect of the work was realizingthat drastically di�erent SRSs, such as M-TRAN, could be packaged up into meta-modules, andthat these meta-modules could be designed in such a way so that they moved according to thesquare lattice motion constraints required. Thus, Butler et al. developed a lattice based SRSalgorithm, and showed that many di�erent SRSs can be adapted with meta-modularization toexhibit a set of desired motion constraints. However, the process to adapting an SRS, just asregular meta-modularization, requires grouping subunits into atomic planning units and restrictingmotions, thus signi�cantly reducing the state space utilized.Ghrist and Peterson developed a very general language for describing a large class of SRSs,which has far reaching implications to the SRSs that it applies to [25, 1, 26]. A local metamorphicsystem, was described as having three elements: a substrate lattice, L; an alphabet, Σ; and a setof generators Φ. Generators describe relabeling operations that can be applied to local areas of thelattice in order to change the state of the SRS (the motion model). Many SRS in the literature arenot completely local because further global constraints are required to describe the systems motionmodels properly. For instance, Chirikjian's hexagonal metamorphic robot, in addition to Φ, must

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 22also have an addition global constraint that the subunits remain connected. However, Ghrist doesprovide an example of a local version of the HMR which is very similar (by adjusting Φ) that doesnot require this check. So although many systems don't meet the local metamorphic de�nitioninitially, often an adjustment of the generators produces a similar SRS nearby that does.The importance of Ghrist and Peterson's work was that systems that can be described usingjust those three ingredients imply certain properties will be present in their state space. They rep-resented the state space of a system as a cubic complex. Each cube represented a set of underlyingapplications of the motion generators that could be applied in parallel without interference. Usingtools from geometric group theory, Ghrist and Peterson showed that this state space complex wasof non-positive curvature (amongst other things). This showed that a path through the state spacecould be locally deformed, in O(n2), into a time optimal path, of the same homology, using subunitsmoving in parallel. This implies that for a very broad range of SRSs, it is su�cient to solve theplaning problem by considering just a single subunit moving at a time, and then convert it intoa multi-move plan afterwards. It is for this reason that throughout this thesis we concentrate onplanning tasks where only one subunit moves per iteration of time.While Ghrist and Peterson provide a very general categorization of a large class of SRSs, if weview an SRS as a modular system, further broader principles may apply. Lipson asked whetherwe can de�ne the meaning of modularity, regularity, and hierarchy for modular systems? [49] Themotivation was that modular systems that exhibit these principle tend to easier for evolutionaryprocesses to design scalable solutions for. Lipson concluded that modularity is the restrictionof functionality to atomic building blocks. If functionality is manifest in a �tness function, thena subunit's contribution towards �tness will be independent to another's. This can be qualita-tively measured checking the o� diagonal elements of the Hessian matrix of the �tness functionare small. Regularity can be qualitatively measured by measuring the compressibility of of thesystem, perhaps through minimum description length or Kolmogorov complexity. Hierarchy inmodular terms is the ability for the system to be composed recursively. If a graph represented thepermitted connectivity of elements, systems that are highly hierarchical, Lipson notes, will havethe distribution of shortest paths adhering to a power law.Modular systems that are highly modular, regular and hierarchical are preferable for evolu-tion systems to design with for several reasons. A highlymodular system suggests optimization cantake place on parameters, in turn, rather than on the entire joint space in parallel. This transformsa high dimensional optimization into a series of low dimensional ones with obvious computationalbene�ts. A hierarchical system suggests that there is a partial ordering of functionality, whichagain suggests an ordering, and associated reduction of computation complexity, of optimization ispossible. Regularity suggests higher order correlations between components, which suggests thatdimension reduction techniques can be applied successfully. As you can see, these three principlesreduce the search space for an evolutionary process which is why these qualities imply a scalableplanning methodology may exists.Although Lipson designed these criteria for modular system, we can reinterpret them for an SRSmotion planning context. Instead of using an evolutionary process to �t together modular pieces

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 23for a task (�tness function), the evolutionary process can be substituted for a stochastic planningattempt between a desired start and goal con�guration. In a highly modular SRS, the analogyto Lipson's concept would be that each subunit of the SRS could be moved between its start andgoal location individually, without consideration of its neighbors. However, this property is notapparent in the SRSs studied here, as subunits remain connected at all times and so some form ofcoupling is always present. Lipson's regularity does have existing parallels in the literature though;the process of meta-modularization groups subunits into single planning elements which e�ectivelyreduces dimensionality. The motivation of meta-modularization is not to increase regularity though(although it does) but to increase mobility, which e�ectively reduces the coupling between planningunits i.e. meta-modularization increases the modularity. It is the property of hierarchy thoughthat may have the most interesting manifestation in the SRS planning context. Lipson's measure ofhierarchy through �tting a power law is not directly helpful, but the link between partial orderingand hierarchy is. Partial ordering that would permit a planning problem to be solved recursively,perhaps by decomposition of the planning problem into composable solutions. Our analysis ofrecon�gurations state spaces in chapter 6 and subsequent conclusions revolve around this idea.An ideal motion planning system for an SRS would be able to synthesize a planning algorithmfor any SRS model provided, and would fully re�ect the nuances of each motion model in the plansit produced. SRS motion planning problems are special cases of high dimensional planning spaces.They are special because each individual subunit of the system obey the same local motion modelas other subunits of the system. This means that curse of dimensionality does not seem to apply,evident in the existence of many e�cient (quadratic and sometimes linearly time bound) algorithmsfor SRS planning. However, so far there is no general algorithm, each algorithm is strongly coupledto SRS architecture it is designed for.Ghrist and Peterson provide a concise de�nition of a local metamorphic system of which we shallborrow signi�cant language from. In their work they discovered that local metamorphic systemstate spaces are of non-positive curvature. This suggests that a large class of SRS state spaces havecertain identi�able properties which do indeed make them attractive from a planning perspective.That work, however, does not approach the problem of forming plans in the general setting.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 244. General Motion Planning Methods for Self-Reconfiguration Planning [44]The SRS community as a whole are in agreement that motion planning is a di�cult problem,remarking that the problem bears the hall mark of a NP-hard problem [82], which was later provedto be the case for chain architectures [30]. The SRS literature contains many specialized planningalgorithms targeted for speci�c instantiations of di�erent robots, which scale di�erently as thenumber of units in the con�gurations grow. Unfortunately each speci�c algorithm is typicallystrongly coupled to the SRS instanciation it was designed for, so re-use of planners across di�erentrobotic models is impossible. An ideal motion planner for the SRS community is an algorithm thatwould scale near linearly in time complexity with the number of units in the con�guration (and innear constant time using parallel distributed computation), and would be applicable to any SRSrobot model.Modern general modern motion planning techniques meet the criteria of not being coupled to aparticular robot model, and the open question addressed in this chapter is do they scale well withthe problem complexity? There has never been a comprehensive survey into the applicability ofgeneral motion planning methods to this problem domain as far as we know. Pamecha et al. appliedsimulated annealing (SA) to the hexagonal metamorphic robot [58], but this work was conductedbefore the discovery of e�cient modern probabilistic sampling planning techniques, such as rapidly-exploring random trees (RRT-Connect) [47, 38] and probabilistic roadmap planning (PRM) [32].Brandt compared greedy search with an RRT-Connect derivative for use with the ATRON SRS[3] and concluded RRT-Connect was better, albeit both scaled poorly. ATRON is a hybrid SRShowever, so it is not clear whether these results transfer to lattice type architectures. In fact, it isan open question whether two SRS models from the same architecture family are comparable atall.Greedy search uses a heuristic to evaluate the most promising state to expand from all previouslyseen. If the heuristic is poor however, greedy search tends to repeatedly expand states near eachother as they tend to have a similar inaccurate heuristic values. With a bad heuristic, greedy searchtends to dwells in areas of high heuristic error. Modern sampling based planners, in contrast,emphasize exploration of the state space, and are bias toward expanding states far away frompreviously seen states. Thus, they have found to scale better with lower quality heuristics becausethey do not dwell in patches states with high heuristic error.In this chapter we apply a variety of general planners to two di�erent models of a lattice basedSRS. The �rst model is the Claytronics set of motion constraints for the hexagonal metamorphicrobot and the second model is a re�nement of the �rst as suggested by Ghrist [25]. Both modelsoperate on a hex lattice and super�cially have very similar motion constraints. It is of interest tosee how slight changes in a model's motion constraints a�ect the ability planners to determine validplans. We perform experiments using greedy search, RRT-Connect, PRM and SA. Greedy searchprovides a good classical planning benchmark to compare the modern sampling based planners,RRT-Connect and PRM. SA is included so that Pamecha et al.'s [58] original work can be comparedin identical experimental conditions.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 25
Figure 4.1. Catalog of permitted moves less isomorphisms. White denotes emptyspace, gray the moving component, and blue the other necessary robotic compo-nents. Left, for the Claytronics model, note that the moves on the right can onlybe applied i� all robotic components of the system remain connected. Middle,for Ghrist's model of the hexagonal metamorphic. Right, a potentially permittedmove by the Claytronics model but not for Ghrist'sThe planning task studied here is single move recon�guration planning. Only one subunit inthe system moves per iteration of time, and the task is to �nd a sequence of permissible movesthat deforms a starting con�guration into a desired con�guration. The multi-move recon�gurationproblem, where several subunits move per iteration of time, is addressed in more detail in laterchapters.4.1. Models. Two alternative formulations of the hexagonal metamorphic robot are investigated.Both SRSs are comprised of n robotic components located at points on a hexagonal lattice. At eachiteration of time, one robotic component can move to adjacent lattice location subject to certainconstraints, unless it is denoted as an anchor component in which case it can never move.In the Claytronics model, a component at location a can move to an empty adjacent location bby pivoting around a common robotic neighbor to a and b. The other only common neighbor to aand b must be empty to allow space for the component to pivot (�gure 4.1 left). During the move,the SRS should not become disconnected, so the moving component must not be a cut vertex w.r.tthe connectivity graph. Ghrist's formulation is more restrictive, moves are not permitted that canchange the global topology of the robot (such as introducing a loop), which implicitly implies allof the components remain connected. So for both systems all components remain connected, butin the Claytronics model this must be enforced using a global constraint, whereas in the Ghristformulation this is implicitly enforced by the (local) motion constraints.The state of a robotic con�guration can be represented as a set of component locations and a setof anchor locations. We implemented the sets for the state representation in the simulator usingpersistent red-black trees [19]. A new con�guration state could be forked from an old con�gurationstate by an incremental deletion and reinsertion into the component set, without altering the originalstate, in logarithmic time and space complexity (w.r.t. the number of components in the system).However, for the original hexagonal metamorphic model, identifying the cut vertexes requires lineartime to compute whereas in Ghrist's formulation no connectivity check is required and computingthe next set of moves after a move has been applied can be done in logarithmic time.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 26
5 10 15 20 25 30

0

2

4

6

8
x 10

−4 Model Overhead

Robotic units, n

T
im

e
to

 fo
rk

 c
hi

ld
 s

ta
te

s
(s

)

Chirikjian
Ghrist

0 10 20 30
0

2

4

6

8
x 10

−4 Computation Time of Heuristics

Units, n

T
im

e
(s

)

OAH
GAH
GAH−inc
VM
VM−inc

Figure 4.2. Left: The time taken for each model to generate valid children states.Right: Time to compute each of the heuristics, either from scratch or incrementally.In the bottom row the data has been smoothed and presented on log-log scale.Figure 4.2 shows the computation time required to compute all the valid child states possiblefrom a randomly generated state for the two models studied. In our implementations, determiningthe set of valid moves for a given state for the Claytronics model scales linearly with the number ofsubunits (gradient of 1 on log-log plot), whereas the Ghrist model scales sublinearly (0.8 gradient).While the Ghrist model is implemented by a logarithmic time complexity data structure, the numberof valid moves on the surface scales at √n. It is of interest to test how the faster implementationof the Ghrist model a�ects overall planning time.4.2. Heuristics. Informed general planning algorithms avoid evaluating the complete state spaceof a problem by obtaining guidance from a heuristic. We use a previously published heuristicused in SRS planning, the optimal assignment heuristic (OAH) literature, and developed two newheuristics aimed at improving computation time, the greedy assignment heuristic (GAH) and thevector map heuristic (VM).In Pamecha et al.'s work for the hexagonal metamorphic robot they used a version of simulatedannealing search [36] guided by a heuristic derived from the optimal assignment problem [58]. Theoptimal assignment heuristic, in this context, assigns each of the n subunits of the SRS to a uniquegoal location of the desired con�guration of the SRS. The cost of an assignment is the unobstructedManhattan distance from a subunit's current location to its assigned goal location. The Hungarianmethod �nds the optimal pairings of subunits to goal locations such that the total cost is minimized,

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 27at a computational cost of O(n3) [58]. This computational cost is paid each time the heuristic iscalled. The OAH heuristic was also used in Brandt's ATRON planning work [3].The optimal assignment problem, in the context of the original combinatoric setting, is typicallystated as how to assign m people to n jobs (one job to one person) optimally, given each personhas a di�erent aptitude for each job. The Hungarian method is performed on a n ×m matrix ofvalues, representing the ability of each person at doing a job. When used in the SRS context, thepeople are the current locations of the subunits and each job is to get a subunit at a speci�c goallocation (m = n). The ability of each subunit's ability to get to each di�erent possible goal locationis approximated by the direct distance between the two locations. When expressed as a distancematrix, a column represent a location in the goal state, and a row represents a location in the currentstate. The distance matrix is �lled with the lattice distance between the component's locations(�gure 4.3, top). The OAH pairs all components from the current state to unique components ofthe target state, such that the sum of the pair distances is minimal. Graphically this is equivalentto highlighting n elements in the n×n distance matrix such that only one element is highlighted perrow and column, and the sum of the highlighted values is the OAH distance (which is minimizedby the Hungarian method at a computational time cost of O(n3), and space cost of O(n2)).Given that we hope that an algorithm may be developed that is near-linear in time complexity,it is clear that the Hungarian method is computationally too expensive. The O(n3) time costis exacerbated further in practical application because a general planning method will call theheuristic many times during operation. As the heuristic is only used as an approximation of thetrue state space to guide a search, we have developed a second heuristic that is a faster variant of theOAH called the incremental greedy assignment heuristic. The computation of an OAH like valueis sped up by two optimizations. First, note that after a single move is applied only one row of thedistance matrix changes, so calculating the value from scratch each iteration is unnecessary. Thus,the GAH calculates the value incrementally. Secondly, the requirement for an optimal assignmentwas removed and replaced with a good assignment instead, calculated greedily.The GAH is implemented as follows. During a search to a �xed goal, the GAH maintains foreach search state the distance matrix as n rows of n elements ordered by distance in n linked lists
r1 . . . rn. During single move planning, only one row changes per iteration, so a new ordered rowcan be calculated and sorted in O(n) using radix sort.When the GAH distance, dist, is requested, the algorithm initializes by removing the �rst elementfrom each row list, ri, and places the elements in a heap, H , which is also ordered by distance, ata cost of O(n) (see �gure 4.3, post init).The algorithm then iterates: removal of an element vr,c from H . Placement of vr,c into �disposal�linked list dr. If the element belonged to a row and column that both were currently marked asunsolved, then the row, r, and column, c, are marked as solved and dist is incremented by thedistance value of the element v. Otherwise an element from rr is removed and placed into H .Thus, once a row is marked as solved no more removals from the relevant r ordered link list willoccur.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 28Task:
Distance matrix:

(1,−1) (−1, 0) (−1, 1) (−1, 2)

(−1, 0) 21,1 01,2 11,3 21,4

(−2, 0) 32,1 12,2 22,3 32,4

(−2,−1) 33,1 23,2 23,3 33,4

(−3, 1) 44,1 24,2 24,3 14,4post initialization: iteration 3:
r1 21,3 21,1 21,4

r2 22,3 32,4 32,1

r3 23,2 33,1 33,4

r4 24,2 24,3 44,1

d1

d2

d3

d4H 01,2 14,4 12,2 23,3

r1 11,3 21,1 21,4

r2 32,4 32,1

r3 23,2 33,1 33,4

r4 24,2 24,3 44,1

d1 01,2

d2 12,2

d3

d4 14,4H 23,3 22,3�nished, dist = 0 + 1 + 2 + 3 = 6:
r1 11,3 21,1 21,4

r2

r3 23,2 33,1 33,4

r4 24,2 24,3 44,1

d1 01,2

d2 12,2 22,4 32,3 32,1

d3 23,3

d4 14,4HFigure 4.3. GAH calculation example. Top row, calculating the GAH distancebetween a speci�c current and goal con�gurations. First row, the distance matrixbetween subunits of the goal con�guration (columns) and the current con�guration(rows). Elements of the distance matrix are sub-scripted with the row and columnindices to aid in tracking them in the worked example. Post initialization, all rowshave been sorted by distance and the �rst elements (smallest distance) have beenplaced in the heap, H. In this instance, the �rst two elements drawn from the heapare con�icted solutions for a unique row and column indices. So a distance for rows1 and 4 are found �rst. The third element drawn from the heap, however, (12,2),con�icts with the already chosen element 01,2 so is placed in the discard list butnot used as part of the GAH �nal solution. Further elements are drawn from Hand added to the discard lists until element 32,1 is encountered in the heap. After
32,1 all rows have an uncon�icted distance associated, which are summed. Thelinked lists r can be concatenated to d to recover the original post initializationstate.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 29The iterative procedure is terminated once all rows and columns have been marked as solved.At this point H will be empty, and the d linked lists will contain all the elements removed fromthe r lists, in order. The r lists are repaired to their original condition by prepending the d lists in
O(n) time. By storing references to the r lists in an persistent RB-tree, the rows data structurescan be swapped, without disturbing the presorted data, in O(log(n)). Thus the GAH heuristic ispersistent and incremental.The overall time complexity of the heuristic depends on how many elements pass through H . Inthe best case, the �rst n withdrawals lead to a pairing at a cost of O(n). The best case naturallyoccurs when the two compared con�gurations are identical, when each row and column contains aunique zero distanced element. In the worse case all n2 elements must be added and removed from
H at a cost of O(n2).The �nal heuristic evaluated is the vector map heuristic. This heuristic converts a con�gurationinto a real valued vector. Two con�gurations, a and b with vector representation va and vb areevaluated by the VM heuristic as having a distance equivalent to the Euclidean norm of va − vb.The vector representation has k elements.

v = [v1, v2 . . . vk]
TThe values of v are calculated from k hex coordinates, l1 . . . lk, that are distributed over theembedding space. The value of vi is calculated by:

vi = wi

∑

∀r∈robot

e−yidhex(li,r), y > 0

w and y are free parameters that will be optimized later. The negative exponent implies vi ishigh only when the majority of the robotic mass is near hex coordinate li.Optimal placement for the l locations we have not determined, but intuition suggests that thepoints should be concentrated towards the anchor node where most robotic mass is likely to belocated. In the placement procedure presented here, measurement points are placed incrementallyup to the number of components n. 6 points are placed equidistant to one another in concentric ringsaround the anchor. The placement ring increases in radius by one each increment of the algorithm.In each ring, the 6 points are equidistant, but their exact placement is found by maximizing theirnearest neighbor distance to already placed locations (Fig 4.4). So the length of a the vectorrepresentation of a robot with n units is 6n+ 1Good values for the constants vectors w and y were chosen by optimizing a cost function, J ,derived from OAH distances on training examples.
Jw,d =

∑

j,i∈train

(OAH(i, j)− VMw,d(i, j))
2%CHANGE 4A%The VM heuristic can be calculated from scratch in O(n2) and the vector can be updatedincrementally in O(n). The VM heuristic can be presented to a search as persistent and incrementalat a time cost of O(n). The overhead factor associated with calculating the vector representation

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 30

Figure 4.4. Placement of kernels in embedding space, for up to n = 5of a con�guration is very low. The e�ect of adding/subtracting a subunit at a speci�c location, q,on the vector representation v, is to add/subtract a constant vector, cq, to v given by:-
ci = wie

−yidhex(li,q)As the size of the embedded space only grows at O(n2) (being a 2D space), we cached valuesof c lazily as subunit moved around in the search space. So when a subunit moved from position
s to position e, the vector representation could be updated very quickly incrementally using ve =

vs − cs + ce, where ce or cscould be retrieved from a cache if already encountered before.A consequence of the VM heuristic construction is that the vector representation is a functionof a single con�guration. So if the goal con�guration changes during search, unlike the GAH, thevector representation of the search nodes can continue to be updated incrementally. In contrast,the OAH and GAH heuristics are functions of a pair of con�gurations. The motivation of the VMheuristic was to speed up nearest neighbor queries (NN) which are key components of RRT-Connectand PRM planners, where the goal changes frequently in the subsearches.The time complexity of each of the heuristics was empirically determined by computing theestimated distance between randomly generated con�gurations, �gure 4.2. The results of empiricallyestimating the time complexity of the heuristics di�er slightly from theoretical expectation. TheOAH is expected to have cubic complexity but has been empirically observed with a lower exponentvalue, speci�cally O(n2.2). We believe the unexpected e�ciency is due to the distance matrices oftwo con�gurations tending to contain more row-column unique 0 elements as n grows. 0 elementscause logical shortcuts in the code execution. Empirical observations of computing GAH fromscratch met expectations of quadratic computation time, and the expected computational gainswere also observed when computing GAH incrementally; O(1.8n). The VM was expected to cost
O(n2) to compute from scratch but beat expectation in empirical experiments with a run-time of
O(1.5n), furthermore the VM heuristic when calculated incrementally also beat O(n) theoreticalexpectation by running at O(0.8n) in empirical experiments. We attribute VM's empirical gain inspeed due to the e�ect of lazily caching some of the calculations at a memory cost of O(n2).4.3. Planners. Greedy search was implemented in a standard way, as outlined in [67]. In brief,greedy search operates by ordering seen states by their estimated distance to the goal, estimated

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 31
Start

Goal

Start

Rnd

Goal

Start

Goal

Figure 4.5. The di�erences in the way the di�erent planners �nd paths betweenstart and a goal states. Light blue contours denote the gradient of the heuristic.Greedy search (top left) expands states that are estimated to be near the goal,this means states in local minima must be enumerated before progress continuestoward the goal. In RRT-Connect (top right), ε length branches are grown fromtrees rooted at the start and goal con�gurations towards randomly generated pointsin the space, using a local search. Local minima only damage the performance ofa single local search toward an individual randomly generated location. In PRM(bottom) a coarse roadmap (graph) is pre-generated. When a plan is requested,the nearest road is typically a short distance away from the start and goal states,so the impact of local minima on a local search towards nearby roads is greatlyreduced.by the provided heuristic. Each iteration the state that appears nearest to the goal is expanded byadding the neighboring states into the queue. The process is repeated until the goal is discovered.The algorithm is initialized by adding the start state into the queue. It is equivalent to an A* searchwhere the current distance from the starting state to a current state is ignored, which reduces thenumber of states evaluated compared to A*, but loses the optimality of A*. An RB tree datastructure was used as the primary queue.If the heuristic does not match the true distance between states, the search will expand statesin a local minima. Because nearby states will have a similar heuristic value (the heuristic shouldbe smooth), the search will repeatedly expand nearby states until all states in the local minima areexpanded. This is shown diagrammatically in �gure 4.5 and this e�ect is one of the motivations forsampling based planners.The �rst sampling based planner for evaluation was the RRT-Connect algorithm. We referthe reader to [38] for a detailed description of its implementation from which we did not deviate.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 32RRT-Connect grows two trees from the start and goal con�guration towards randomly generatedstates. Each iteration, a new state is randomly generated, and the nearest vertex of one tree isused as starting state for a local search toward the random state using a supplied heuristic. Thelocal subsearch (we used Greedy search) is only run for a distance of ε. Wherever the local searchterminates in the space, the other tree is then grown towards that state in a similar manner. Ifthe trees connect, then a path can be found between the two tree roots. We set ε = 20 for theextend and connect subsearches. We found, in agreement with [38], that the algorithm was notparticularly sensitive to the value of ε. Our implementation was coded such that a di�erent metriccould be used for answering the nearest neighbor (NN) queries than the metric used to guide thesubsearches.RRT-Connect is rapidly exploring because the state space is expanded from the nearest pre-viously seen state toward randomly generated states. If the randomly generated state is drawnuniformly from the state space, the chance that a previously expanded state happens to be thenearest is proportion to the Voronoi region. Thus states that are near unexplored regions of thestate space are the most likely to be expanded further, until the algorithm has good coverage ofthe state space. This means RRT-Connect is less sensitive to the quality of the heuristic usedcompared to greedy search. A poor performing heuristic does not tend to prevent the algorithmfrom exploring, �gure 4.5.The second sampling based planner evaluated was PRM. Multiple search queries are performedafter a single map construction phase. The purpose of the map is to approximate the overall statespace using predetermined path segments, found using some other planner. These segments arejoined into a graph. When a path through the state space is queried, the short distance from thestart state to the nearest mapped road is planned to, and similarly the goal to the nearest mappedroad. A complete path can then be found between the start state and goal state using a routefrom the roadmap and the two short dynamically found paths (�gure 4.5). PRM tends to be muchfaster because a large proportion of the planning route is pregenerated, so most of the time is spendforming planning between the state and goal states to roadmap vertices.As this study is focused on the time spent to form plans, we do not study the map generationpart of PRM. For experiments we randomly generated n2 waypoints and assumed a connectedroadmap could be constructed from them. Our results look at how di�erent PRM variants compareat planning a path from the start and goal states to roadmap vertexes. We compared greedysearch and RRT-Connect as the subsearch methodologies. RRT-Connect also o�ers an alternative�connected to waypoint� strategy. As the PRM requires a path to any nearby waypoint, instead ofattempting to �nd a path to the nearest waypoint, we tried instantiating a RRT-Connect subsearchwith the two nearest waypoints as roots of the goal tree (now a forest). This multi-goal modi�cationto the RRT-Connect algorithm a�ects implementation very little, but provides a choice of goal whichmay be useful if the nearest neighbor metric believes a waypoint is close but is actually di�cult toplan to. The multi-objective RRT variant is denoted by RRT_MO.We implemented Pamecha et al.'s simulated annealing (SA) algorithm as described in [58]. SAis a randomized walk through the state space, biased in the direction suggested by the heuristic.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 33Their SA implementation is notable for being greedy, uniformly selecting moves that lower theheuristics distance, and disallowing backwards moves. The temperature was �xed at 20.Both PRM and RRT require random con�gurations to be generated during operation. Wegenerated random con�gurations iteratively, with the initial con�guration as a single anchor. Ineach iteration a robotic component was uniformly randomly selected for construction upon. A targetadjacent location was randomly selected from the 6 possible sites surrounding the constructioncomponent. The constraints of the model were then checked to ensure valid con�guration wasconstructed. For the Chirikjian model, this was simply checking the target location was empty.For the Ghrist model, loops cannot be introduced, so adjacent locations to the target were checkedto ensure the proposed placement did not divide empty areas of space. Clearly these proceduresdo not sample uniformly from the set of possible con�guration equivalence classes, but doing so isitself a challenging and open question. We describe this process in more detail in appendix 1.4.4. Experiments. The experiments are presented as follows. First, each planning algorithm,greedy search, RRT, PRM and SA, is studied individually in order to ascertain the best perform-ing variant with respect to total wallclock planning time using di�erent heuristic and subsearchcombinations. Wallclock time is used as the primary performance metric as it integrates the dif-ferent time complexities and di�erent number of states evaluated during a planning run into onepractical comparable metric across di�erent planning implementations. However, wallclock time iscorrupted by noise from non-deterministic garbage collection arising from the java implementation.So in addition to wallclock time, the number of states evaluated by a planner is also presented,which does not su�er from garbage collection noise. Spikes in wallclock time can be cross refer-enced with states evaluated to determine whether the spike is caused by a garbage collection run,or by a particularly hard planning problem. After ascertaining the best combination of a planingalgorithm and a guiding heuristic, the best performing combinations are compared side-by-side toprovide a good view of what the best achievable is. Since PRM using an expensive precomputationof a roadmap, we also present the roadmap construction times separately.A hundred recon�guration tasks were generated for each complexity level, n, by generating pairsof random con�gurations containing n components. The con�gurations were generated using theGhrist model's generator used in the RRT and PRM planners. The same set of tasks were used totest both the Claytronics model and the Ghrist model. Simulations were run on an Acer aspire 5630laptop, 1.6Ghz Core Duo (but only one core was utilized) with 2GB of RAM. As a pragmatic ne-cessity, if a search failed to complete within 60s the search was aborted, thus truncating the results.In many of the results presented the average wallclock planning times for for successful planningruns di�er only slightly between planner and heuristic combinations, but signi�cant di�erence canbe seen when viewing the proportion of tasks that ran within the 60s time.In the �rst experiment we compared three heuristics at guiding a greedy search. Figure 4.6 showsthe performance on the two SRS models. For both models the VM heuristic clearly performs badly,being slower, evaluating more states and failing to complete more tasks in the necessary time thanany of the other heuristics. VM is clearly not a good heuristic for guiding a greedy search.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 34
5 10 15 20 25 30

0

0.5

1

1.5

2
x 10

4States Evaluated during GS on Chirikjian

Units, n

A
vg

. S
ta

te
s

OAH
GAH
VM

5 10 15 20 25 30
0

5

Wallclock Time For GS on Chirikjian

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

50

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

OAH
GAH
VM

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4States Evaluated during GS on Ghrist

Units, n

A
vg

. S
ta

te
s

OAH
GAH
VM

5 10 15 20 25 30
0

10

Wallclock Time For GS on Ghrist

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

50

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

OAH
GAH
VM

Figure 4.6. Comparison of heuristics for greedy search.
5 10 15 20 25 30

0

1

2

3

4

5

6

7
x 10

4States Evaluated For RRTConnect on Chirikjian

Units, n

A
vg

. S
ta

te
s

GAH−GAH
VM−GAH
VM−VM

5 10 15 20 25 30
0

2

Wallclock Time For RRT on Chirikjian

Avg. Units, n

T
im

e
(s

)

5 10 15 20 25 30

50

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

GAH−GAH
VM−GAH
VM−VM

5 10 15 20 25 30
0

2

4

6

8

10
x 10

5States Evaluated For RRT on Ghrist

Units, n

A
vg

. S
ta

te
s

GAH−GAH
VM−GAH
VM−VM

5 10 15 20 25 30
0

5

10

15

20

25
Wallclock Time For RRT on Ghrist

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

20

40

60

80

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

GAH−GAH
VM−GAH
VM−VM

Figure 4.7. Comparison of RRT-Connect variants.OAH and GAH perform similarly on both models. GAH evaluates more states on average thanOAH, but tends to be quicker overall. The speed gains of GAH is more pronounced on the Ghristmodel. This is probably due to a combination of factors, the Ghrist model's states are computedfaster relative to the heuristics computation time, and overall solving the tasks using the Ghristmodel is harder and requires signi�cantly more states.In the second experiment we evaluated RRT-Connect with di�erent heuristics for the NN queryand the subsearch. As GAH performed better than OAH in the experiments above, we discountedOAH for clarity. Figure 4.7 shows the performance of the RRT-Connect algorithm. Using GAH asboth the NN metric and the local search heuristic, which is the most natural implementation, is

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 35
5 10 15 20 25 30

0

2

4

6

8
x 10

4States Evaluated during SA on Chirikjian

Units, n

A
vg

. S
ta

te
s

OAH
GAH
VM

5 10 15 20 25 30
0

2

4

6

Wallclock Time For SA on Chirikjian

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

96979899100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

OAH
GAH
VM

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5States Evaluated during SA on Ghrist

Units, n

A
vg

. S
ta

te
s

OAH
GAH
VM

5 10 15 20 25 30
0

5

10

15

20
Wallclock Time For SA on Ghrist

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

20

40

60

80

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

OAH
GAH
VM

Figure 4.8. Comparison of heuristics for SAthe worst variant evaluated. The GAH-GAH combination is the slowest variant on the Claytronicsmodel, and fails to complete the most tasks for the Ghrist model. Using the cheaper VM heuristicas the NN metric improves performance, which is seen clearest on the Ghrist model tasks.Somewhat surprising is that using VM as NN metric and local search is overall the best RRT-connect variant. While this combination leads to a much large number of states evaluated, thesheer speed that the heuristic can be computed compensates. We note though that the numberof states the algorithm is searching through is growing at an alarming rate. We speculate that athigher number of components the VM-VM RRT-Connect variants performance probably will startdegrading faster relative to the other variants.In the third experiment (�gure 4.8) we compared the e�ect of the OAH, GAH and VM heuristicsguiding SA. SA using OAH is clearly much slower on the Claytronics model, and fails to completemore tasks on the Ghrist model than the other heuristics. Between GAH and VM it is clear onthe Ghrist model that VM fails to complete more tasks than GAH. On the Claytronics model theyboth take about the same amount of wallclock time to complete tasks and both complete almostall of them. However, for the VM heuristic the variance in the amount of states evaluated is farhigher than for GAH, thus we conclude GAH is the best heuristic for guiding a SA search as highvariability is undesirable.We compared numerous variants for the PRM evaluation, see �gure 4.9, by changing the sub-search variants along with the NN metric and guiding heuristics. The two PRM variants that usedgreedy search guided by GAH to get to the nearest waypoints are best at reducing the number ofstates evaluated. Of those two, the variant which used the computationally cheap VM heuristicas the metric to identify the nearest waypoints from the n2 sized set overall had a lower averagewallclock time.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 36
5 10 15 20 25 30

0

1

2

3

4

5

6
x 10

4States Evaluated For PRM on Chirikjian

Units, n

A
vg

. S
ta

te
s

GS−GAH−GAH
GS−VM−GAH
RRT−VM−GAH
RRT

MO
−VM−GAH

RRT
MO

−VM−VM

5 10 15 20 25 30
0

2

Wallclock Time For PRM on Chirikjian

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

50

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

GS−GAH−GAH
GS−VM−GAH
RRT−VM−GAH
RRT

MO
−VM−GAH

RRT
MO

−VM−VM

5 10 15 20 25 30
0

0.5

1

1.5

2
x 10

5States Evaluated For PRM on Ghrist

Units, n

A
vg

. S
ta

te
s

GS−GAH−GAH
GS−VM−GAH
RRT−VM−GAH
RRT

MO
−VM−GAH

RRT
MO

−VM−VM

5 10 15 20 25 30
0

5

Wallclock Time For PRM on Ghrist

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

50

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

GS−GAH−GAH
GS−VM−GAH
RRT−VM−GAH
RRT

MO
−VM−GAH

RRT
MO

−VM−VM

Figure 4.9. Comparison of PRM variants
5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4 States Evaluated on Chirikjian

Units, n

A
vg

. S
ta

te
s

GS GAH
RRT VM−GAH
PRM VM−GAH
SA GAH

5 10 15 20 25 30
0

2

4
Wallclock Time on Chirikjian

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

50

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

GS GAH
RRT VM−GAH
PRM VM−GAH
SA GAH

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

5 States Evaluated on Ghrist

Units, n

A
vg

. S
ta

te
s

GS GAH
RRT VM−GAH
PRM VM−GAH
SA GAH

5 10 15 20 25 30
0

10

20
Wallclock Time on Ghrist

Units, n

A
vg

. T
im

e
(s

)

5 10 15 20 25 30

50

100

%
 C

om
pl

et
ed

 W
ith

in
 6

0s

GS GAH
RRT VM−GAH
PRM VM−GAH
SA GAH

Figure 4.10. Overall comparison of planning methodologiesThe two standard PRM variants which used RRT to plan to the nearest waypoints were the worsevariants for PRM with respect to wallclock time. The multi-objective RRT searches that plannedto the two nearest locations on the roadmap for a given start and end con�guration performedbetter. So providing a choice of solutions for the RRT to �nd is a good strategy, as it provides afallback option for the RRT if the nearest waypoint happens to be di�cult to plan toward. Themulti-objective RRT that used VM for the NN metric and search heuristic was the fastest RRTPRM variant studied, but still not faster than using greedy search.We compared the best performing variants of each general search methodology (Figure 4.10).From conclusions drawn from the experiments above it is clear that VM is a better metric for

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 37
5 10 15

0

2

4

6

8

10

12

14
Construction Time of PRM (local search, NN, local hearistic, k, order) Roadmap on Chirikjian

Units, n

T
im

e
(s

)

GS−VM−GAH−3−3
GS−VM−GAH−3−4
GS−VM−VM−3−4
GS−GAH−GAH−3−3

5 10 15
0

5

10

15

20

25

30

35
Construction Time of PRM (local search, NN, local hearistic, k, order) Roadmap on Ghrist

Units, n

T
im

e
(s

)

GS−VM−GAH−3−3
GS−VM−GAH−3−4
GS−VM−VM−3−4
GS−GAH−GAH−3−3

Figure 4.11. PRM roadmap construction costanswering NN queries than GAH or OAH. As a local heuristic, GAH is better than OAH oncecomputational time is factored into account. While we discovered that it might be better to useVM for NN and local heuristic for RRT-Connect we have chosen the variant of VM for NN with GAHas the local heuristic to represent the best variant in the side-by-side search algorithm comparison,as this aligns better with the other motion planning algorithm results.Figure 4.10 summarizes the results across planners. SA and RRT stand out by evaluating largeamount of states during searches. SA is slightly slower than RRT in wallclock computation timethan RRT on the Claytronics model, and fails to complete slightly more searches on the Ghristmodel. It is surprising that a bias random walk, SA, is even competitive with the more sophisticatedRRT algorithm which uses a memory.Of the single shot planners, greedy search clearly performs better on the Ghrist model, failingless and running faster and evaluating fewer states. This is also generally true on the Chirikjianmodel too, apart from some noisy cases.The PRM planner is by far the best planning methodology considered for answering queriesquickly. This is not surprising given the precomputation of a roadmap. We used just n2 verticeswhich seems to be enough to prevent computation times scaling exponentially with problem com-plexity. Figure 4.11 shows the time it took for construction of a roadmap. It is common in PRMroadmap construction to �rst choose r nearest neighbors for each vertex and then to attempt tomake k connections(k ≤ r) to the r neighbors. We found, in accord with our other results, a PRMusing VM as the NN metric combined with greedy search as the subsearch with GAH as localheuristic to be the fastest search methodology for connecting roadmap vertexes. We choose k = 3as this is the minimum order for a non-trivial roadmap, and we found using r = 4 does not improveperformance over r = 3. Roadmap construction was expensive to compute.4.5. Discussion. The vastly improved performance of the PRM planner over the single shot plan-ners demonstrates that recon�guration planning over short distances can be be done e�ectivelyusing OAH to guide a subsearch. We only used n2 waypoints in the roadmap, which was enoughto prevent the initial local and goal searches scaling exponential with problem complexity. How-ever, roadmap construction, does at least costs a high order polynomial if not exponential time tocompute. Thus means that PRM is not a solution that could scale to thousands of subunits.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 38
Figure 4.12. Some key con�gurations cases encountered during planning. Seeaccompanying text in the discussion.After computation time for state evaluations are factored into account, there is little evidenceto recommend the RRT-Connect algorithm over greedy search or SA for planning for Claytron-ics's hexagonal metamorphic robot model. Furthermore, if one plans for the Ghrist model, thenRRT-Connect is signi�cantly worse algorithm than greedy search and SA. In this domain of SRSarchitecture, greedy search seems to be the best single shot planner.Greedy search's key feature is that no state is evaluated twice. One must conclude that RRT'srapid exploration mechanism does not work very well in this domain. Consider the cases in �gure4.12. The distance between case A and case B is evaluated as n by the OAH, yet recon�gurationmust go via intermediate case D which is at a distance of n2/4 from both. Thus a local minima inencountered when planning from A to B, albeit a shallow one which greedy search will enumeratequickly. Going from case A to case C is a similar situation for the Claytronics model, but radicallydi�erent for the Ghrist model. The intermediate case for A to C for the Claytronics model is case E,yet for the Ghrist model the units at the tips of the extensions are unable to bridge the gap, becausedoing so introduces a loop in the global topology of the SRS. In order for the Ghrist model to gofrom cases like A to C, some intermediate con�guration whereby units are concentrated aroundthe anchor, like in F, must be part of the solution path. If RRT-Connect is planning from case Fthrough randomized exploration, it is equally likely that extension will occur in any direction. Oncean extension waypoint is in RRT's expansion graph, it will naturally be more likely to be expandedagain over expansion at F, because it becomes a boundary vertex in the Voronoi partitioning ofthe exploration space. If the initial random expansion from case F happened to be in the directionof case A when the true goal was in the direction of C, it will become increasing unlikely that arandom generation of a state will force exploration from case F toward case C. Further, becauseof the Ghrist constraints, the exploration that will occur subsequently after initial expansion at Awill not be able to create loops in order to ever reach C. The Ghrist model's state space, more thanthe Claytronics model's, seems to contain bug trap constructions[48].Brandt concluded that for the ATRON model, RRT-Connect was a better planning algorithmthan greedy search. The ATRON model is a closed chain type SRS. We have found those resultsnot to be applicable for the lattice based SRS studied here. For Brandt, both algorithms performedpoorly with 7 units in the SRS. Brandt used an OAH derivative heuristic to direct the planners. Weattribute the poor performance of the algorithms to the heuristic not correlating well to the motionconstraints. RRT-Connect in this case did better than greedy search because its performance is lessdependent on the quality of the heuristic. Overall the OAH heuristic is a reasonable approximation

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 39to the Claytronics model's state space, an adequate approximation to the Ghrist model's statespace and a very bad approximation to closed chain SRS state spaces.4.6. Conclusion. We are motivated in determining a general methodology for SRS recon�gurationplanning. We have evaluated established general motion planning methods that have been usedsuccessfully in other problem domains. We have introduced two new heuristics which have improvedthe application of these methods.Empirical experiments revealed that PRM is the best performing planner because coarse longdistance planning has been precomputed. There is not strong evidence to suggest RRT-Connect isbetter than greedy search when the OAH or derivative heuristics are applicable. When the numberof subunits is high, neither greedy search nor RRT-Connect are able to plan e�ciently. Togetherthese facts imply the OAH heuristic is only e�ective for coordinating the movement of subunitswhen they are nearly at goal locations. In other words, the OAH heuristic fails to capture theglobal aggregate behavior of subunits, but it is an adequate local approximation.Our motivation was to develop methods that are both general (applicable for di�erent SRSmodels) and e�cient (scalable to large numbers of subunits). While the methods examined herewere general, they were ine�cient. For large numbers of subunits, PRM is an unattractive solu-tion because of the expensive precomputation of the roadmap. The di�culties faced by modernsampling-based motion planning algorithms suggest that there is a need for for even better heuristicsthat capture the essential structure of this complex problem domain, perhaps involving multi-levelstrategies that better exploit the geometry and topology of the space.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 405. An Efficient Algorithm for Self-Reconfiguration Planning in a ModularRobot [45]Our goal is to �nd a method of recon�guration that is both general (applicable to any SRS)and e�cient (linear in time complexity). In the previous chapter we evaluated a variety of moderngeneral planning methodologies and found they did not scale well to modest numbers of subunits.In this chapter we will relax the self-imposed generality constraint and develop a algorithm that isdesigned to be as fast as possible for a speci�c set of motion constraints. After development of afast algorithm we will look for patterns in the implementation that could potentially be generalized.While there have been e�cient planners developed elsewhere in the literature, no-one has yetdeveloped a near linear time algorithm for the hexagonal metamorphic robot. Furthermore, manye�cient strategies have concentrated on meta-modularization which greatly reduces the state spaceby imposing a coarse high level structure to the geometry of subunits. Meta-modularization, inessence, is a wrapper for one raw state space, R so that it is presented as another (easier) meta-modularized state space, M. While this means that O(k) algorithms that were applicable for Mcan run on a speci�c subspace of the R space, much of R is lost in the process, and the planner forthe M state-space cannot possibly utilize all useful motion paths in the R space.Rus and Vona were the �rst to apply the technique of meta-modularization. It was for a di�erentclass of SRSs, those that are comprised of unit compressible subunits. In their work, units wereassigned into small groups of virtual elements that lay on a coarse embedding lattice space [65].A dictionary of moves was developed operating on the the coarser abstraction and planning wassimpli�ed. The overall time complexity for their planning algorithm was O(n2).The original motion catalog for the Chirikjian HMR, and the Claytronics HMR both su�er fromthe explicit enforcing of the constrain that subunits remain connected, at a cost of O(n). Ghrist'scatalog does not need this check, so this catalog was used as a starting point to create the moste�cient algorithm possible. We add further constraints to the Ghrist model in order to create anew catalog of moves for a HMR designed for e�cient long range planning, we call this the surfacemodel, whose state space we denote with S. We denote Claytronics state space with C. We designtwo shape-to-shape planning algorithms; �rst, an e�cient surface-to-surface planner; and secondly,a slower Claytronic-to-surface planner. By utilizing both planning algorithms, the broader class ofClaytronic-to-Claytronic shape-to-shape recon�guration tasks will be solvable as in �gure 5.1. Asthe Claytronic-to-surface portion of the plan will be the smallest piece, the e�ciency of this partof the planning process will contribute less to the overall e�ciency of the entire planning process.Chirikjian and the Claytronics catalogs both require global information about the connectivityto check if a candidate move is valid. Global information a�ects computation e�ciency, but alsohampers distributing the planning computation. The surface model, on the other hand, can beenforced using local information only, and perhaps suggests the model may be useful not just forbeing fast for global planning, but also as a useful subspace for designing a distributed planner.5.1. Surface model. The surface model is a further constrained version of the Ghrist model. Thesurface model's state space is denoted as S which is contained within the Ghrist space, S ≤ G.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 41
Start Goal

Figure 5.1. CtoC are formed by concatenating: 1, aCtoS plan from the stat stateto the nearest S state; 2, a reversed CtoS plan from the goal to the nearest S state;3, an StoS plan between the two discovered S states.
Figure 5.2. The Hamiltonian tour, around the surface for an example con�gura-tion. Robotic units are shaded blue. The two possible surface violations are shown.A kink is denoted K, and a dual path is shown as Dp. Both of these violations arenot permitted in surface adhering con�gurations.In order to describe the constraints imposed upon con�gurations belonging to the surface model,we require an additional data structure. While we describe this data structure in a language ofglobal constraints, it can actually be enforced using information local to individual subunits (seeappendix 2). So, a Hamiltonian tour around the adjacent external space is maintained using aspatially indexed linked list data structure (Figure 5.2). This data structure is represented bysurface elements stored in a tree indexed by hex coordinates. A surface element is comprised ofthree pairs of directional pointers .The �rst element of each pair of direction pointers represents the incoming direction of a Hamil-tonian traversal visitation, and the second element represents the outgoing direction.The ET is represented using indirect directional pointers, rather than absolute references toadjacent surface elements. This permits part of the tour to be rewritten without having to updateall pointers. Therefore, the ET can be updated after a single-move at constant cost (�gure 5.3).In addition to the tour, several other statistics about the tour are maintained; a set of kinkviolations, and a set of dual path violations. A kink violation is the location of where a Euler tour

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 42
(0,1)

(0,2)

(0,3)

(1,3)

(2,2)

(2,1)

(2,0)

(1,0)

x
y

pair1

pos

...

(2,1)

pair1

pos

...

(0,3)

pair1

pos

...

(1,0)

pair1

pos

...

(0,1)

pair1

pos

...

(0,2)

pair1

pos

...

(1,3)

pair1

pos

...

(2,0)

pair1

pos

...

(2,2)

(0,1)

(0,2)

(0,3)

(1,3)

(2,2)

(2,0)

(1,0)

(3,0)

(3,1)

pair1

pos

...

(2,1)

Surface Element

pair1

pos

...

(0,3)

pair1

pos

...

(3,0)

pair1

pos

...

(3,1)

pair1

pos

...

(1,0)

pair1

pos

...

(0,1)

pair1

pos

...

(0,2)

pair1

pos

...

(1,3)

pair1

pos

...

(2,0)

pair1

pos

...

(2,2)

Figure 5.3. The Hamiltonian path around a con�guration is stored in a tree ofsurface elements. When the Hamiltonian path needs to be updated, for instancewhen a subunit is added, this can be done by manipulating the spatial pointersin the immediate area. Thus, modi�cations can be done O(log(n) and can beimplemented persistently [19], using the ordering implied by the hex coordinates.
visitations enters and leaves through the same edge. A dual path violation is a location that isvisited more than once on the tour. Access to the set of kink violations is denoted by the function_.K : Σ∗ 7→ set of P and the dual paths by _.D : Σ∗ 7→ set of PA con�guration c is said to be a member of the unconstrained surface state space when there areno kink or surface violations i.e. S = {c|c.K = 0∧c.D = 0}. The motivation for this de�nition is topermit unconstrained motion for mobile subunits around the perimeter. If subunit can move, thenby de�nition from the Ghrist catalog it is on the surface of the robotic volume. Prevention of amove by lack of pivoting space is impossible because no dual path violations implies there is alwaysspace around the surface. A change in global topology cannot occur because no kinks exist withwhich a mobile unit could bridge. Said another way, the surface constraints prevent 1 wide tunnelsof space in the robotic mass (�gure 5.4). It is only 1 wide tunnels that block peripheral movementin the Ghrist catalog. Thus, for the surface model, it is unnecessary to check the intermediatestates when moving a unit from a location on the surface to another location on the surface.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 43
8,6Figure 5.4. The cases of a 1 wide tunnel of empty space (less rotations). These�gures were generated by a machine learning procedure described in appendix 2.Algorithm 1 LongMove moves a long distance, and updates the Euler tour in constant time.

LongMove : Σ ∗ ×(ML) 7→ Σ∗
LongMove(cs, (ms,me)), ce

ce ← ((cs.R− {me}) ∪ {ms}, cs.A)
ce.ET ←UpdateEulerT our(cs.ET,ms,me)For convenience we de�ne a function LongMove which moves a robotic component on a con�g-uration to anywhere, updating the ET as it does so (Algorithm 1). There is no validity checkingin this function, but this is done elsewhere in the algorithms presented later.Plans executable in the Claytronic recon�guration state space can reach con�gurations belong-ing to the surface state space because S ≤ G ≤ C. As moves are reversible (Figure ??), i.e.

move(cs,m) = ce |= move(ce,m
−1) = cs, a path from c ∈ C to s ∈ S can be reversed to �nd a pathfrom s to c.5.2. Planning. Our target is to determine a plan between two arbitrary Claytronics con�gurations.In this section we describe how surface-to-surface recon�guration tasks can be solved e�ciently.We then show how Claytronics con�gurations can be converted to surface con�gurations. The twoforms of previous plans can be combined into one single-move plan. Finally, we describe how thesingle-move plan is converted to a multi-move plan.As some of our algorithmic claims are empirically derived, we describe our empirical experimentshere, with the relevant data interleaved with the algorithmic descriptions later. The data from�rst set of experiments was used to test the most e�cient sub-planning stages. A 100 randomcon�gurations belonging to C containing 1000x units were generated for x = 1 . . . 20. For thesecond set of experiments, 100 con�gurations were generated containing 100x units for x = 1 . . . 35.Random con�gurations were generated iteratively starting with a single anchor node. Mobilerobotic nodes were added by uniform randomly selecting a component, then uniformly randomlyselecting an empty neighbor (if one existed) and placing a unit there until the desired numberof units were placed. While our results would be more representative of average case behavior ifcon�gurations were sampled directly from the state space of C, this itself is an open and challengingproblem [50]. The procedure and challenges faced are described in detail in appendix 1. We do notbelieve that the non-uniformity of the sampling procedure a�ects the average case complexity in aqualitative way.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 44Algorithm 2 Updating the labeling for PLACED and GROW is initiated at a location, loc. Ifthe loc label changes to PLACED, the function recurs.
updateInc : P× S× S× (P 7→ L) 7→ (P 7→ L)

updateInc(loc, ccurr, cgoal, labels) , labelsif(loc ∈ ccurr.U ∧ loc ∈ cgoal.U)
labels(loc)← PLACEDfor(∀q.isAdj(q, loc))

updateInc(q, ccurr, cgoal, labels)if(loc /∈ ccurr.R ∧ loc ∈ cgoal.R)if((ccurr .R ∪ {loc}, ccurr.A) ∈ S)
labels(loc)← GROW+else labels(loc)← GROWAlgorithm 3 Updating the contraction labels is performed in patches of radius 2 around thelocation, loc. The canMove function tests whether a given location on a con�guration can moveaccording to the Ghrist catalog.

updateArea : P× S× S× (P 7→ L) 7→ (P 7→ L)

updateArea(loc, ccurr, cgoal, labels) , labelsfor(∀q.d(q, loc) ≤ 2)if(canMove(q, ccurr) ∧ q /∈ cgoal.R)
labels(loc)← CONTRACT5.2.1. Surface-to-Surface. Surface-to-surface planning determines a set of moves that change fromone surface adhering con�guration to another. Surface-to-surface planning does not need to considerintermediate single-move motions.The planning algorithm incrementally improves a current con�guration c towards a goal con�g-uration g. Locations in the embedding space are labeled from L = {PLACED, GROW , GROW+,

CONTRACT, ∅}(Figure 5.5).A location labeled PLACED denotes a robotic location that no longer needs to be consideredin order to improve c. The anchors are considered PLACED on initialization, and robotic unitsadjacent to placed units that are also found in the goal con�guration are considered placed too.As the StoS planner never moves PLACED units, the number of placed locations only grows.As placed units are adjacent to already placed units, the labeling of placed units are updatedincrementally in the function updateInc (Algorithm 2) which is essentially a depth �rst search.
GROW/GROW+ locations are where robotic units could be placed. As such they are: alwaysempty, adjacent to locations labeled PLACED, and where robotic units are located in the goal.The GROW labels are updated incrementally by updateInc (Algorithm 2), they re�ect the nextpossible directions the PLACED depth �rst search can travel.
CONTRACT locations denote: locations where robotic units currently are that can move, andlocations which are not occupied in the goal con�guration. CONTRACT locations provide a

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 45Units, n fails trials 95% C.I. of P (fail)250 264 10000 .0233 .0297500 7 10000 .0003 .0014Table 1. Probability of StoS failing to �nd a motion path from a randomlygenerated start and goal con�gurationsupply of units for moving into GROW/GROW+ locations. After a move is applied to the currentcon�guration, some units local to the move's start and end locations may become mobile or losemobility. Thus, updating the CONTRACT labels is a local operation to be applied after thecon�guration changes, at constant time cost by the function updateArea (Algorithm 3).The superscript + is appended to the GROW label when the addition of a robotic unit at thatlocation results in a valid surface con�guration. Movement to GROW locations only results in avalid con�guration if the removal from the corresponding CONTRACT changes the local contextof the GROW area. Thus, we prioritize consideration of movements to GROW+ locations becauseit is likelier that the move will result in a valid surface con�guration; and reduces the amount ofmovements considered in improve().The StoS planning algorithm iterates until all units in the current con�guration are PLACED.It improves the current con�guration by moving units from CONTRACT locations to GROW lo-cations (Algorithm 4). As units become PLACED by an incremental traversal of the connectivitygraph, the summed total time of all calls to updateInc is O(n). The time cost of improve dependson how many movement attempts are rejected because they fail to result in a valid surface con�gu-ration. Further, the number of calls to improve depends on how many times the planning algorithmmust iterate. Figure 5.7B, shows that empirically the number of times the planning algorithm it-erates is approximately k
√
n. Figure 5.7A, shows that the number of GROW�CONTRACT pairsconsidered by improve grows very slowly with problem complexity.There are, however, cases where no improvements can be found and an error is generated (seeFigure 5.6). If this occurs, an random intermediate con�guration is generated for cstart and cgoalto be planned between. Failures become less likely as the number of units in the con�gurationincreases (Table 1) and presumably become irrelevant with respect to time complexity as n→∞.The overall wallclock time of planning, including failure resolution, is shown in �gure 5.7D.Computation time scales linearly with problem complexity in normal circumstances, but spikes areapparent where the system failed to �nd a solution in one attempt. As discussed, these spikesbecome irrelevant to time complexity, asymptotically.5.2.2. Claytronics-to-Surface. The Claytronics con�guration state space permits the overall mor-phology to contain holes. These cannot be removed by the Surface move catalog, so the aim of theClaytronics-to-surface conversion step is to plan a set of moves that removes any holes from the ini-tial and goal con�gurations. Holes are removed by �nding tunnels linking all holes and excavatingunits inside these tunnels to safe locations elsewhere on the con�guration.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 46
Figure 5.5. The labeling of PLACED, GROW ,GROW+, CONTRACT and theEuler Tour for two con�gurations (A and B) planning toward a goal (C). B is onepossible longMove option improve could suggest given A.Algorithm 4 The Surface-to-Surface planner.

improve : S× (P 7→ L) 7→ S×ML

improve(c, labels) ,for {s, e|(labels(s) = CONTRACT+

∨labels(s) = CONTRACT)

∧(labels(e) = GROW+

∨labels(e) = GROW)}
ĉ← LongMove(c, (s, e))if (ĉ ∈ S)return (ĉ, (s, e))throw error

StoS: S× S 7→Mk
L × Sk

StoS(cstart, cgoal) , (M,S)

c← cstartfor {a|a ∈ c.A}
labels← updateInc(c, g, labels)for {x|x ∈ c.R}

labels← updateArea(x, c, g, labels)while (∃l.l ∈ c.R ∧ labels(l) 6= PLACED)
((s, e), c)← improve(c, labels)

labels← updateInc(e, c, g, labels)

labels← updateArea(s, c, g, labels)

labels← updateArea(e, c, g, labels)

append(M, (s, e))

append(S, c)

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 47
Figure 5.6. Example of an error situation. Moving the unit at the only
CONTRACT location to the only GROW location (thus forming the con�gu-ration in Figure 5.2) causes a kink violation i.e. the Surface-to-Surface planner isstuck

0 5,000 10,000 15,000 20,000
0

1

2

3

4

C−G Pairs Considered in improve()

Units, n

A
vg

. N
um

be
r

A

0 5,000 10,000 15,000 20,000
0

200

400

600

800

Iterations in StoS()

Units, n

A
vg

. N
um

be
r

B

0 5,000 10,000 15,000 20,000
0

0.02

0.04

0.06

0.08

0.1

0.12
Retries in StoS()

Units, n

A
vg

. R
et

rie
s

C

0 5,000 10,000 15,000 20,000
0

0.2

0.4

0.6

0.8

Total StoS() Planning Time

Units, n

T
im

e(
s)

D

Figure 5.7. The Surface-to-Surface planner improves() routine �nds a valid relo-cation of a subunit between a contract and growth location in very few tries (A),and the number of tries grows slowly with problem complexity (logarithmic?). Asub linear number of iterations are need to transform the stating con�guration intothe goal (B). The planner runs into di�culties, solving via a randomly generatedintermediate, only at low problem complexities (C). Overall performance appearsto be linear (D), spikes will occur less frequently as n→∞.Firstly, it should be noted that from the moves catalog of the Claytronics model it is clear thatcomponents cannot move along the walls of an empty tunnel one space wide. So a two wide tunnelneeds to be determined that links all holes. This is done in a two step process. In the �rst step aone wide tunnel is found and in the second step, the one wide tunnel is expanded to be two wide.To �nd the one wide tunnel for a con�guration, c ∈ C, a connectivity graph Gt = Gconn(c.R ∪
c.Adj) is constructed that includes the adjacent unoccupied location but not the anchor nodes. Theedges are given weights by the (directed) function w(x1, x2) , if(x2 ∈ c.Adj) 0 else 1

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 48

Figure 5.8. Top, the one wide tunnel procedure. The large arrows denote theorder of Dijkstra expansion. The shade of the arrows indicate the geodesic distancefrom the external unoccupied start node (yellow). The red highlights the nodesin the minimal spanning tree that connects all unoccupied space. Bottom, theexpansion of the one wide tunnel to two wide.The weight function implies traversals into unoccupied locations on this graph �cost� nothing. To�nd a one wide tunnel we initiate a Dijkstra shortest path traversal initiated at an outside adjacentlocation. The traversal is terminated as soon as all unoccupied locations have been visited. Theminimal spanning tree of the search graph containing all search nodes that expand unoccupiedlocations identi�es the minimal set of units that connect all holes with a one wide tunnel (Figure5.8). The time to perform the Dijkstra search is linear. Taking the minimal spanning tree is alsolinearly bounded. So overall determining what set of units lie within the one wide tunnel has acomputation time of O(n). We denote the operation as tunnel1(c ∈ C) 7→ R1 ∈ P(P).The second step in the tunneling procedure is to expand the one wide tunnel to be two wide.Determining what side of a one wide section of tunnel to dig, in order to achieve the minimalset of nodes to remove, seems expensive to compute. Instead we chose a linearly bounded greedyprocedure. First, all units of R1 are removed from the con�guration to yield a hole-free con�guration
c′ = (c.R − R1, c.A). Then, every adjacent unoccupied location, c′.Adj, is checked to determinewhether it is a one wide passage or a kink (�gure 5.9). If it is, then the locally minimal set of neighborunits to undo its status are marked for removal, and c′ is updated to re�ect this (algorithm 5).Anchor locations cannot be part of the removal set. This procedure is named tunnel2.Robotic units to be moved are identi�ed by tunnel2 as a set R (�gure 5.8). Removal of R from
c.R yields a surface con�guration with which an unviolated ET, W , (described in the de�nitionof a surface robot) can be wrapped around. W provides a �roadmap� to determine what surfacelocations are safe for robotic units to be moved to. The growth set, G, is de�ned as locations whereplacement of a robotic unit does not cause a violation in the ET.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 49

Figure 5.9. The one wide tunnel cases which need to be corrected in order tocreate a two wide tunnel. On the left is the matching context, on the right possible�xes, where R denotes which locations should be removed.Algorithm 5 Expansion of a one wide tunnel, (Figure 5.8) is achieved by matching unoccupiedadjacent space to problem categories (Figure 5.9). If a problem is found, the solution that requiresthe minimal amount of additional R tunneling units is selected as the local solution.
tunnel2 : C 7→ set of P

tunnel2(c) , R

R1 ← tunnel1(c)

R← R1

c′ = (c.R−R, c.A)for {e|e ∈ Ac′}if (p← matchProblem(e) 6= ∅)
m←∞for {s|s ∈ solutions(p)}

q ← |s ∩ c′.R−R|if (q < m ∧ s ∩ c.A = ∅)
m← q

smin ← s

R← R ∪ smin

c′.R← c′.R− sminThe planner solves the task by moving units at a location in R to a location in G. For speed,the planner tries to achieve these goals by using the Ghrist's motion catalog, and only uses theChirikjian model's catalog when necessary.The Ghrist catalog (a subset of the surface catalog) can be too limiting in some situations. TheGhrist catalog's motion constraints prevent a unit on the boundary of a hole from moving to openthe hole (Figure 5.10). However, by de�nition, a hole is enclosed by a boundary of robotic units,

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 50so the global topological change of opening the hole cannot disconnect the overall connectivity ofthe robot. While the Claytronics catalog would permit the move, it comes at a linear cost of aconnectivity check. We can avoid this by �lling all enclosed holes in the con�guration with virtualrobotic subunits, which will allow the move to be identi�ed by the Ghrist catalog at constantcost. After the move has taken place, a virtual element will be in contact with empty space. Allvirtual elements in contact with empty space are removed recursively. As the Chirikjian-to-surfaceconverter is only removing holes from the con�guration, initial identi�cation of virtual elementsis O(n) and the total time for removing all elements is also O(n) (in much the same fashion ofmaintenance of the set P in the StoS planner).To improve e�ciency further, rather than trying to move elements of R out directly, a subset of
R is maintained, R+, which denotes those locations of R that contain units that can move accordingto the Ghrist catalog.Figure 5.11A, shows the that the number of times the Ghrist catalog is used to remove elementsfrom R scales as √n. In comparison, the number of times the Claytronics catalog is used scalesvery slowly, and in many problem instances is not needed at all (�gure 5.11B).The number of search sub-steps required to �nd a path for a unit from R to G, i.e. move asubunit out of a tunnel, appears to be independent of problem complexity (�gure 5.11C). As thedepth of tunnels is a 1D phenomenon, one might expect the depth to scale at √n like the perimeter.This anomalous result may indicate the sampling procedure is not generating examples that arefully representative of the state space.The algorithm only fails to remove a unit from R+ when doing so disconnects the overall robotstructure which, by de�nition, violates the Claytronics's motion constraints. Failure occurs whenthe tunneling procedure creates a tunneling structure that partitions the robot. So far we haveonly implemented an ad hoc partial solution to this problem. We allow the planner to initially solveas much as possible, and rerun the tunneling algorithm using added noise to the weight functionin tunnel1 when the planner gets stuck. This permits the tunneling procedure to try di�erenttunneling structures. The planner retries tunneling a maximum of 10 times before deciding theconversion is impossible. Whilst this means some conversion attempts fail, the noisy tunneler doesallow some extra con�gurations to be solved that initially couldn't. The majority of randomlygenerated con�gurations are solvable by this procedure (�gure 5.11E). Retunneling O(n) in timecomplexity, but the number of times it is required scales very slowly with problem complexity(�gure 5.11D).Retunneling only occurs when the planner gets stuck. Surprisingly, �gure D is identical to B, andthis has been thoroughly checked for validity. What this shows is that deferring to the Claytronicscatalog after failing to move a subunit using the Ghrist catalog (�gure B), is always immediatelyfollowed by a retunneling attempt. Using the Claytronics catalog for moving subunits is a redundantstep, and could be omitted from future implementations.The overall wallclock time to compute Claytronics-to-surface plans is shown in Figure 5.11F. Thedata suggest that, for most cases, the computation time is scaling linearly. There is an exception

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 51
Figure 5.10. The Ghrist catalog is unable to open an enclosed hole. By addinga virtual robotic element to the con�guration (light blue), a Ghrist catalog movebecomes applicable. After the move, the virtual robotic element can be removedfrom the con�guration. Calculation of holes, and placement of virtual elements,can be done once per CtoS call, which is computationally cheaper than multiplequeries to the Claytronics catalog.Algorithm 6 The Claytronics-to-Surface planner

C_to_S : C 7→Mk
S × Ck × S

C_to_S(c) , (m, s, c)

m← ∅
R← tunnel2(c)

W ← (c.R−R, c.A).Ewhile(|R| > 0):loop
R+ = {r|r ∈ P ∧ canMove(r, (c.R ∪ holes(c), c.A))}for {u|u ∈ R+}if (p =�ndAnyPathGhrist(c, u,R)6= null)

c, R,W,m,R+ ←update(u,end(p)), goto loopfor {u|u ∈ R+}if(p =�ndAnyPathClaytronics(c, u,R)6= null)
c, R,W,m,R+ ←update(u,end(p)), goto loopif(tries = 10) return error

tries =← tries+ 1

R← tunnel2noisy(c)

W ← (c.R−R, c.A).Ein an experiment with 12,000 units. We cannot explain this anomaly, as it does not correlate withany other spikes in the other metrics. It may be due to a Java garbage collection pause.5.2.3. Claytronics-to-Claytronics. The Claytronics-to-Claytronics planner uses each of the planningalgorithms described above as sub-steps to creating an overall single move plan to between arbitraryClaytronics con�gurations.Given a start and end con�guration, s ∈ C, e ∈ C, a single move plan is formed for each thattransforms them into surface adhering con�gurations. A plan between these surface adhering con-�gurations is found using StoS. This compressed plan contains longMoves, which is decompressed

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 52
0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

Removals using Ghrist catalog

Units, n

A
vg

. N
um

be
r

A

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3
Removals using Chirikjian catalog

Units, n

A
vg

. N
um

be
r

B

0 0.5 1 1.5 2

x 10
4

0

1

2

States Evaluated During Removals

Units, n

A
vg

. N
um

be
r

C

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3
Noisy Retunneling Attempts

Units, n

A
vg

. N
um

be
r

D

0 0.5 1 1.5 2

x 10
4

0

50

100
CtoS() Success Rate

Units, n

%
su

cc
es

sf
ul

E

0 0.5 1 1.5 2

x 10
4

0

1

2

3

Total CtoS() Planning Time

Units, n

T
im

e(
s)

F

Figure 5.11. A Claytronic con�guration can be converted to a surface con�gu-ration almost exclusively using the computationally O(1) Ghrist moves (A) ratherthan requiring the O(n) Claytronic moves (B). Subunits that needed to be removeddid not seem to have to travel far, even in large con�gurations (C). Retunneling wasnot required often, but was required more as the complexity of the task increased(D). The overall success rate was very high, however, the failure rate increase withproblem size (E). Overall planning time appears linear, apart from an anomalousspike which appears unrelated to other performance statistic gathered, so this islikely to be the Java garbage collection.by searching the Ghrist state space. As StoS plans, on average, contain √n long moves, whichrequire √n Ghrist moves to realize, decompression costs O(n) (Figure 5.12A).Finally, the separate plans are concatenated together to yield a plan that is a set of single movesthat changes s to e.5.2.4. Single-Move to Multi-Move plan conversion. The planning algorithms discussed so far achievetheir aims by moving one component at a time. However, the time required to execute a plan on ahardware platform can be drastically improved if multiple units are permitted to move in parallel.Ghrist provides [25] a method for converting a single-move plan into an optimal multi-moveplan for moves using the Ghrist catalog. Once the single-moves plan is calculated, which contains

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 53
0 5,000 10,000 15,000 20,000

0

2

4

6

8

CtoC() Planning Time

Units, n

T
im

e(
s)

A

0 1000 2000 3000 4000
0

5

10

15

20

25

Multi−Move Planning Time

Units, n

T
im

e(
s)

B

0 5,000 10,000 15,000 20,000
0

5

10

15
x 10

4 CtoC() Single−Move Path length

Units, n

A
vg

. n
um

be
r

of
 m

ov
es

C

0 1000 2000 3000 4000
0

1000

2000

3000

4000

Multi−Move Path Length

Units, n

A
vg

. n
um

be
r

of
 m

ov
es

D

Figure 5.12.moves from both Claytronics and Ghrist catalogs, Ghrist's multi-move conversion algorithm canbe applied. The existence of Claytronics moves in the plan does not pose a problem. Ghrist'sconversion algorithm is just applied to the solution sub-sequences that contain Ghrist moves.The overall time to convert the single-move compressed plan to a multi move plan empiricallyappears to be bounded quadratic, in accordance with Ghrist's own analysis (Figure 5.12B). Wenote though, that when the multi-move conversion step is applied, if all intermediate states andmoves are available then the conversion could be computed in a distributed fashion. So we proposerepresenting the underlying state of con�gurations using persistent red black trees [19]. Persistentred-black trees can represent sets with all the normal operations taking O(log2(n)) but modi�cationsto the sets preserve the original versions at O(log2(n)) in space cost. Using persistent red-blacktrees would increase the cost of computing a single-move plan from O(n) to O(nlog2n) but wouldpermit all intermediate solution con�guration states to be preserved. Then, it may be possible thata distributed version of Ghrist's multi-move conversion step could compute a multi-move plan in
O(nlog2n).5.3. Results. The total time to form a single move plan from two randomly generated Claytronicscon�gurations is shown in �gure 5.12A. The total time to plan and convert into a multi-move planis shown in �gure 5.12B. Sometimes the planning algorithm can fail, caused by tunneling problemsin the CtoS converter. The failure rate is shown in Figure 5.11E. On average, for over 97% ofrandomly generated tasks with up-to 20, 000 units, our algorithm �nds a single move plan in lineartime. While some of the CtoS computation times spike, the magnitude of the spike is still linearlybounded because only a �nite number of O(n) retries are attempted.The average single-move path length is shown in �gure 5.12C. The single-move path length scaleslinearly with the number of units in the con�guration. The multi-move path lengths are shownin �gure 5.12D. Moving units in parallel reduces the number of time steps necessary to change

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 54from one con�guration to another by several orders of magnitude. The multi-move plans scalesub-linearly with problem complexity, but not √n as may be hoped.5.4. Discussion. A common extension to the SRS recon�guration planning problem is the additionof obstacles in the space. The algorithm presented here is easily extended to this situation. Thedual path violation case can be generalized to indicate when an obstacle blocks pivot space aroundthe surface of the robot.The simple solution to obstacles, avoiding movement in the vicinity regardless of the currentplanning task, is reminiscent of a conservative approach to calculating a subset of Cfree by takingthe Minkowski sum of a bounding sphere with obstacles in the environment [14]. Our approach in
StoS planning can be viewed as a utilization of this insight.The SRS domain is di�cult for planning because the robotic units are obstacles to each other. Aswe can control the robots though, this can be used to our advantage. Our approach has been to keepthe surface of the con�guration unconstrained for robot movement, in a sense, maximizing Cfree forthose robotic units who can move. This has enabled e�cient planning over a large spanning subsetof the Claytronics recon�guration state space. In the following chapter (chapter 6), we will analyzethe state space S further, to deduce why this state space is special in contrast to the underlying Cspace.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 556. A Characterization of the Reconfiguration Space of Self-ReconfiguringRobotic Systems [46]6.1. Introduction. An open goal of the SRS community is to developing a computationally e�-cient motion planning algorithm that is applicable to a broad range of di�erent SRS architectures.In chapter 4 we saw that search based planning algorithms do not apply e�ciently to the SRS do-main. In chapter 5 we developed an ad hoc planning algorithm that was computationally e�cientbut specialized for a particular set of SRS constraints. The key to this motion planning algorithmwas identi�cation of an e�cient subspace where the majority of planning could take place. In thischapter we pool knowledge from other e�cient planning algorithms existing in the SRS literature,and the algorithm from chapter 5, to elucidate a rationale for why some SRS state spaces are moree�cient that others. While this knowledge alone would not provide us with a general purposemotion planning algorithm for all SRSs, it could be a useful initial step in the construction of anSRS motion planning compiler.We use the the Surface space as an example of an `easy' state space that can be found withina number of possible `hard' state spaces of the HMR. We demonstrate that the subspace is wellconnected (in a sense to be made precise), which is why planning tasks can be solved e�cientlyusing greedy methods with a low probability of failure. We test this hypothesis by utilizing asampling-based method to estimate quantitative descriptors of the algebraic connectivity of thestate space. We compare the results from this specialized subspace against a more general model ofHMR recon�guration, and discover a striking qualitative di�erence in the behavior of the algebraicconnectivity as the number of subunits in the con�guration grows. The implication is that theSurface space contains few bottlenecks, even when there are high numbers of subunits.A second desirable property of the Surface space is that the di�erent instances of the recon�gura-tion space, corresponding to incremental addition of a subunit, are well ordered in a speci�c sense.Speci�cally, we prove that the recon�guration graphs at increasing levels of complexity are orderedby the graph minor relation, in a way that seems to extend the notion of meta-modularization.Ordering by graph minors explains why certain SRS models can be solved recursively in a particu-larly simple and e�cient way. We hope that these ideas might inspire further analysis of the globalstructure of recon�guration spaces and algorithm designs.While the speci�c results of this paper are phrased in the context of the study of a speci�calgorithm for a speci�c model of a SRS, the quantitative and analytical tools can be applied to anySRS, to explain when and why a subspace of a recon�guration space for an SRS may be good toplan within, providing tools for characterizing and evaluating a subspace's suitability for e�cientplanning. In future work, we hope that these tools can be utilized to develop automated methods foridenti�cation of useful subspaces and other abstractions, to seed the development of SRS planningalgorithms for di�erent SRS architectures.6.2. Preliminaries. Let P denote the set of points on a hexagonal lattice, L. The metric d :

P × P 7→ Z is de�ned as the Manhattan hex distance (see [12] for details). We say two locations,
x1 ∈ P and x2 ∈ P are adjacent as isAdj(x1, x2) ⇔ d(x1, x2) = 1. The undirected connectivity

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 56graph, Gconn, of a set of locations, V ∈ P(P) (P denotes the power set function) is the graphconstructed from G(V, {(e1, e2)|isAdj(e1, e2)}).In all models of the HMR described here, a con�guration, c, is a connected set of robotic subunitlocations, c ⊂ P(P) where ∀x, y ∈ c there exists a path in Gconn(Y). There are often furtherconstraints to the admissible set of con�gurations depending on the HMR model.A move, m, is an ordered pair of positions, m ∈ M = P× P. A single-move plan, is an orderedsequence of moves. Whether a move is admissible depends on the motion catalog, which is di�erentfor di�erent models of the HMR.We specialize the general de�nition of a metamorphic system by Ghrist et al. [1, 26] for describingHMR motion catalogs here. Ghrist et al. permitted an arbitrary alphabet of symbols to label anarbitrary embedding space to describe a speci�c state of the system. A 'state' in Ghrist et al.work is a con�guration of subunits for our purposes. Our alphabet for labeling the hexagonallattice, then, is simply A = {OCCUPIED,EMPTY }. By the Ghrist et al. de�nition, a localmetamorphic system's permissible state transitions are completely described by a motion catalog,
C, which is a collection of generators. A generator describes which labels may change (the trace)when a given context is present (the support). Speci�cally, a generator, φ ∈ C consists of asupport, SUP (φ) ⊂ P(P), a trace, TR(φ) ⊂ SUP (φ) and an unordered pair of labeled local states,
Û0,1 : SUP (φ) 7→ A satisfying:

Û0|SUP (φ)−TR(φ) = Û1|SUP (φ)−TR(φ)In other words the labeling of Û0 and Û1 are equal over the support locations, but may di�er inthe trace. For the HMR motion catalogs describe here, the trace consists of two adjacent locations,and the local states are labeled to re�ect that a single unit moves from an OCCUPIED locationto an EMPTY location.Generators describe move classes, but an actual movement is carried out at a speci�c locationin the embedding space. Ghrist et al. de�ne an action of a generator φ ∈ C as a rigid bodytranslation, Φ : SUP (φ) 7→ L, thus providing information as to where the generator was appliedand in what direction. Given a state U : L 7→ A, the action is admissible if ∀x.Û0(x) = U(Φ(x)).The result of the action on the state is
Φ[U] :=

U : onL− Φ(TR(φ))

Û1(Φ
−1) : onΦ(TR(φ))In all the speci�c catalogs used here, the trace consists of two adjacent locations labeled EMPTYand OCCUPIED in Û0 which are swapped for Û1, representing a subunit moving to an adjacentlocation. So we can work out the rigid transform Φ from m ∈ M. The Ghrist et al. notation isvery general, and in the algorithms presented in this paper we only need to know whether a moveis admissible or not, so for convenience we de�ne the function matchC : M, 7→ boolean to returntrue if the move is admissible for the given catalog, C.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 57
Figure 6.1. Previous motion catalogs modulo isomorphisms. Green denotesthe trace, where a subunit can move between. Blue and white respectively denotewhere subunits must be/must not be in the local context for the move to beadmissible. A: The original motion catalog for the hexagonal metamorphic robotby Chirikjian [12]. B: The motion catalog for the Claytronics prototype [35]. C:The three generators comprising of Ghrist's example motion catalog [1]. D: Amove permitted by the Claytronics model but not Ghrist's as it changes the grosstopology of the aggregate.6.3. Background. The Surface space can be viewed as a further constrained version of Ghrist'sHMR motion catalog. It inherits Ghrist's locality and admits a simple planning algorithm tosolve Surface-to-Surface recon�guration tasks e�ciently. In chapter 5 we used the Surface space toform long distance plans within the Claytronics HMR recon�guration state space, which allowedClaytronic-to-Claytronic recon�guration tasks to be solved, empirically, on average, in linear time[45] for 97% of the state space. An arbitrary Claytronics HMR con�guration, on average, is only afew moves away from a nearby Surface adhering con�guration using the Claytronics motion catalog.It is thus tractable to compute a motion trajectory in the more general, and computationally lesse�cient, Claytronics space only a small distance to �nd a nearby Surface con�guration. Whilethe algorithm was highly e�cient and operated on a large fraction of the Claytronics state space,the Claytronics-to-Surface planning step was essentially a heuristic method that had a failure rateproportional to problem complexity. In the interest of clarity, all the analysis in the followingsections are restricted to the properties of the Surface state space, for which a well-behaved motionplanner is presented.So it is the nature of the recon�guration state space of the Surface HMR motion model we wishto understand further. It is worth noting that the motivation for the Surface state space de�nition isremoval of the planning di�culties associated with the Claytronics motion catalog requiring emptyspace opposite the pivot location. Previous attempts at abstracting away troublesome constraintsin other SRS models have centered around meta-modularization of the state space [66]. In meta-modularization the atomic planning unit is actually a collection of SRS subunits (�gure 6.2 A) withprede�ned sequences of moves that permit the meta-modules to move with fewer motion constraintsthan the underlying subunits (�gure 6.2 B). The planning task is thus simpli�ed, but at the cost ofcoarsening the embedding lattice signi�cantly. The drawback of the methodology becomes apparentwhen one considers the proportion of con�gurations in the underlying SRS state space that have arepresentation in the meta-module state-space. Meta-module conforming con�gurations occupy analmost negligible proportion of the overall general state space. Meta-modularization, then, does not

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 58

Figure 6.2. A: A potential meta-modularization of the HMR that permits mo-bility of the subunits found in the center of each hexagon edge using the Claytronicsmotion catalog, in particular, providing empty space opposite the pivot locations.B: A con�guration built out of 12 such meta-modules, and an example of howlocal meta-module motion primitives can be daisy-chained together to the e�ectof moving one meta-module to an empty location adjacent to the perimeter. C:Expressing the local support required for a subunit to enter or leave a location.lend itself well to being used as an intermediate path through a more general con�guration space(for example, there are no meta-module con�gurations for 13 subunits for the example in �gure6.2). Both a meta-modularization subspace and the Surface subspace achieve similar qualitativebehavior, simplifying planning, by adding additional motion constraints to an underlying motionmodel. The Surface space achieves a similar result to meta-modularization, but by sacri�cing fewercon�gurations.So the motivation for this work is to shed light on the question: why is it that adding extraconstraints can sometimes make planning harder, as in adding constraints to the Chirikjian catalogto create the Claytronics catalog, and yet sometimes easier, as in adding constraints to the Ghristcatalog to create the Surface catalog, or by applying a meta-modularization strategy? By identifyinggeneral principals that describe when and how adding constraints can simplify planning, then weexpect advances in recon�guration algorithms for much harder models of SRS whose motion statespace is di�cult to mentally visualize e.g. M-TRAN [55]. Furthermore, adding arti�cial constraintsto a model reduces the number of states the augmented system can express, so our work will aid inconstructing constrained motion catalogs that sacri�ce the minimum state space volume for a gainin planning e�ciency.6.4. A Surface-to-Surface Planner. A Surface adhering con�guration, c ∈ S, is de�ned asa con�guration that permits a Hamiltonian path to be wrapped around the adjacent externallocations (adj(c)). This requirement is compromised by two classes of violation. A kink violationis present when the peripheral tour leaves through the same edge it enters from (�gure 6.3), and adual path violation is where the tour traverses through the same location more than once (�gure6.3).

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 59

Figure 6.3. Wrapping a tour around a con�guration. This con�guration is nota valid Surface con�guration because it contains a kink violation (K) and a dualpath violation (Dp).

Figure 6.4. Examples of a valid Ghrist con�guration and a valid Surface con-�guration. Ghrist con�gurations may contain narrow intrusions of space, whichprevent subunits on the perimeter from crossing. Surface con�gurations, by con-struction, do not.A valid Hamiltonian path implies several properties relevant to motion under the Claytronicsand Ghrist motion catalogs. If an extra subunit is added, the subunit can move in a complete looparound the entire perimeter of the con�guration. The lack of dual path violations implies thereis always open space above the additional subunit for pivotal space. Absence of kink violationsimplies there cannot be a change of gross topology, speci�cally an introduction of enclosed space,caused by a subunit bridging the empty space adjacent to the kink (�gure 6.1 D).Note however, that while the added subunit is able to move around the con�guration freelyusing Ghrist's motion catalog, it may not be able to stop anywhere on this path and still result ina valid Surface con�guration. The moving subunit may itself cause kink or dual path violations.The Surface model's constraints merely imply that if a unit can be removed from one perimeterlocation and placed at another valid location, then a sequence of Ghrist motion moves will exist tolink them (although violations may transiently be generated when executing the underlying Ghristsequence).

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 60

6,6

E.1 E.2

E.3 E.4

Figure 6.5. There are four di�erent generators for adding/removing a subunitfrom a Surface con�guration.Whilst the Hamiltonian path constraint is a useful description of the Surface model's restrictions,both for implementation and visualization of the path around the con�guration subunits take, wecan rewrite this functionality in terms of a new set of local contexts for the motion catalog. Thisproves that the Surface HMR model is also a local metamorphic system by Ghrist's de�nition. Amajor di�erence with the motion catalog for the Surface model compared to the other HMR modelsis that the start and end locations for a move may not be adjacent. So a Surface plan is a set ofmoves that relocate individual subunits from one location on the perimeter to another, with theguarantee that a detailed sequence of consecutive Ghrist moves will exist that pass through theSurface plan way-points.Figure 6.5 shows the generators where a unit can be added or removed from a Surface con�gu-ration to generate another valid Surface con�guration. If local states at the single trace location,
tr, satisfy Û0(tr) = EMPTY and Û1(tr) = OCCUPIED then we say the generator is an ADD,otherwise it is a REMOV E. A move for the Surface model is a REMOVE followed by an ADDelsewhere. Technically, in Ghrist parlance, the catalog for the Surface model is the (in�nite) unionof all possible relative arrangements of a REMOVE and an ADD whose labeled local states agree.Figure 6.5 was not generated by hand. All valid Surface con�gurations containing eight subunitswere enumerated using the Hamiltonian path constraint description above. The relative localcontexts of adjacent empty space was stored and annotated with a label describing whether asubunit could be added or not. This set of annotated local contexts was processed by the C4.5algorithm [63] in the Weka [29]data mining library to produce a shallow decision tree. The decisiontree had 100% accuracy at determining what necessary local context was present to add a subunit,and was optimized upon valid con�gurations only. As a side e�ect, the data mining tool identi�edthat a subunit could not be added if it created the patterns shown in Figure 6.6. The details aredescribe in appendix 2.Lemma 1. For any given surface adhering con�guration, an additional module can move aroundthe perimeter in a complete loop using the Ghrist motion catalog.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 61
8,6

Figure 6.6. A Surface con�guration never contains the above patterns of emptyspace (white) and robotic subunits (red).Units, n fails trials 95% C.I. of P (fail)250 264 10000 .0233 .0297500 7 10000 .0003 .0014Table 2. Probability of StoS failing to �nd an improvement in random tasksdecreases as the number of units in the random con�gurations increase.Proof. By construction, discussed above. �The Surface-to-Surface planning algorithm �nds an admissible sequence of Surface moves inorder to change one Surface adhering con�guration into another. From Lemma 1 the resulting plancan be executed by a HMR constrained by the Ghrist, Claytronics or Chirikjian motion constraints.Each single move in the Surface HMR, however, is a concatenation of several single moves by theother catalogs (a so called, long-move) on account of the start and end location decoupling. Thehigh level algorithm is outlined in (Algorithm 7). For clarity, the version presented here does notinclude a number of optimizations (see [45]). So this speci�c algorithm does not run in near lineartime. However, the salient features relevant for the present discussion have been preserved.The algorithm's main loop incrementally changes the current con�guration (which is initially thestart con�guration) toward the goal con�guration by applying valid surface moves determined by
improve. The algorithm tracks a set P which represents placed subunits. Once a unit is placed, itis no longer considered by the improve sub-routine to be a possible subunit that can be moved. Pis updated incrementally by updateP (Algorithm 8); a subunit is considered placed if it is adjacentto an already placed unit, and the goal contains a unit at the same location. It has been empiricallydetermined that, on average, only O(

√
n) long-moves are required to transform a start con�gurationinto the goal con�guration [45].The sub-routine improve �nds a valid surface move that moves a subunit not in P to a locationthat would lead to an addition to P . The improve sub-routine is highly optimized elsewhere tomaximize the chances that only a few moves are considered [45], but these optimizations are notincluded here. There is a small chance that no move will improve P in which case the planner failsto �nd a solution for the recon�guration task at hand. Empirically this does not seem to happenoften. In fact, the probability of failure tends toward zero as n tends to in�nity (Table 2).

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 62Algorithm 7 The Surface-to-Surface �nds a set of admissible moves to change a con�guration cinto a con�guration cgoal. A set of placed subunits, P , is incrementally grown by calls to improve.

improve searches for admissible moves to improve P .
improve : S× S× P(P) 7→M

improve(c, cgoal, P) ,for(∀s.s /∈ P ∧ s ∈ c,∀e.e /∈ P ∧ e ∈ cgoal)if (match(c, s, REMOV E)))if (match(c− {s}, e, ADD))return (s, e)throw error
StoS: S× S 7→Mk

StoS(c, cgoal) , Mk

P ← updateP (∅, ORIGIN, c, cgoal)while(|P | < |c|)
m← improve(c, P, cgoal)

c← c ∪ {m2} − {m1}
P ← updateP (P,m2, c, cgoal)

append(m,M)The result of the Surface-to-Surface planner is a sequence of long-moves, representing location-to-location traversals round the perimeter of the intermediate con�gurations. Unwrapping thelong-moves into a sequence of short-moves, compatible with other HMR models, can be done innear linear time [45]. This is possible because, on average, the perimeter distance for each long-movescales as O(
√
n), and the number of long-moves required to recon�gure also scales as O(

√
n). Thusit appears, empirically justi�ed, that the average asymptotic performance of the Surface-to-Surfaceplanner is nearly linear (subject to how close to constant time improve can be implemented) withan insigni�cant failure rate for large n.We wish to understand several things about this algorithm. Why does the algorithm asymptoti-cally fail less as n→∞, even though it is essentially a local heuristic? Why can the task be solvedincrementally by growing a placed set, P ? Also, why can't the Ghrist HMR recon�guration tasksbe solved in a similar fashion i.e. what makes this particular HMR motion catalog special?6.5. The Surface Space is Highly Connected. In general terms, a planning algorithm's taskis to �nd paths through some space, Cfree, for multiple start and end points. The di�culty ofthe task, and therefore the minimal complexity of a planning algorithm, is inherently coupled tothe properties of the con�guration space. Typically, for computational reasons, one approximatesa continuous or otherwise complex, Cfree, by discretization or sampling-based methods to yield agraph whose vertices are states in Cfree. For HMR planning, Cfree is naturally discrete; verticesof the space represent con�gurations, and edges represent admissible moves (or sets of moves inmulti-move planning, but not considered here).

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 63Algorithm 8 The set of placed units, P, is updated recursively. If a location, x, is in the currentand goal con�guration but not in P it is placed in P and updateP is called on its neighbors.
updateP : P(P)× P× S× S 7→ P(P)
updateP (Pprev, x, c, cgoal) , P

P ← Pprevif(x ∈ c ∧ x ∈ cgoal ∧ x /∈ P)
P ← P ∪ {x}for(∀q.isAdj(q, x))
P ← updateP (P, q, c, cgoal)

Figure 6.7. Left, a simple example of a planning space. The obstacle in thecenter causes bottlenecks in Cfree(shown in red). Right, a graph approximation ofthe same space.Bottlenecks in Cfree are well known complications for planners[48]. A bottleneck is a suitablynarrow subset within Cfree that constrains di�erent possible solution paths to go through it inorder to traverse between much larger subsets of the space (Figure 6.7, red). Iterative or sampling-based planning algorithms that must `discover' such bottlenecks computationally can face seriouschallenges as they may be naively expending precious computational time exploring irrelevant areasof Cfree (Figure 6.7, gray).Well founded graph-theoretic measures can concisely express what we mean by a bottleneck.Let G = (V,E) be a simple unweighted graph. A cut, W ⊂ V , separates the graph into two setsof vertices, W and V − W . Let deg(x ∈ V) be the degree of a vertex. Then the volume of aset of vertices W ⊂ V is de�ned as vol(W) ,
∑

i∈W deg(i). The cost of a cut on the graph is
cut(W) = |{x = (u, v)|x ∈ E ∧ u ∈W ∧ v /∈W}|, in other words, the number of edges crossing thecut.The Cheeger constant of a graph, hG, is a measure of �bottleneckedness� which �nds a small cutthat separates the graph into two large volumes [16]. It is de�ned as:

hG = min
S

cut(S)

min{vol(S), vol(V − S)}

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 64Directly measuring the Cheeger constant for a graph is computationally intractable. It is, how-ever, bounded by the 2nd smallest eigenvalue of the Laplacian matrix (which is also known as thealgebraic connectivity of the graph [16]).The Laplacian L matrix of a graph is:
li,j :=

1 if i = j and deg(vi) 6= 0

− 1√
deg(vi)deg(vj)

if i 6= j and vi is adjacent to vj

0 otherwiseIf L has the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn then the Cheeger constant hG is bounded by:
√

2λ2 > hG ≥
λ2

2
λ1 is 0 for all Laplacians [16]. λ2 is known as the algebraic connectivity of the graph. If a graphhas a low Cheeger constant, this implies there are small cuts that can separate large volumes of thegraph. This captures the essence of bottlenecks; paths between the two volumes must be routedthrough a small corridor.Our hypothesis is that the con�guration space of the Surface model has fewer bottlenecks com-pared to the Ghrist model of the HMR. We will use algebraic connectivity and its relation to theCheeger constant to measure the severity of bottlenecks in Cfree for the Ghrist model and theSurface model. However, �rst note that the atomic moves in the Ghrist motion model representa single subunit moving an adjacent location, whereas Surface moves represent a single subunitmoving a number of lattice locations. To compare the models fairly, we created an analogous de�-nition of a long-move for the Ghrist model to be a sequence of consecutive admissible moves appliedto a single subunit i.e. all the locations that a single subunit can reach while the other subunitsremain �xed. In addition, because both model' catalogs don't permit gross topological changes inthe morphology, we only study con�gurations that do not contain enclosed space.For the con�guration graphs containing up to 7 subunits, it is possible to construct the Laplacianand calculate the algebraic connectivity directly. The results are shown in Table 3. However, therecon�guration graphs di�er very little with low numbers of subunits for the two models. With fewsubunits, there are not enough permutations of possible local contexts to di�erentiate the models.The di�erence between models only becomes apparent at higher complexity levels.Unfortunately, expanding the con�guration graphs containing larger number of subunits quicklybecomes intractable. So in order to estimate the properties of the Cheeger constant at highercomplexity levels, i.e. subunit numbers, we use a sampling methodology. First, we generated arandom Surface adhering con�guration containing n units by iteratively uniformly selecting an ADDaction to a growing con�guration (starting from the ORIGIN). Second, we applied 1000 randommoves from the respective motion catalog (long-moves for the Ghrist model), so that the initialSurface con�guration di�uses into a model-speci�c area of the con�guration space. Finally, themodel-speci�c con�guration reached is used as a starting location for taking a sample. Examplesof con�gurations generated by this procedure are shown in Figure 6.4.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 65Ghrist Surfacen |V | |E| λ2 |V | |E| λ22 6 15 1.2000 6 15 1.20003 33 168 1.1429 33 168 1.14294 176 1431 1.1186 176 1431 1.11865 930 10836 1.1033 900 10332 1.11116 4878 75945 1.1 4482 67725 1.09787 25480 506394 1.0872 21910 417042 1.0909Table 3. The number of vertices, edges and algebraic connectivity (λ2) of theGhrist and Surface model' recon�guration graphs generated by di�erent numbersof subunits (n). The states spaces are identical up to n = 4, and only di�ermarginally at n = 7

0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

P
(

λ 2=
x)

Estimated distribution of λ
2
 for Ghrist Model

0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

P
(

λ 2=
x)

Estimated distribution of λ
2
 for Surface Model

x

12
14
16
18
20
22
24
26
28

12
14
16
18
20
22
24
26
28

Figure 6.8. The estimated densities of λ2 of the Laplacian after sampling 100sub-graphs from the recon�guration spaces of the Ghrist model and the Surfacemodel.A sample sub-graph is generated by performing a breadth �rst search to a depth of two from thesample location (the sample location, its neighbors, and its neighbor's neighbors). The algebraicconnectivity may be computed for this sub-graph, and should correlate to the global algebraicconnectivity. This procedure was applied to 100 samples for each complexity level under study.The smoothed results are shown in 6.8.For the Ghrist model, Figure 6.8 shows that as the number of units in the con�guration increases,so the spread of λ2 increases, and the mean diminishes. This suggests that our sampled sub-graphsare increasingly likely to contain bottlenecks. For higher numbers of subunits this suggests that

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 66
Figure 6.9. Graph minor operations, graphs to the right are minors of those tothe left. Red denotes an edge contraction operation, and green an edge deletion.the Cheeger constant is tending toward 0. For the Surface model the reverse seems to be true. Thespread of λ2 is decreasing, and the mean increasing. Bottlenecks seem to be sparser as we add moreunits to the surface con�gurations.Our interpretation for the Surface model is that when there are very large numbers of subunits,the movement of a particular subunit is relatively unrestricted; it is able to move anywhere on thesurface. Interaction between subunits mainly occurs at the local level, whose importance diminishesas the number of units grows. Thus local interactions that cause bottlenecks become less likely, andthe mobility of subunits on the perimeter increases. For the Ghrist model, it only takes two kinkson the surface to divide the perimeter into two classes that units cannot move between (see the Hcon�guration in Figure 6.17 in next section). As the number of units grow, so the probability oftwo or more kinks being found somewhere on the perimeter tends toward certainty.The implication of Figure 6.8 is that the Surface model has fewer bottlenecks compared to theGhrist model. The sparsity of bottlenecks in the Surface model explains why a greedy planningprocedure, such as the one employed in the Surface-to-Surface planner, su�ces in an increasingproportion of cases as n grows.6.6. Graph Minor Sub-Structure. The previous section uses Spectral Graph theory in order toexplain when greedy planning methods su�ce in a recon�guration state space. Within this nextsection we introduce the use of the Graph Minor theory applied to the analysis of SRS state spaces,�rstly as a compact, precise notation for representing that one state space is a constrained versionof another, and secondly, as a tool that reveals startling di�erences between the easy and hardplanning spaces as subunits are added. This last point in particular partially explains why e�cientplanning methods may only exist for some planning state spaces.De�nition 2. A graph, H , is said to be a minor of a graph, G, denoted H ≤ G if there exists asequence of edge deletions, contractions and vertex deletions to change G into H. [18]Figure 6.9 illustrates the basic graph minor modi�cation operations. The graph minor relationis a compact notation for describing when one state space can be executed upon another model; fordescribing when one SRS motion model is a constrained version of another. Consider the similarsub-graph relation:De�nition 3. A graph, H , is said to be a sub-graph of a graph, G, if there exists a sequence ofedge deletions and vertex deletions to change G into H. [18]

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 67
A B

...

Figure 6.10. A. a meta-module can tunnel through another, represented by asingle edge in the planning state space. This single move in the meta-modulestate space is implemented using a sequence of moves from the underlying statespace. The transient moves used in the Claytronics state space have used the edgecontraction operation to form atomic moves in the meta-module state space (B,red). The edge contractions, plus pruning of non-conforming meta-module statesand moves (green) show that the meta-modularization is a graph minor of theClaytronics state space.The sub-graph relation lacks edge contractions. Now consider the meta-module recon�gurationstate space graph containing k meta-modules, Mk, and the Claytronics state space which contains12 subunits for every meta-module, C12k (Figure 6.10). Meta-module movements are built fromsequences of underlying motion primitives, so although eachMk vertex is present in the C12k graph,each edge of the Mk graph represents a sequence of underlying C12k edges. Thus Mk is not a sub-graph of C12k, yet it is a graph minor, i.e., Mk ≤ C12k. Similarly, we can summarize all thediscussed HMR state spaces using graph minor nomenclature as Jk ≤ Ck ≤ Gk ≤ Sk, where Jk, Ck,
Gk and Sk stand for the Chirikjian, Claytronics, Ghrist and Surface model recon�guration statespaces containing k subunits respectively.The minor relation is a compact, precise notation for expressing what we mean by one state spaceis a constrained version of another. Butler et al. [7] present an argument that their cubic SRS modelis generic because it can be instantiated by various existing SRS motion catalogs. If we denote theircubic SRS recon�guration state space containing k subunits as Bk, the meta-modularized M-Transtate space as Tk, we can rewrite one of the instantiations described in the work as Bk ≤ T4k, asfour M-Tran units were required to cooperate in order to achieve the minimum motion requirementsof their model.While the graph minor relation is a useful notation for describing relationships between di�erentSRS motion catalogs, we now look at the family of state space graphs of an individual SRS cataloggenerated by di�erent numbers of subunits, e.g., Sn, for n > 1; to understand how the planningproblem changes as more subunits are added. Intuitively one might presume that the state spacegraph for a HMR model containing i subunits will share similarities with the state space containing

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 68

Figure 6.11. To globally show Xi ≤ Xi+1 we can de�ne a local relationshipbetween the graphs, and show that this relationship locally adheres to the minorrelationship. Red denotes edge contractions, and green, edge and vertex deletions.The global minor can be proved by stitching together the local minors.
i+1 subunits. We address this question formally and �nd a signi�cant di�erence between the statespaces generated by models that are hard to plan for, e.g., the Ghrist catalog, and models thathave e�cient solutions in existence, e.g., the Surface catalog or a meta-modularized state space.For the Surface model, the i recon�guration graph is a graph minor of the i+ 1 recon�gurationgraph, S1 ≤ S2≤ This does not appear to be true of the con�guration graphs generated by theGhrist motion catalog. In fact, the counter-examples for the Ghrist case are caused by the verycases where bottlenecks are found. Similar to the S case, the HMR meta-modularization exampleis also well-ordered by the minor relation, M1 ≤ M2 ≤ As will be discussed further later,graph minor ordering in the recon�guration state spaces has signi�cant implications for the motionplanning problem, and is likely to be the mechanism for explaining why one motion model admitse�cient planning and others do not.To show that a recon�guration state space, Xi is a minor of Xi+1, we utilize the fact thateach vertex of the recon�guration graphs is labeled by the arrangement of subunits on a commonembedding lattice. This labeling scheme permits a vertex, vi of the Xi graph to be associated witha group of vertices, v̄i+1, in the Xi+1 graph that corresponds to possible locations a subunit canbe added to the vi con�guration to generate a con�guration within Xi+1. This observation impliesthat a local area of the Xi graph has a corresponding local area in the Xi+1 graph.To show globally that the Xi graph is a minor of the Xi+1 graph, it is su�cient to provethat: for every vertex, vi, in the Xi, that vi's local graph neighborhood is a minor of v̄i+1 graphneighborhood, and that these local neighborhoods are connected in the same topology. This issummarized diagrammatically in Figure 6.11.The sketch of the proof to show that Si ≤ Si+1 is as follows. Any con�guration adhering tothe Surface model implies that if a module can move at all, then it is free to move in a completeloop around the exterior. The Si+1 space contains one extra subunit. We show that the subunitcan always move out of the way, in order to let any move that existed in the Si graph take place.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 69Prevention of a move in the Si state space for the Si+1 state space can only occur if the extra subunitin the Si+1 state space interferes with the local support that determined the move's admissibility.We argue geometrically that for large con�gurations, there always exists a potential location forthe added subunit that lies outside of the local support locations of the Si move. The �nite size ofthe motion catalog's local supports, plus the total mobility of the additional subunit, implies that�get out of the way� moves always exist in the Si+1 state space. The �get out of the way� moveedges can be contracted to generate the Si graph, thus showing that Si ≤ Si+1. This argumentdoes not follow for the Ghrist model because, in general, the extra subunit does not always haveenough freedom to �get out of the way� of the local supports that determined the admissibility ofa move.%CHANGE3A%The geometric proof is constructed such that the two local supports of �nite size cannot interferewith the existence of an additional subunit placed somewhere once the con�guration is above acertain size (a big con�guration always has room for a subunit to be added away from the localityof a move we are trying to avoid). It is di�cult to argue this in the 2D case, so we consider thecon�guration projected onto a line along its longest axis. Now the size of the support is boundedby an interval, and if a con�guration is large enough (longest axis scaling at √n), there is alwaysroom elsewhere on the line for a module to be added, away from the bounds of any two supports.The bene�t of this proof strategy is that it is human readable, but by grouping all the all the movesinto one bounded size, and checking for interference only on a line, the result is that we only provethe graph minor ordering to hold for n > 631. We actually believe it to hold for n > 0, but thisproof would require considerable enumeration of cases by machine and would be unreadable. Thisis the reason for choosing the proof strategy that we did.Formally, we introduce the notions of local structure in a recon�guration graph around somevertex, and an inherited local structure which represents the analogous locale in a recon�gurationgraph generated by adding a unit.De�nition 4. The local structure for a con�guration, v, is all con�gurations reachable by a singleSurface move (remember a move is a REMOVE followed by an ADD from the Surface catalog,Figure 6.5).De�nition 5. The inherited local structure for a con�guration, v, is all possible con�gurationsgenerated by applying an ADD from the Surface catalog to v. (Figure 6.5)Lemma 6. Any two con�gurations belonging to a vertex's inherited structure have a valid movebetween them.Proof. This follows from Lemma 1. Thus the inherited local structure forms a clique of con�gura-tions connected by moves.To show that the inherited local structure preserves analogous moves that existed in the localstructure, we �rst show that an extra subunit can always be added at a location that is far enough

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 70
A

B

C

Sup(A)

Sup(B)

Figure 6.12. Whether or not a subunit exists at location C does not a�ect amove between A and B because its support does not intersect A or B's. Ratherthan showing this in 2D, we project the support areas onto a line parallel to thewidest diameter of the shape. Showing the supports do not intersect is simpli�edto showing the projected support intervals do not overlap.away from the start and end of the move so that it does not a�ect the local support that determinedthe moves admissibility (sketched in Figure 6.12). If a move is between position A to position B,we need to show that ∀A∀B∃C.(sup(A) ∩ sub(C)) ∪ (sup(B) ∩ sub(C)) = ∅. There are a varietyof ways to show this, for simplicity, in the following proof we project the support areas onto a lineparallel to the widest diameter of the con�guration. �Lemma 7. All generators of the Surface catalog have a width of less than 5.Proof. See Figure 6.5. �Lemma 8. A connected con�guration containing 631 or more subunits has a large diameter of atleast 29.Proof. The con�guration with the smallest large diameter occurs when subunits are arranged intoa perfect hexagon. 6311 subunits can be arranged into a large hexagon of diameter 29. Moving anysubunit, or adding more subunits, will only increase the large diameter. �Lemma 9. For a Surface con�guration, within an columnar interval of width 7, a valid ADDlocation and its complete support is contained.Proof. First, a shape of width 7 is slid over empty space toward the con�guration (Figure 6.13)until intersecting a subunit. The lower row of hexagons comprising of the shape will then containbetween one and seven subunits and the remainder shall be empty (by construction). We will nowconsider di�erent cases of how the bottom row can be occupied in order to show that regardless ofhow, there is always a location where an extra subunit can be added.1A Hexagonal Number

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 71
7

Figure 6.13. Lemma 9 is shown by sliding the shape shown in green (of width7) toward the con�guration until it overlaps one or more subunits on its lower edge.A and B of Figure 6.14 re�ect the cases of when the bottom row contains only one subunit. Ineach case a subunit can be added using Surface ADD E.1 (Figure 6.5). When two subunits arepresent and adjacent, Figure 6.14 C and its generalizations demonstrate Surface ADD E.2 can beused to add a subunit. When the two subunits are a distance of one from each other, case D isrelevant. Case D can only occur if additional subunits are found adjacent to the empty location(light blue), because otherwise the con�guration would be invalid (Figure 6.6). With the impliedextra subunits included, Surface ADD E.4 (Figure 6.5) is applicable. Another possibility whena pair of lower row subunits are at a distance of one is case E, this however, is an impossibleSurface con�guration (Figure 6.6), but regardless, an applicable ADD location exists. When twosubunits are at a distance greater than two, such as in the case F, it is clear one subunit nolonger becomes relevant to determining an ADD applicability. For cases with more subunits, theabove arguments are trivial to extend (Surface ADD E.3 is used when case B is extended to threesubunits). Therefore, within an interval of 7, a valid ADD location can always be found, regardlessof the speci�cs of the Surface con�guration. �Lemma 10. On a line of length 29 or greater, if two intervals of width 5 are present, then aninterval of width 7 can be found which intersects neither.Proof. The worst placement of the intervals of width �ve are shown in Figure 6.15 for a line ofwidth 28. Clearly extending the length of line by one will permit space for an interval of width 7to be inserted without overlap. �Lemma 11. For any move between location A to location B on a Surface con�guration containing631 subunits or greater, there exists a location C where a subunit can be added, whereby the supportof A and B do not intersect the support of C, i.e., ∀A∀B∃C.(sup(C)∩sup(A))∪(sup(C)∩sup(B)) =

∅.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 72
A B

C D

E F

Figure 6.14. The major cases for consideration of how the shape in Figure 6.13can be occupied with subunits. The area marked with a green perimeter labels thelocation of an applicable support for some Surface ADD generator. The locationof where the subunit can be added is shown in green.
6 5 6 5 6Figure 6.15. On a line of length 28, two intervals of width 5 can be placed suchthat an addition interval of 7 cannot be placed without intersecting one of them.Proof. Projecting the supports of A and B onto a line parallel to the line de�ning the large diameterof the 631 subunit sized con�guration yields two intervals of size 5 (by Lemma 7) on a line of length29 (Lemma 8). An interval of width 7 shall exist on this line that does not intersect either of theintervals of size 5 (Lemma 10). Somewhere within the area of the con�guration that would projectto the interval of size 7 exists and ADD location C (Lemma 9) which cannot intersect the supportsof A or B. �Remark. This also holds for con�gurations of any size, but the proof is cumbersome and involvesextensive enumeration of cases.Lemma 12. For every move A→ B in a local structure between con�gurations v and u, there existsat least one pair of con�gurations v′ and u′ in the inherited structure between the same locations.Proof. A con�guration can be represented as a set of subunit locations. Let v = X ∪ {A} and

u = X∪{B}. We simply need to �nd an ADD location C that can be added to v and u such that it

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 73

Figure 6.16. A local structure (left) is a minor of the inherited local structure(right). The left central vertex is surrounded by all con�gurations reachable by amove (its local structure). The right central vertex contains the inherited structurefor that vertex (a clique), yellow denoting where an additional subunit has beenadded. For every move in the local structure (white to purple), a comparable movecan be found in the inherited structure with an addition subunit added, denoted bythe vertices joining the central vertex. The red lines within the inherited structureshows which moves are required to move the additional subunit around to �get outof the way� so that all analogous moves can execute. Deleting all black edges inthe inherited clique followed by contracting the red edges reproduces the localstructure.does not interfere with the support of A and B that enabled the move A→ B to take place. Lemma11 shows such a C exists when there are more than 631 subunits in the con�guration. Thus a Calways exists such that v′ = X ∪ {A,C}, u′ = X ∪ {B,C} and the move A→ B is still valid. �Lemma 13. The local structure of a vertex, v, is a graph minor of its inherited local structure v′.Proof. Each neighbor, ui, in the local structure of v, represents a valid move between the con�gu-rations v and ui. By Lemma 12 ∀ui, there exists a location zi that permits a move between v∪{zi}and ui ∪ {zi}. By de�nition, the con�guration v ∪ {zi} is in the inherited structure. By Lemma 6there exists a move between all v∪{zx} con�gurations. If all moves between v∪{zx} are contractedand all edges not v ∪ {zi} → ui ∪ {zi} in the inherited structure are deleted, the remaining edgesare the local structure (see Figure 6.16)
�Theorem 14. The state space of the Surface model containing i subunits is a graph minor of therecon�guration space containing i + 1 units, Si ≤ Si+1 for i ≥ 631.Proof. By Lemma 13 every vertex in the i graph is a minor of the inherited graph. For a pair ofcon�gurations in the i graph, u = X ∪{x}, v = X ∪{y} with a move between them, x→ y, Lemma13 states an ADD location on each, zuand zv exists such that the same move can take place in the

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 74inherited structure, X ∪ {x, zu} → X ∪ {y, zu} and X ∪ {y, zv} → X ∪ {x, zv}. By Lemma 6, aconnecting move between the local minors exists between X ∪ {x, zv} and X ∪ {x, zu} and thus wecan compose all the local minors of Lemma 13 into a graph and edge contracting the connectingmoves to produce the recon�guration graph containing i subunits. �Remark 15. For an alternate viewpoint on the same result, we could entirely skip the compositionof local graphs. An extra subunit can be added, and moved out of the way in order to realizeall sequences of realizable moves (Lemma 12). However, this loses sight that there is a notion oflocality relating the local structure to the inherited local structure through the embedding space.This becomes important when we consider the counter example for the Ghrist model.Conjecture 16. The Ghrist recon�guration graph containing i units is not a graph minor of i+1for i greater than some constant.Our above construction of graph minor for the Surface model does not hold for the Ghristcon�guration graph because an additional subunit in the inherited local structures does not, ingeneral, form a clique structure. Thus, while a location may exist for every local move that permitsthe move to take place in the inherited structure, there may not be connections between theselocations. Figure 6.17 shows a counterexample where the inherited structure is disconnected. Inthese cases the local structures are not minors of the inherited structures, and so a global minorcannot be constructed from a composition of local minors.Interestingly, if the H con�guration counterexample in Figure 6.17 is used as a starting point fora sub-graph sample for the procedure in section 6.5, then the resulting sub-graph yields an λ2 ofjust 0.03. This classi�es the con�guration as the most bottlenecked con�guration encountered. Itappears that the areas of the recon�guration space where the graph minor relation breaks down isalso where bottlenecks appear.%CHANGE3B%Next we consider meta-modularization. Meta-modularization was �rst formulated on a cubiclattice [65] with a tunneling procedure that allowed a meta-module to move from anywhere on thesurface, to anywhere else on the surface of the connected component (�gure 6.18). Changes in grosstopology were not excluded, unlike the Ghrist and Surface model, so that an additional constraintthat the aggregate remains connected must be enforced explicitly.Meta-modularization has e�cient planning algorithms developed upon it, and it is also orderedby the minor relation, M1 ≤ M2≤ Reusing the above logic for the Surface model orderingproof, above a certain size there is always enough exposed surface upon which a subunit can beadded that will not disrupt any previous moves. The only new consideration is that the tunnelingprocedure can only move units around on the same connected component, but as there is an explicitconstraint enforcing that the sub-units remain a single connected component, this taken care of.Theorem 17. For the meta-module state space, M1 ≤M2≤Proof. argued above. �

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 75

Figure 6.17. A counterexample case for the Ghrist model. Two neighbors in thelocal structure of the central H con�guration are shown (top). The induced localstructure of the H con�guration is divided into four connected components, twocliques and two unconnected vertices. The local structure cannot be reconstructedfrom edge deletions and contractions of the inherited structure, and thus is not agraph minor.

Figure 6.18. In meta-modules M state space, units can tunnel from the surfaceto another surface location. The supports of the start and the end of the moveare thus very basic (right), though note that the catalog is in�nite in size as itencompasses every possible start/end location and orientation.What is perhaps more illuminating is SRSs that are not well-ordered by the minor relationship.Consider a modi�ed meta-module system, MS whose subunits can only move to perimeter locationson the same perimeter (by moving around the surface). In this case, the move shown in �gure 6.18would not be able to take place, because it switches from the external surface to an internal surface.The modi�ed meta-module' state spaces we believe are not ordered by the minor relationship.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 76
16 Clique

Figure 6.19. In the inherited local structure for a hollow square, there are twomajor classes of where a subunit can be added. Inside and outside. All outsidecon�gurations have a valid move between them (forming a 16-clique). Similarly,the inside inherited con�gurations form a 4-clique in the inherited local structure.Importantly, there are no valid moves between the inside and outside inheritedcon�gurations, so analogous routes in the local structure, do not occur in theinherited local structure.The breakdown of the minor relationship occurs locally for moves where new surfaces are created.An example is shown in �gure 6.19. New surfaces in the con�guration split subunits into groups ofmobility. If a subunit is removed from a con�guration containing holes, there is the potential formany more moves to exist in the similar con�guration containing one less subunit. Thus, locally,edges would have to be added, and not subtracted or contracted to create an equivalent graphstructure. So we can therefore conclude that the surround near hole containing con�gurationscannot be a minor. That said, this argument only hold locally, so we can only conjecture that
MS

i � MS
i+1 as it is di�cult to exclude the possibility there maybe some other way of �nding the

MS
i structure from the MS

i+1 graphs using edge deletions and contractions.Decoupling the start and end positions of moves is the primary reason why minor ordering isfound in the recon�guration graphs of the easy planning spaces studied here. It must be notedthough, that the minor ordering is a global structural property of the recon�guration graphs, andnot a consequence of the representation used to describe the motion catalogs.Graph Minor Theory is a powerful, modern tool. Many properties are persevered or boundedby taking minors. If a graph H ≤ G and G can be drawn in some topological space without edgecrossings (e.g. a planar graph, or a generalization thereof) then H can be too. H is no morecomplex (in a topological sense) than G.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 77

Figure 6.20. Each Surface state space can be nested within the next. While aSurface state space is always found within a Ghrist state space, each Ghrist statespace contains an area that is not contained with its child. It is for this reasonthat Ghrist problems cannot be solved e�ciently over the entirety of the statespace.It is somewhat di�cult initially, due to the simplicity of the graph minor relationship, to see theconsequences of minor ordering. Recall the easier-to-grasp concept introduced �rst that if Hk ≤ Gk,and H and G are distinct SRS motion models, then plans for the hardware of H can be run onthe hardware of G e.g. H could be a meta-modularization of G. Generalizing this, we can nowsee that if Hi ≤ Hi+1 that plans for the Hi recon�guration graph can be instantiated on the samehardware, di�ering only in that an extra subunit has been added (Hi+1). Thus, plans in Hi canbe reused, and augmented, to form plans in Hi+1, so planning in these well-ordered spaces can beachieved in an incremental, local and recursive manner.In contrast, the hard planning spaces, like the Ghrist model, do not permit this e�cient strategy.As Gi is not a minor of Gi+1 this implies that both edge deletions and additions must be used tomodify Gi+1 into Gi (and in fact, vice versa). So, a plan that worked for a Gi planning task maynot always operate in an analogous manner for the Gi+1 case, because it may of utilized an edgein the recon�guration graph that no longer exists.Like the subset relation, the graph minor relation induces a partial order on a set of elements.Partial orders can be summarized graphically using a nested set notation. The observations in thissection about how the Ghrist state spaces relate to the Surface state spaces and between themselvesusing the graph minor relation are summarized in Figure 6.20.6.7. Discussion. Self-recon�guring systems are a desirable future robotic technology. Unfortu-nately, practical implementations of SRS tend to have awkward motion constraints that makeplanning computationally di�cult. To get the full bene�ts of SRSs we require e�cient motion

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 78planning algorithms so that SRS deployments can recon�gure on demand in response to environ-mental challenges.So far e�cient motion planning algorithms have been developed on a somewhat ad hoc basis,wherein researchers have looked carefully at each instantiation of SRS architectures and carefullychosen motion catalog restrictions. So far, we have lacked a theoretical understanding of why someclasses of SRS are good to plan within and some are not. Our work is an attempt to elucidatethe structure of SRS recon�guration spaces, which could be exploited in planning algorithms. Weapplied graph-theoretic techniques to sample the recon�guration space in order to quantify thepresence of bottlenecks, and we identi�ed a graph property that separated an easy to plan withSRS model from a harder one. These are general methodologies with computational implicationsfor a much larger class of SRS.Meta-modularization has been a common tactic in the SRS community for isolating troublesomemotion constraints within an abstraction. Meta-modularization often involves the de�nition of atunneling procedure that allows a peripheral meta-module to appear anywhere else on the perimeterof the con�guration. The unconstrained movement of meta-modules around the perimeter usinga tunneling procedure is similar to the Surface model's long-move motion primitives (though theSurface model does not permit movements to locations on the perimeter that cause Surface vio-lations). Both meta-modularization and the Surface model con�guration graphs are well-orderedby the graph minor relationship, which we believe goes some way towards explaining why theseapproaches make planning easier. It is clear that the Surface model's motion catalog is far lessrestrictive than the strategy o�ered by meta-modularization though. The con�gurations adheringto the Surface model's constraints occupy a much larger volume of HMR con�gurations, and thussacri�ce less generality in the con�gurations that can be planned with e�ciently, than an alternativemeta-modularization approach would.The reason why Surface constraints are signi�cantly less restrictive is because they are de�nedas addition local constraints describing where a subunit cannot stop along a motion path. There isno restriction that the local constraints to be de�ned in global terms (e.g. at speci�c points on aglobally de�ned grid spacing as in meta-modularization). It seems entirely plausible that with a setof geometric path primitives (path segments and perhaps more generally branches), and with theinsights of this paper (keeping algebraic connectivity high, and looking for graph minor ordering),that a set of local constraints that constrain an underlying model only a little, but simplify planningsigni�cantly, can be elucidated automatically.Constraining a motion model only a little implies that only a small volume of the target generalstate space cannot be represented. In chapter 5, we utilized the Surface state space as an e�cientbasis for long range planning across the more general Claytronic motion catalog, with occasionalrecourse to more expensive but general search methods. Although the overall algorithm targetedthe Claytronics motion catalog, by �nding a large subspace that was e�cient to work within, thesize of the `di�cult' part of the remaining space was greatly reduced. Thus, overall the algorithmcould achieve near linear performance, as demonstrated using a large number of randomly generatedcon�gurations, over a large proportion of the target state space.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 796.8. Conclusion. SRSs need e�cient motion planning algorithms, but developing them has beendi�cult because of the inherent high dimensionality and complexity (due to motion and shapeconstraints) of the problem. An e�cient SRS motion planning algorithm must exploit local andglobal structure. In this work we have shown that even in cases where the basic state space of aplanning problem may be complex, speci�c subspaces may admit much more interesting structurethat can be gainfully utilized for planning. We have made precise what structure is required of thesubspace, and moreover, we have shown how one can characterize this structure using general andpowerful mathematical tools that are applicable to a large class of SRS problems. One promisingdirection for future work is to try to utilize these conceptual ideas to develop techniques thatautomatically discover e�cient subspaces from more complex self-recon�guration models.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 807. Conclusion%CHANGE2A%Self-recon�guring robotics systems o�er possibility of a robotic systems that can change shapeto suit the task at hand, or in response to environment challenges. A key piece of software insuch an envisaged system is a planning algorithm that can coordinate the aggregate of cooperatingsubunits. The engineering of physical SRSs is still in its infancy, so we do not yet know what a �elddeployable SRS might look like yet. This uncertainty of the ideal physical realization has led tonumerous di�erent arti�cial models being suggested, each with its own particular �avor of motionconstraints.In addition to the uncertainty of how a practical SRS would move, we also do not know exactlywhat tasks such a system would undertake in the �eld. It is for these reasons in this thesis we havestudied useful characterizations of state spaces with respect to planning for the shape-to-shape plan-ning problem. While we have used the HMR extensively as a reference SRS, the characterizationsof chapter 6.5 are applicable to any SRS whose state space can be represented by an undirectedgraph. This encompasses all lattice and unit-compressible SRSs, but also chain and hybrid SRSsystem if the subunits are restricted to lattice coordinates during recon�gurations.The shape-to-shape planning task is not exclusively the only method for SRS control. It is,however, the most obvious method for utilization into a larger control system. With a robust shape-to-shape control methodology, high level tasks can performed by changing the SRS into di�erentshapes in response to sensor information, using an as-yet-unknown shape trajectory planner. Analternative approach to SRS control that we have not not studied is using local self-organization toachieve high level tasks goals (such as locomotion). That said, while our focus was for the shape-to-shape planning, it is probable that the nice planning spaces characterized in chapter 6.5 will beuseful substrates for self-organizing control too as a feature of these spaces were that subunits donot often get stuck.In the shape-to-shape planning domain, there have been a number of di�erent e�cient algorithmsdeveloped over the years, but so far each has only been applicable for a speci�c movement catalog.SRS are exceedingly high dimensional planning problems, yet there is a common problem structure;all subunits have identical local motion constraints. Clearly this structure is exploitable, evident bythe existence of e�cient shape-to-shape planning algorithms. Yet, we lack a formal understandingof the structure that has been exploited by the plethora of results. Perhaps there might exist ageneral SRS motion planner for lattice based SRS, that could be applied to a large variety of SRSs,that could scale to tens of thousands of subunits?In looking for a general solver for shape-to-shape recon�gurations tasks, we have found thatexisting planning methodologies used in other areas of robotics simply won't scale to the numbersof subunits necessary. This no room for error when planning in very high dimensional spaces,backtracking, and therefore search, is impractical. There is a di�culty in predicting the long rangemotion opportunities from a particular state, because the constrained local motions of subunitscan cause bottlenecks in the state space and jam a planning attempt. We have discovered though,

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 81that while some state spaces appear to be inherently di�cult to plan with, there is the possibilityof restricting the state space in such a way as to expose a subspace whose potential for planning isbetter.We found that whether or not a state space may support e�cient planning can be determinedby �nding an ordering over state spaces generated by adding a subunit. While a general statespace may not posses the ordering property, a restriction might do. Meta-modularization restrictsplanning choice branches to reside on state space vertices corresponding to speci�c arrangement ofmeta-modules; the surface model restricts planning choice branches corresponding to con�gurationsthat do not posses 1-wide tunnels of empty space. Both models, when the plan is executed, usesequences of the original motion catalogs to move between these specially selected con�gurationsor vertices of the state space graph. The minor ordering observation itself is not so much about theprocess of planning between vertices, but the selection of feasible vertices from the more generalstate space. We have shown that certain state space vertex restrictions lead to state spaces that aremore desirable from a planning perspective, and that a proposed vertex restriction can be evaluatedusing global graph descriptors.With a mathematical description of the state space properties we believe are desirable in an SRSplanning problem, it may become possible to automate the processes of �nding these state spaceswithin a given SRS problem description. This could be used as an initial step to creating an SRSmotion planning compiler; a program that builds a planner that can e�ciently solve shape-to-shapeplanning problems for arbitrary set of SRS motion constraints. We discuss some of the potentialissues in section 8.While this thesis has extensively used the hexagonal metamorphic robot as a model of self-recon�guration, the goal was to progress towards developing deeper understanding of the recon-�guration problem in general. The HMR is not a particularly useful robot to construct in anengineering sense. Self-recon�guring robots that have been constructed that show promise in realengineering are systems such as M-TRAN [55]. However, developing motion planners for thesesystems has so far been di�cult because the local motion constraints are unnatural for a human tovisualize. Removing human input into the development of motion planning algorithms appears tobe a necessary step to be able to utilize self-recon�gurable technology in pragmatic instantiations.SRS systems, in most forms, can be abstractly represented (or approximated) as relabeling op-erations performed on a lattice. With this view, the di�erences between di�erent SRS architecturesare less pronounced. Our main contribution was characterization of SRS de�nitions that havespecial properties with implied computational bene�ts, and that these special SRSs can be foundwithin the non-special SRSs. We are quite hopeful that this insight can be utilized to discovere�cient planners for complex SRSs, such as M-TRAN, without the use of human intuition.We might ask whether these insights are useful outside of the SRS domain in a general planningcontext. High dimensional planning problem are typically associated with �the curse of dimension-ality�, yet in the SRS case it is possible to �nd plans in polynomially bound time. While the graphminor ordering of the state space may be too specialized an observation for problems outside the

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 82SRS domain, its implications of dividing a hard, high dimensional problem into a series of incre-mental, recursively solvable problems is not. It is worth pondering whether the standard textbookrepresentation of a machine learning problem as �xed length vector is the best representation forall classes of problems. We have observed that an important regularity in the SRS domain is foundwhen contrasting the state spaces induced by adding a subunit (a DOF), and it is that propertythat allows an e�cient planner to scale to high dimensions. Similarly, when a problem can beposed as a variable dimensioned problem, perhaps we should look for high level correlations as theproblem size increases.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 838. Future Work%CHANGE2B%An essential ingredient for the utilization of SRS technology is shape changing control strategy.There have been a number of e�cient motion planning algorithms published in the literature.However, each of these can only be applied to the SRS it was designed for. Furthermore, the mostpromising SRSs from an applications point of view tend to be too complicated for researchers todevelop motion planning algorithms for (such as M-TRAN). There is a saying in the SRS community,�if you can build it, you can't control it. If you can control it, you don't want to build it�, re�ectingthe con�ict between what motion planning research has achieved and what hardware is needed todo traditional robot tasks. Given that future practical instantiations of SRSs are likely have a verycomplex set of motion constraints, the hand designing of motion planning algorithms is unlikely toscale to the challenges ahead. We need more general methods of development of motion planningalgorithms for SRS for the technology to �ourish.The few general attempts at motion planning have under-utilized the available moves in the un-derlying state space which results in ine�cient planners [7, 22]. Until now, we have not understoodwhat state space structures e�cient motion planning algorithms have been exploiting to to makethe observed gains in a very high dimensional planning problem. Now that we have have a handleon what makes a planning space good for planning (chapter 6), and that we know that these spacescan be found inside hard planning space, there is the potential for mining a hard state space to�nd an easy planning space, and then automatically generating a planner for the discovered statespace. This approach potentially could scale to much more complex SRS de�nitions than would beachievable by using human insight alone.While the main contribution of this thesis was de�ning exactly what an easy planning state spaceis, we have further insights on how this observation might be exploited to create an SRS motionplanning compiler. Such a compiler would generate a motion planner automatically, when given aspeci�c SRS motion catalog. There are, however, a number of di�culties though which will requirefurther research, but by going through the di�culties, we can put the implications of chapter 6 incontext and highlight the next research steps necessary.The goal of general shape-to-shape recon�guration planning is to invent a motion planningcompiler that, given �ve ingredients as inputs, will output an e�cient SRS planning algorithm.The compiler requires:1. A de�nition of the embedding lattice, L2. The permitted labels on the lattice, the alphabet, Σ3. The local relabeling options (the motion catalog), C.24. A seed con�guration, O.5. A relabeling catalog, B, used to build valid con�gurations from the seed2While it may be desirable to add global constraints as part of the motion model, such as keeping certain labelsfully connected at all times, this probably generalizes the problem too far to be tractable in the immediate future.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 84
A B C.1 C.2 C.3

6,6

E.1 E.2 E.3 E.4

Figure 8.1. Build catalogs, A, B, C, D and E represent Chirikjian, Claytronics,Ghrist and surface models build catalogs respectively. Green represents wherethe new subunit will go, which can only be added if the correct local context ispresent, white representing empty space and blue another subunit. Chirikjian andClaytronics build catalogs ensure new subunits are added adjacent to an alreadyplaced subunit, thus creating connected con�gurations. Ghrist's build catalog isdesigned to avoid creating gross changes in topology when building a con�guration,and the surface model's prevents one wide tunnels of space in the con�guration.Points 4 and 5 have been overlooked previously, but are an essential ingredient. In the original workof Chirikjian [13], it was speci�cally stated units must remain connected at all times, which wasreinforced through a global constraint. Thus, when building a 5 unit con�guration from an anchor,one-at-a-time, it is intuitive that placement of an additional unit must occur adjacent to an alreadyplaced node. B describes the sequential options of where relabeling may occur when building afeasible con�guration incrementally. O, the anchor de�nes the �rst term of any build sequence. Forexample, Ghrist's [25] motion catalog could not change the gross topology of a con�guration, so Omust be in the gross topology of problems that are to be tackled, and the build catalog B cannotalter the gross topology as shape-to-shape problem instances are built. Furthermore, for solvingsurface-to-surface problems, the build catalog must ensure that a constructed con�guration doesnot contain 1-wide intrusions of space. Figure 8.1 shows the build catalogs for the models describedin this thesis. The seed in all cases was a single subunit. So it is B and O that can select whichvertices are picked from a state space.The output of an SRS motion planning compiler is a function that is capable of providing asequence of relabeling operations applied at points of the lattice when given initial and goal labeledlattices, f : (L 7→ Σ,L 7→ Σ) 7→ (L×C)∗. In chapter 6 we discovered that easy planning spaces werewell ordered by the graph minor relation and stated that easy state space graph containing n unitsare a minor of the state space containing n+1. Using the terminology from above, this is expressedas, the state space graphs constructed from vertices generated by all possible n applications of Bstarting from O are graph minors of all n + 1 applications of B starting from O, where the edgesof the graphs are given by (potentially sequences) of applications of C (�gure 8.2).

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 85

Figure 8.2. The build catalog is used the function used to increase the the prob-lem complexity (red); converting one set of planning vertices of one state space,into the planning vertices of the next in the series. The edges between vertices isde�ned by the motion model, C. There are situations (such as the surface model)where going between planning vertices (white) requires intermediate states (black)which are reached using C but are never states considered as choice points duringmotion planning.To utilize the insights of chapter 6, on presentation of an arbitrary SRSs problem de�nition, it islikely that initially provided state spaces are not well-ordered by the graph minor relation. So the�rst step is to adjust the catalog B to select vertices for a new SRS motion model that is orderedby the graph minor relationship. The motivation of this new SRS motion model is that long rangeplanning shall be easier than the original de�nition. The new build catalog that generates the bettervertices we shall denote as B′. Ensuring that the new problem is a subspace of the �rst is simpleenough as catalogs are de�ned as local criteria of what labels must be present for the relabelingto be applied (the support). Therefore, simply adding additional local label requirements to theoriginal supports can only shrink the resultant state space graphs i.e. B′ > B. So a programcould incrementally add constraints to the base build catalog B until it �nds the fewest necessaryconstraints to generate a state space family that is ordered by the graph minor relation.Deciding whether a particular build catalog generate state spaces that are ordered by the graphminor relation is di�cult, however, for several reasons. Firstly, proving the existence of a minorordering would would require generation of an inductive proof and this is likely to be semi-decidable.So instead, one might consider that generating the �rst few state spaces, and checking for graphminor ordering between them, might be an easier pragmatic route to take. This simpler route,unfortunately, also has di�culties owing to the nature of the SRS problem.In chapter 6, table 3, we fully expanded the Ghrist and Surface state spaces and found theyonly di�ered for n ≥ 5, by which time the state spaces has over 900 vertices and over 10,000 edges.Checking the graph minor relation holds for two graphs is NP-hard, so checking the graphs at the
n = 5 would be intractable, let alone building up evidence for larger n. But there is hope.The graph minor relation is a graph theoretic concept where the vertices are devoid of furthermeaning. For the SRS case, however, vertices are labeled con�gurations. In chapter 6 we used

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 86this labeling to provide a notion of locality between vertices of graphs belonging to di�erent statespaces. In our new nomenclature, this relation across state spaces is given by the build catalog, B.Now checking G ≤ H , when a small set of vertices from H have to be mapped onto G becomesextensively more constrained than in the unlabeled vertex case, to the point where it is potentiallytractable to compute. Furthermore, in �nding the set of edge contractions, edge deletions andvertex removes to show H is a minor of G will automatically uncover the underlying sequencesof SRS moves from C that translate between the vertices selected by B′. Perhaps by providingenough examples of sequences of C that translate between pairs of vertices generated by B′, itwould be possible to predict the B′ neighborhood of an arbitrary vertex generated by B′ (usingthe techniques discussed in appendix 2). This would be important for a motion planning compilerbecause although the catalog B′ generates the vertices of an augmented state space graph, theedges are concatenations of operations from C, and so applying just an individual application ofthe C catalog to a B′ vertex may not generate the easy planning neighborhood, which is essentialinformation for higher level planning.Supposing that the above is possible, and from an initial SRS de�nition it is possible to �nd anew build catalog and that generates a state space with new vertices and edges that are ordered bygraph minor. How would one generate a planning algorithm from this, given the new state spacewould still be massive and intractable to perform searches upon? Let us �rst perform an abuse ofnotation to denote what we meant in previous chapters as a state space containing n units. Let
O× (B′)n represent the state space graph using vertices generated by applying all combinations ofoperations from B′ n times, and edges being speci�c concatenations of C as described above. Then
O × (B′)n ≤ O × (B′)n+1. If we invert the graph minor relation, translating from O × (B′)n to
O × (B′)n+1 involves only edge additions, expansions and vertex additions, and critically impliedis the face that edges of O × (B′)n are never lost. This means that a plan topology for the nstate space will exist in the n+ 1 state space. The sequence of moves in the plan may grow longerat some locations by the action of an edge expansion (the inverse of an edge contraction), but theplan is guaranteed to exist as a direct result of the minor property. Concretely, for the surfacemodel, adding a subunit to the periphery causes other subunits that moved through the previouslyunoccupied space, now have to deviate around, and the possibility of deviating guaranteed becauseof the restrictions of where a subunit can be added (an example follows later).The reuse of plans from the previous state space implies that a motion plan between twoO×(B′)ncon�gurations can be incrementally built up starting from simpler O × (B′)1, O × (B′)2 ... cases.Finding a possible sequence of B′ operations to generate a given con�guration is straightforward. Asthe build catalog B would commonly only add labels (ignoring the loss of the in�nite unoccupiedlabel), while there may exist multiple solutions for incrementally growing a given con�guration,there is no need of backtracking, or of intermediate states, so a solution could be found in O(n)using a greedy procedure. Figure 8.3show two examples of building a 5 unit surface con�gurationby applying the build catalog of �gure 8.2 5 times. Generating the example solutions were easilycomputed, starting from O, apply any B′ move that reduces the distance between the labellings.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 87
A B

A1 B1

A2 B2

A3 B3

A4 B4

A5 B5

Figure 8.3. The surface con�gurations A and B can be build incrementally fromthe surface build catalog. A 5 unit con�gurations requires 5 steps. A motion plan-ning task of changing A to B can be determined by solving each of the sub-motionplanning problems, A1 to B1, A2 to B2... The lighter blue hexagon represents theseed con�gurations, the green where a unit was added each increment.Distance in this context, would be the sum of lattice coordinates whose labels disagree, whichgeneralizes to complex SRS with larger alphabets.Using the example incremental states in �gure 8.3 as examples, we will now show how a motionplan for a O× (B′)k−1 can be augmented to create a new plan for the next in the series, O× (B′)k.Consider the motion plan between A1 and B1. Only one subunit is movable, so exploring the statespace using the motion catalog C will quickly �nd a solution. Using a search methodology such asiterative deepening depth-�rst search [67] would �nd the optimal solution to this case, moving thefree subunit of A1 clockwise. This motion planning solution is represented in �gure 8.4 as P1.The next planning problem in the series is forming a plan between the states A2 and B2 byaugmenting the plan P1. In our example, the additional subunit is added in the path of the previousplan. The �rst step to reusing a plan would be to adjust the states in order to accommodate theplan from the previous iteration. As a direct consequence of the graph minor ordering property ofnice state spaces, the previous plan topology is guaranteed to exist. For the surface case of SRS,the manifestation of this property is that the P1 motion plan can be redirected around the addedsubunit. After the plan has been augmented, the second step would be to �nd a path between thenewly labeled areas, but in our example this is trivial because the added subunit was in the samelocation for both states A2 and B2. Figure 8.4 depicts this new plan as P3.Solving the motion planning problem with three modules reusing plan P2 is similar to how P2was elucidated. The �rst route planned again has to be rerouted around the newly added subunitin the start con�guration. After the P2 is executed, it should be obvious that the movement of the

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 88
P1

P2

1

1

P3

1

2

2

3

P4

1 2

3

4

P5

1 2

3

4

5

Figure 8.4. Solving the 5 unit planning problem of �gure 8.3 incrementally. Eachiteration the previous plan is augmented by routing paths around the newly addedsubunit. Motion paths are represented by numbered black arrows. If motion isconstrained by the new subunit, as is the case for P4 and P5, then the newlyadded subunit can execute �get out of the way moves� as and when needed (redarrows). Once the previous plan has been fully adjusted and executed, the newlyadded subunit (solid green) can be moved into its goal destination (green outline).third subunit into its goal position is trivial, which completes the plan P3. A new class of di�cultyarises when planning for 4 units.To solve the case when there are 4 units by reusing the P3 plan the initial path of P1 mustagain be routed around the newly added subunit. P2 represented no movement so can executetoo, but the path created in P3 cannot be executed because the newly added subunit was placedon top of the moving P3 subunit. However, recall that in the proof of chapter 6 that in order torecover the previous state space, the new subunit may have to �get out of the way� for the localcontexts to not to interfere. In the surface model context, this was guaranteed to exist via movesaround the periphery by the new subunit. So for the plan P3 to be executed, the new subunit mustmove (shown in red). The subunit could either move two steps in either rotation before the newsubunit of P3 can start to move. This extra motion planning would not signi�cantly increase thecomplexity of the motion planning problem, because these �get out of moves� are only consideredas and when needed. After the newly added subunit has unblocked the execution of P3, the addedsubunit can move into its �nal goal location from its perturbed start location, thus creating P4 of�gure 8.4.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 89Building a plan for P5 from the P4 plan is not signi�cantly di�erent. The �get out of the way�moves of P4 are blocked by the added 5th subunit, but are re-enabled by the 5th subunit executingits own �get out of the way move�. The �get out of the way� moves created at the P4 stage haveno special meaning when considered during the P5 state. A concern might be that the these �getout the way moves� cascade and grow as the complexity grows, but this is not the case, for theHMR case at least, because the cause is a local interaction whose relative importance diminishes(statistically) as the size of the con�gurations grow.Several parallels between this incremental approach to solving recon�guration planning task andthe algorithm of chapter can be drawn. The algorithm of chapter 5 grew a connected PLACEDset in line with the solver, which corresponds to an ordered breakdown of con�gurations througha sequence of build operators. The algorithm of chapter 5 moved subunits from the periphery ofthe current con�guration (i.e. starting outside and working towards the seed location) to locationson the periphery that overlapped with the goal con�guration (i.e. nearer the seed location andworking away from the seed location). Pairing of subunits is preserved in the algorithm describedabove, but the ordering is inverted; movement between subunits in the start and goal con�gurationsare started at the seed location and moved outwards. A feature of the above algorithm with nocorresponding parallel in the chapter 6 is the �get out of the way� moves, which explains why theSurface-to-Surface planner got stuck more frequently at smaller problem instances.The rerouting of previous plans, and the �get out of the way� moves are guaranteed to existthrough properties implied by the graph minor ordering of successive state spaces. So the oppor-tunity to solve planning tasks recursively is a�orded by the graph minor property observed in niceplanning spaces. We found that while many SRS de�nitions don't possess this property, a subspacedoes. Subspaces of a larger state space can be selected by adding addition constraints to a basebuild catalog.The goal of general SRS motion planning though, is forming motion plans in the entire statespace, not just a subspace. In chapter 5 we developed a second planner, the Claytronics-to-surfaceplanner that complemented the surface-to-surface planner in order to solve a larger proportion ofthe target Claytronics state space. While the graph minor observation of chapter 6 suggests theexistence of a �highway� subspace suitable for long range planning, what of the remaining volumeof the target problem?Fruitful research may be found by exploring the meaning of the build catalog further. Thevertices of the e�cient planning space are constructed from n applications of the e�cient buildcatalog B′. The vertices of harder portions of the planning space therefore must be build from
iB′ + kB build operations, where i + j = n. This can be visualized diagrammatically as shownin �gure 8.5. The number of applications of the B catalog provides a convenient distance that acon�guration is from the desirable portion of the state space for planning, and could also representa measure of di�culty of a con�guration is to plan with.In chapter 5 the Claytronics-to-surface planner operated by excavating subunits to ensure a twowide tunnel connected all regions of unoccupied space. Only those subunits that lay on the twotunnel path were classi�ed as mobile, and once they were moved were no longer considered. Using

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 90
nB’

(n-1)B’+ B

(n-2)B’+2B

(n-3)B’+3B

(n-4)B’+4BFigure 8.5. Visualization of the state spaces of SRSs. Con�gurations built usingonly the B′ catalog have the nice minor ordering property. This implies long rangeplanning across a large volume of the state space is possible, indicated by the greenroutes. Adjacent to those con�gurations are those that require one application ofthe basic B catalog to construct (and adjacent to those two B applications etc.).The state space outside of the nB′ areas is messy, but the number of applicationsof B suggest a gradient that can be search to get into nB′ territory, shown in blue.Due to the unpredictability of the state space outside of the nB′ volume, thatgradient may lead to a local minima, shown in red. The frequency of red routesis likely to be SRS dependent. If a motion planner did not restrict itself to the
nB′ volume when long range planning, it is likely to get stuck in the nearby messyparts of the state space, where bottlenecks are frequent.the build catalog nomenclature, those subunits correspond to necessary applications of the B buildcatalog after all possible applications of B′ have been exhausted. Moving a subunit out of the twotunnel path to a safe area elsewhere creates a con�guration that requires one less B operation toconstruct.The existence of a gradient representing the distance from the desired e�cient part of the statespace clearly has computational advantages when forming motion plans in the more general statespace. The distance provides a clear direction for a planner optimize towards, and provides sub-goalsto consider one search at a time, thus hugely reducing the computational complexity of the overallsearch for a path towards a graph minor portion of the state space. However, in the algorithmof chapter 5, the planner did get stuck more often as the problem size increased, albeit slowly forthe Claytronics case. A concern is that for di�erent models of SRSs the behavior outside of thenice planning space might be much worse, and using the B operations as a heuristic maybe notbe feasible. Certainly, even in the Claytronics case, there are no guarantees of successfully solving

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 91all tasks outside of the minor ordered portion of the state space. That said, it is our opinion thatan algorithm that tries to solve a large portion of the state space and either succeeds or fails inpolynomial time is an improvement over an algorithm that always successfully solves a smallerportion of the planning space in equivalent time (both approaches being more desirable than asemi-decidable planning algorithm).

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 92Appendix 1: Random configuration generationIn this appendix we explain the design decisions taken for the random con�guration generators.Generating random con�gurations is far from trivial, but regarded as largely o�-topic for this thesisto address properly. The solution presented here was a pragmatic partial step, to which there is(as far as we are aware) no completely satisfying solution in general.Our main use of randomly generated con�gurations was to determine the average time complexityof motion planning algorithms. In general, to determine the average behavior of any algorithm,one must try all possible combinations of inputs and normalize. For many algorithms, the numberof combinations make determining the true average unfeasible, so instead, to reduce the number ofexperiments, the average behavior is approximated through sampling.The statistically sound approach to estimate an average is to generated uniformly distributedinputs. In the domain of self-recon�guring systems, this means generating uniformly distributedcon�gurations. An obvious interpretation for uniformity, in this context, is that every possiblecon�guration should have an equal probability of being generated (over the set of all possible validcon�gurations). There is however, a technical di�culty in randomly generating con�gurationsadhering to a uniform distribution (more on this later). Previous works have avoided the di�cultyin di�erent ways. Some studies have used hand crafted con�gurations to test motion planningalgorithm [58]. This approach has the drawback of not scaling to large numbers of trials, introducinghuman bias and introducing publication bias. Other works focus instead on worse case analysis [65]of a motion planning algorithms, but many planning algorithms have identical worst case behavioryet di�erent average case behavior (examples of this behavior outside of self-recon�guring systemsinclude well known algorithms such as quick-sort). Algorithms that are optimized purely againstworse-case performance lose sight of the basic goal of SRS planning, get to the goal con�guration inas few moves as possible, which average case behavior is a better proxy for. Thus, throughout thisthesis, we elected to randomly generate con�gurations in order to estimate average case behaviorfor motion planning algorithms, but with a caveat that we could not generate statistically sounduniformly distributed con�gurations.The problem is that in order to uniformly generate a con�guration, at the end of the generationprocess, the �nal con�guration chosen must have had an equal probability to have been selected asany other possible valid con�guration. This criteria is very di�cult to obtain in a computationallyfeasible manner, given the operations available to create valid con�gurations (be they a Claytronics,Ghrist or surface con�guration). The only work we know of that has nearly approached this subjectis [50]. Martins et al. used group theory to identify graph orbits representing automorphisms. Thegraph orbits determined di�erent locations on the periphery of the growing con�guration whichlead to unique outcomes given shape isomorphisms. Then they could enumerated con�gurationswhilst avoiding placement of a unit in the same orbit that would lead to the same shape classunder isomorphisms (�gure 1.6). There work suggested this saved computation time, but interest-ing automorphisms become asymptotically rare as the number of units grow (e.g. the are almostno symmetric very large con�gurations relative to the space of all very large con�gurations). The

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 93
8,6

Figure 1.6. Martins et al. segmented peripheral locations into groups, re�ectingequivalence of a location under automorphisms. Periphery nodes are dashed in acolor that represents membership to a group.
A B

Figure 1.7. If n distinct locations are randomly selected in a hexagon shape ofdiameter n, the probability of generating a connected set of locations rapidly dimin-ishes. However, all possible connected sets of locations have an equal probabilityof being generated, but not in polynomial time.process does save enumerating the 6 rotational symmetries, but there are simple, faster and compu-tational cheaper ways of excluding these particular class of isomorphisms. Thus, gains using theirmethod can only be made when generating small con�gurations. So sampling through enumerationhas a time complexity of O(kn).Many other possible methods of generating uniformly distributed random con�gurations are alsonot polynomially bound. A simple example is using the prior knowledge that an n unit con�gu-rations has a diameter less than or equal to n. To achieve uniform chance, one could repeatedlydistribute n modules in a hexagonal space of diameter n according to a uniform distribution, andselect the �rst con�guration that was valid. Unfortunately as n grows, the probability that a validcon�guration is generated rapidly diminishes. It is becomes clear, regardless of the nuances of eachcatalog, that the probability of generating a set of units that are also connected approaches 0 fast.The pragmatic approach that was undertaken to ensure con�gurations were generated in poly-nomial time was to build up a con�guration incrementally. Starting from a seed location, n − 1units are added to the periphery in such a way as to ensure a valid con�guration is the end resultat each step. The de�nition of a valid con�guration, of course, varies with the catalog being used.Placing units on the periphery ensure the growing con�guration at each step is connected, a global

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 94
N/A

Claytronics Ghrist Surface

Figure 1.8. In the diagrams above, we show the potential periphery locations(red), where a unit can be added to create a valid con�guration for the modelsconsidered in this thesis. Note that in the top row, the arrangement of seed (green)and already placed units (blue) are not a valid Surface con�guration to start with.constraint common to all models. Determining whether or not placement at a particular peripherylocation results in a valid con�guration only requires checking the local state of locations aroundthe candidate location (as the only global constraint of connectivity has already been satis�ed).The exact local requirements for each model is precisely described by the build catalogs discussedin chapter 8. The overall constructive approach to building a n unit con�guration from a seed isas follows:-initialization let the current con�guration be just the seed module1 while the current con�gurations size is less than n2 select a peripheral location, p that is adjacent to a unit in the current con�guration3 If placement of a unit at p in the current con�guration produces a valid con�guration,modify the current con�guration with an addition of a unit at p. Loop1.1. Generator 1. The method for selecting the periphery location, p di�ered from experimentsperformed during (chapter 4) to the later experiments in (chapter 5) . In earlier experiments therandom generation algorithm iterated as follows:-1. a unit from the current con�guration was uniformly selected, b.2. One of the six adjacent neighbors of b was uniformly selected, p (i.e. dist(p, q)=1).3. If the addition of a unit to the current con�guration at location p results in a a valid con�gu-ration, then the current con�guration is updated. Otherwise the current con�guration remains asit is.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 95Placement attempts repeated until an n unit con�guration was constructed. This approach waslater found not to scale to large con�gurations, as generally a random selection of b tended not tohave a valid neighbor for incremental placement (the test in 3 failed more often as n increased).This is a manifestation of the property that the number of peripheral nodes scale at √n. In largecon�gurations, most units are fully surrounded by other units. This was not an issue in the earlyexperiments where the motion planning algorithms were ine�cient and experiments were run oncon�gurations containing less than 30 units. In small con�gurations (such as in �gure 1.8) peripherynodes actually outnumber placed nodes.1.2. Generator 2. In the experiments of chapter 5 and onwards, con�gurations containing thou-sands of units were required to evaluate performance. The random con�guration generator modi�edso that it did not su�er the same performance problems. A new set, B was maintained, that con-tained location's of units that were blacklisted for random selection. Locations were blacklistedwhen the random selection system discovered that the unit was surrounded. Due to the natureof incremental building i.e. never removing units, once a unit has no valid adjacent locations forbuilding, there exists no combinations of adding units that will change a blacklisted location to anun-blacklisted location. So the new algorithm iterated.1. a unit from the current con�guration, not in B, was uniformly selected, b.2. All of the six neighbors adjacent to b were tested for validity of placement.3. if none of the neighbors could have a unit placed, a new location was added to B, Bnew = B+p.Otherwise one of the valid neighborly locations were selected to add to the current con�guration.The e�ect of the blacklisted set B is to prune the choices in b that previously led to a mono-tonically increasing risk of b not having any neighbors with valid locations adjacent. This modi�edrandom con�guration generator ran at O(n), although the implementation details are perhapssomewhat clumsy.1.3. Candidate Generator 3. Perhaps an simpler O(n) random generator for sake of theoreticalarguments algorithm would be the following. Observe that the set of valid periphery locations forbuilding changes only in the spatially local area where a new unit was added. The set of validperiphery nodes for building is the same as the GROW set of chapter 5 for Surface con�gurations.Updating the set of potential valid build locations is an O(1) operation, using data structuredescribed in chapter 5. The new random con�guration then simply uniformly selected a valid buildlocation (red locations in �gure 1.8) and updated the periphery build set n times to build an n unitcon�guration in O(n) time and space.However, the above algorithm wasn't implemented because it does not work on Ghrist con-�gurations naively without development of a di�erent mechanism for recognizing local changes.Development of a the third random con�guration generator was not regarded as worthwhile be-cause all of the generators described above generate non-uniform distributions of con�gurations,so its di�cult to fundamentally recommend one generator implementation over another. Tinkeringwith random con�guration generator distributions does not alter the gross performance of motionplanning algorithms. If an algorithm su�ers from exponential bottlenecks in the search space, no

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 96

Figure 1.9. Top: Two randomly generated Claytronic con�gurations containing4096 units. The leftmost con�gurations comes from the generator used in chapter 4.The second con�guration comes from the generator of chapter 5 onwards. Enclosedspace can be seen in both. Bottom: Two randomly generated Ghrist con�gurations,using the same two generators. For the Ghrist catalog, unit movement aroundthe perimeter is blocked by 1 wide pockets in the surface. While the leftmostcon�guration contains more of these surface defects, the rightmost also containsseveral examples of this major source of bottlenecks. Ghrist con�gurations cannotcontain enclosed space by construction.amount of tweaking with the random con�guration generator will signi�cantly help. Di�cult casesare generated by all the generators described above (�gure 1.9), and so we conclude the genera-tors used were su�cient for estimating average case behavior (particularly for estimating the grossasymptotic behavior).1.4. Discussion. The source of bias in the random generators is that multiple execution pathscan lead to generating a speci�c con�guration. Consider the two unit con�gurations in �gure 1.10A and B. If the third random generator con�guration generator described above was used, it hastwo ways of generating the con�guration in �gure 1.10, B, verses only one way of generating thecon�guration in �gure 1.10, A. The bias of a speci�c con�guration is the number of unique depth �rstsearches (DFS) that can be performed on the connectivity graph starting at the seed (�gure 1.10,bottom), |DFS|. As the bias factor can be explicitly calculated, the generator can be debiased byintroducing an acceptance probability for a con�guration, a = 1/|DFS|. This observation does nothelp development of a practical uniform random con�guration generator though, because |DFS|grows exponentially with n. Perhaps limiting the choices of the growing DFS, or interleaving

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 97
a

b
c

a
b

c

a
b

c
d

e

a,b,c a b,c

c,b

a b

d

c d,e

c,e

e,c

c b d,e

d b,e

e,b

A B C

Figure 1.10. Con�gurations can be generated incrementally from a seed in dif-ferent ways, depending on the internal connectivity of the shape. Con�guration Acan only be generated by one path starting from the seed. There are size di�erentways con�guration C can be generated.acceptance probabilities into the inner loop of incremental random con�guration generation couldlead to a fruitful discovery, but we consider this out of scope for the work presented in this thesis. Itis mentioned as a useful starting point for future research in to generation of random con�gurations.Additional utility for further research may be found in a closely related previously studied prob-lem. Polyominoes are a generalization of dominoes. An n-polyomino is a connected set of n squaretiles on a square lattice. In popular culture, seven tetrominos (4-polyominoes) were used in the wellknown computer game puzzle Tetris. Tiling the in�nite plane with a �nite set of polyominoes isequivalent to Wang's domino problem [28]. Enumerating the number of n-polyominoes for given nhas been studied, but no polynomial bound algorithm has been discovered yet . However, asymp-totic growth has been approximated and bounded in both directions. The number of polyominoesof size n conceptually relates strongly with the number of possible con�gurations there are for nnumber of units3 i.e. the cardinality of the size of the set we wish to uniformly sample from. Abounded and approximated value could be useful for debasing a random con�guration generator oruseful in other proofs.In summary, generating uniform samples from the set of all possible valid con�gurations is a verydi�cult problem, perhaps unsolvable in polynomial time. We developed a pragmatic bias solutionfor generating random con�gurations instead. We believe that when the bias generators are used to3although the mathematics needs to be transformed for use on a hexagonal lattice, and local constraints mayneed to be considered

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 98construct random motion planning tasks, they are capable of characterizing average case behaviorof motion planning algorithms, but this cannot be proved without further research.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 99Appendix 2: The C4.5 data mining algorithm and its applicationA persistent issue when developing novel data structures, novel motion planning algorithms andnew proofs in the SRS domain is bugs. In order to create e�cient algorithms, numerous cases oflow level scenarios must be handled correctly in order to make computational gains. There is oftena nagging doubt that while the current implementation seems to work, there may an unexpectedsituation that invalidates the logic. This is compounded by the fact that unusual cases are rare inthe state space, so enumerating cases by hand is unfeasible.This problem was particularly acute in development of the proof in chapter 6. The surface statespace in earlier chapters was de�ned by describing what local constraints were not permitted in thetour around the empty perimeter locations. In the implementation, the constraints were enforcedby using a custom data structure. However, for the proof of chapter 6, the high level descriptionof the state space had to be translated into a set of local constraints that was equivalent.The initial draft of the proof was developed by hand, which was accepted as valid by the peer re-view process. It was not until addressing an unrelated problem that it was discovered the translatedrepresentation of the Surface constraints were actually incorrect. It was at this point a new methodwas developed for aiding the process of extracting salient cases from a large data set of examples.The ID3/C4.5 algorithm was found to be an excellent �t for this particular (classi�cation) problem.In this appendix we shall explain in detail how it was applied.2.5. The ID3 algorithm. The C4.5 algorithm[62] is an evolutionary improvement to the itera-tive dichotomizer 3 algorithm (ID3) [61]. The improvements of the C4.5 algorithm over the ID3algorithm are distracting for the purposes for which we used the algorithm. The C4.5 algorithmwas primarily used because it is readily available in the mature Weka 3 machine learning library[29]. The Weka 3 library has been well tested, and provides a convenient GUI for interpretation ofthe results. The ID3 algorithm and related algorithms are binary decision tree classi�ers.ID3 classi�es a datum of attributes x = {a|a ∈ A}, as being a positive or negative example,
ID3 : {a|a ∈ A} 7→ {+,−}. The classi�cation process queries a datum's attributes in the order ofa binary tree until a leaf node is reached. Each leaf node of the decision represents a conclusionof what class a proposed input vector belongs too. The decision tree is created by running thetraining algorithm on a data set of labeled examples i.e. it's a supervised learning algorithm.The ID3 training algorithm is an recursive algorithm that starts with all training data as currentlyunclassi�ed. Each iteration the unclassi�ed set is split into 2 smaller sets which are heuristicallynearer to being classi�ed correctly. Each iteration the information entropy of a set is measuredaccording to:

E(S) = −
A
∑

j=1

fS(j)log2fS(j)The information entropy of a set, S, is measured by counting the frequency of a particularattribute, j ∈ A, in a set using the frequency function fS(j). The training algorithm determines

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 100
6,6

E.1 E.2

E.3 E.4Figure 2.11. Left, the dual path and kink defects that are banned from Surfaceadhering con�gurations are easily recognizable when a path around the permittedis drawn. Middle, an early incorrect attempt in translating the surface constraintsinto a purely local incremental build notation. Right, the correct incremental buildcatalog that implicitly enforces the surface constraints, elucidated with the aid ofthe C4.5 algorithm (note it's more compact as well as being correct).an attribute to split, b ∈ A, the currently unclassi�ed set into two smaller sets by maximizing theinformation gain, G(S, b) according to
G(S, b) = E(S)− fS(b)E({z|b ∈ z ∈ S})If the labeled data of the training set says all of an unclassi�ed set is either a positive or anegative example, then the training algorithm can halt for that branch of the training process andinsert a leaf node into the decision tree.2.6. Application. Our use of the ID3/C4.5 algorithm was as an aid in translating from one rep-resentation of constraints into another purely local one. Recall that in chapter 5 a surface con-�guration was de�ned as a re�nement of the Ghrist catalog, with the added constraints that aHamiltonian path around the perimeter could not contain a kink violation, or a dual path violation(�gure 2.11, left). This representation lent itself to a persistent implementation in code, but washard to utilize in a subsequent proof. Translating these constraints into a local incremental buildcatalog was found to be error prone when done by hand (�gure 2.11, middle). When we usedthe C4.5 algorithm to help automate the process, the resultant representation was correct, andwas more compact than we managed previously by hand. It is for this reason we think the C4.5algorithm has additional uses in other processes we found error prone. We shall now step throughthe application of the C4.5 algorithm to this particular problem.The main ingredient used was the data structure for determining whether or not a con�gurationwas a member of the surface con�guration. This is described in detail in chapter 5 but for thepurposes described here it simply maps a Ghrist adhering con�guration to a Boolean, isSurface :

G 7→ B. At the time of development, we already had a robust method for building a Ghristcon�guration incrementally [25].The overall method we used for translation was to generate lots of Surface adhering con�gura-tions around an empty test location, and then use to isSurface to �nd out whether or not thecon�guration remained a Surface con�guration when a subunit was added to the empty test lo-cation. If isSurface returned true, then the local area around the empty location was presented

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 101
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

9,5

9,6

8,7

8,8

7,8

6,8

8,3

9,46,2

7,3

8,4

Figure 2.12. The context of hex coordinate (6,5) was studied to �nd out whata�ected valid placement. One neighbor must always be occupied in an incrementalbuild catalog, so there was no loss of generality by always having (5,5) occupied.to the C4.5 algorithm as a positive example, and if not then as a negative example. The C4.5algorithm would then be able to learn a compact representation of what the local requirements arefor a subunit to be added whilst respecting the Surface constraints.The C4.5 algorithm in the Weka machine learning library requires the data to be presented asa �xed length vector classi�cation problem. We chose a subset of positions on the hex lattice andrepresented these locations as Boolean variable in an arbitrary (but �xed for the experiment) order.The choice of lattice locations were a subset of positions that were found at a distance of three orless from a test location found at hex coord (6,5). It was the locale of the (6,5) coordinate thatwould be studied to see what surround a�ected valid Surface placement. As all valid placementsin an incremental build catalog must always be next to an already placed subunit, an arbitraryneighbor of (6,5) was chosen to be always occupied, which was (5,5). Locations of a distance ofthree behind the occupied location (5,5) were known to be unimportant to the experiment. Thiswas the initial setup before further subunits were added and is shown in �gure 2.12.All combinations of adding eight subunits into the study area (30 locations less the centrallocation) were enumerated. It was found that seven or less did not generate enough examples.Added subunits were always placed adjacent to an already placed subunit. If a con�guration wasa valid surface con�guration according to isSurface, then that con�guration was serialized into alength 30 binary vector. A subunit was then added to (6,5) and isSurface was called again. If thesecond call returned true, the vector was labeled a positive example of a context that permits anadditional subunit to be added whilst preserving the Surface constraints (VALID). If the secondcall to isSurface returned false the vector was labeled as a negative example (INVALID). 9601di�erent local contexts were generated, and the list of classi�ed vectors was processed by the C4.5algorithm to generate a decision tree4.2.7. Results. The C4.5 Weka implementation was able to �t a compact decision tree that couldsuccessfully determine whether or not a subunit could be added at position (6,5) whilst preserving4Weka has cross validation turned on by default, this needs to be switched o�

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 102the Surface constraints. Furthermore, while the input vectors were 30 dimensional, the classi�erlearnt that only a subset of the 30 positions were relevant (�gure 2.13).The �rst striking about the generated decision tree is that an occupancy of a subunit at (7,5)immediately implies that a subunit at (6,5) can be added, as shown by the root node. This is trueregardless of what the status is of other locations around (6,5). Further analysis reveals that thisis a special case of a broader pattern, so the tree requires subsequent analysis by hand in orderto draw out the broadest principles. To aid readability, the tree was redrawn graphically (�gure2.13). Note that at nodes deeper in the tree, the information from the ancestors represents truismsknown about the current state of a queried con�guration. So for example, at the second decisionnode the occupancy of position (6,4) is used to split cases, but at that position occupancy of (7,5)has already been asserted as occupied. When the tree was represented graphically, each node'sancestor information is included .One issue with the decision tree representation was that we were not looking for a series ofconditionals to represent the constraints, rather, we were looking for a small set of cases thatcaptured equivalent information. An addition problem was that the procedure was unable todistinguish isomorphisms. It was noted that the leaf cases whereby the location at (6,5) was foundto violate the surface constraints (red) outnumbered the cases where it didn't (green). So weconcentrated on the red cases �rst.Drawing just the leaves of the red cases revealed that all red cases were rotations of two basecases embellished with further constraints (�gure 2.14). After studying green cases in the completedecision tree (�gure 2.13), it was found that no green case contained the simpli�ed red bases cases.Therefore, we could conclude that the two red base cases succinctly represent what local constraintsare not permitted when incrementally building a Surface con�guration. Those two cases very neatlyrepresent that 1 wide intrusions of unoccupied space are forbidden by the Surface catalog (the dualpath violations). In fact, they also show that the kink violation is actually a redundant constraintwhose explicit representation was unnecessary.Green cases in the graphical depiction of the decision tree described what state the neighborhoodwas in scenarios that permitted a a subunit to be added without compromising the Surface con-straints. The leaves in the green cases often had redundant constraints inherited from informationfurther up the tree, e.g. the right child of both (6,6) decision nodes on �gure 2.13. These wereeasily identi�able because they are asymmetric, and we know from the problem that there is noasymmetry in the constraints. With the ten green leaf nodes laid out graphically, it is relativelyeasy to pair leaves up to distinguish a smaller set of base cases, as in �gure 2.15.2.8. Conclusion. The green base cases describe an incremental procedure of where a subunit canbe added to a growing con�guration whilst maintaining the Surface constraints. This representationwas data mined from a set of examples generated by a very di�erent expression of the Surfaceconstraints. Performing the conversion between representations had already been found to be errorprone, but by automating much of the process, a set of nearly 10,000 examples was summarizedinto a decision tree containing just 25 leaf nodes. The C4.5 algorithm automatically identi�ed

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 103
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7

7,5

6,4

7,6

8,6
5,5

6,5

7,56,4

7,4
6,3

6,6
7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5

6,5

7,56,4

7,4
6,3

6,6
7,6

6,7

7,3

8,4
8,5

8,6

7,7

7,4

6,7

6,6

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6

7,6

6,7

7,3
8,4

8,5

8,6

7,75,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6

7,6

6,7

7,3
8,4

8,5

8,6

7,7

7,7

5,5
4,5

6,5

7,5
5,4

6,4

7,4
5,3 6,3

5,6

5,7

6,6
7,6

6,7

7,3
8,4

8,5

8,6

7,7

5,5
4,5

6,5

7,5
5,4

6,4

7,4
5,3 6,3

5,6

5,7

6,6
7,6

6,7

7,3
8,4

8,5

8,6

7,7

8,4

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6
7,6

6,7

7,3
8,4

8,5

8,6

7,78,5

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6
7,6

6,7

7,3
8,4

8,5

8,6

7,7

5,7

6,6

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6

7,6

6,7

7,3
8,4

8,5

8,6

7,7

6,7

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6

7,6

6,7

7,3
8,4

8,5

8,6

7,7

7,7

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6

7,6

6,7

7,3
8,4

8,5

8,6

7,7

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6

7,6

6,7

7,3
8,4

8,5

8,6

7,7

5,5
4,5

6,5

7,5
5,4

6,4

7,45,3 6,3

5,6

5,7

6,6

7,6

6,7

7,3
8,4

8,5

8,6

7,7

6,3

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,7

8,4

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,77,6

7,3

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,75,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7

8,6

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7

6,6

8,5

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,77,3

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,7
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,7

6,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,77,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,7

7,3

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,75,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,7Figure 2.13. The complete learnt decision tree for deciding whether (6,5) wasbuildable (green) or not (red) according to the Surface constraints. In the diagram,the diamonds denote a conditional on the occupancy at the labeled location. Theconvention used is if the outcome of the occupancy is true, the children are drawnto the right.that only a subset of the information provided was relevant, and the leaf set was small enough tobe summarized by hand without error. As a result, we have high con�dence that the base caseselucidated are both a correct and a compact representation of the Surface constraints.Whilst for the proof we did not want a tree representation of the constraints, a tree is an e�-cient representation for checking constraints on a computer. It is for this reason we think the C4.5algorithm could be a useful tool for development of SRS simulators. Ine�cient, high level descrip-tions of constraints can be translated into e�cient low level tree representations automatically, andwithout bugs. This could greatly reduce development time and simply communication of new SRSideas.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 104
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4
8,5

8,6

7,7

8,6

Figure 2.14. Nearly all the leaves of the decision tree in �gure 2.13 contain thetwo base cases shown boxed on the right. The two exceptions are circled in orange.Due to the data generation protocol of extending position (5,5) with 8 connectedsubunits in a limited area, (5,4) and (5,3) must be occupied for the two exceptions.Furthermore, because the con�guration is a valid surface adhering con�gurationbefore placement at (6,5), it is implicitly implied that position (7,4) is empty too.With (7,4) determined as unoccupied, the two circled exceptions also include theupper of the two base cases.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 105
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7
5,5

4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6
7,6

6,7

7,3

8,4

8,5

8,6

7,7

5,5
4,5

6,5
7,5

5,4

6,4
7,45,3

6,3

5,6

5,7

6,6

7,6

6,7

7,3

8,4

8,5

8,6

7,7

Figure 2.15. Base cases of valid build location contexts for the Surface modelshould be symmetrical. Unioning together leaves of the decision tree (eight of tenshown in the leftmost columns) and trimming asymmetric constraints reveals fourbases cases (right column). The top case was overlooked in the �rst draft of theproof of chapter 6.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 106References[1] A. Abrams and R. Ghrist. State complexes for metamorphic robot systems. Intl. J. of Robotics Research,23(7):809�824, 2004.[2] G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland, S. Langerman, J. O'Rourke, S. Ramaswami,V. Sacristán, and S. Wuhrer. Linear recon�guration of cube-style modular robots. Comput. Geom. Theory Appl.,42(6-7):652�663, 2009.[3] D. Brandt. Comparison of A* and RRT-Connect motion planning techniques for self-recon�guration planning.Intelligent Robots and Systems, Proceeding, IEEE Int. Conf. on (IROS), pages 892�897, 2006.[4] D. Brandt and D. J. Christensen. A new meta-module for controlling large sheets of atron modules. In IntelligentRobots and Systems, Proceeding, IEEE Int. Conf. on (IROS), pages 2375�2380, 2007.[5] Z. Butler, S. Byrnes, and D. Rus. Distributed motion planning for modular robots with unit-compressiblemodules. Intelligent Robots and Systems, Proceeding, IEEE Int. Conf. on (IROS), 2:790�796, 2001.[6] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Cellular automata for decentralized control of self-recon�gurablerobots. In Robotics and Automation, Workshop on Modular Robots, Proceedings, IEEE Int. Conf. on (ICRA),pages 21�26, 2001.[7] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized control for a class of self-recon�gurablerobots. In Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), pages 809�816, 2002.[8] G. Carpaneto, S. Martello, and P. Toth. Algorithms and codes for the assignment problem. Annals of OperationsResearch, 13:191�223, Dec 1988.[9] A. Casal and M. Yim. Self-recon�guration planning for a class of modular robots. In Intelligent Robots andSystems, Proceeding, IEEE Int. Conf. on (IROS), pages 246�257, 1999.[10] A. Castano, W.-M. Shen, and P. Will. CONRO: Towards deployable robots with inter-robots metamorphiccapabilities. Autonomous Robots, 8(3):309�324, June 2000.[11] C.-J. Chiang and G. S. Chirikjian. Modular robot motion planning using similarity metrics. Autonomous Robots,10(1):91�106, Jan 2001.[12] G. S. Chirikjian. Kinematics of a metamorphic robotic system. In Robotics and Automation, Proceedings., 1994IEEE International Conference on, volume 1, pages 449�455.[13] G. S. Chirikjian. Bounds for self-recon�guration of metamorphic robots. In Robotics and Automation, Proceed-ings, IEEE Int. Conf. on (ICRA), volume 2, pages 1452�1457, 1996.[14] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun. Principles ofRobot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA, June 2005.[15] D. J. Christensen and K. Støy. Selecting a meta-module to shape-change the atron self-recon�gurable robot. InRobotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), pages 2532�2538, 2006.[16] F. Chung. Spectral Graph Theory. American Mathematical Society, 1997.[17] M. De Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai. Scalable shape sculpting via hole motion:Motion planning in lattice-constrained module robots. In Robotics and Automation, Proceedings, IEEE Int.Conf. on (ICRA), May 2006.[18] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Heidelberg, thirdedition, 2005.[19] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent. Journal ofComputer and System Sciences, 38(1), 1989.[20] R. Fitch and Z. Butler. Million module march: Scalable locomotion for large self-recon�guring robots. Int. J.Robobitc Research, 27:331�343, March 2008.[21] R. Fitch, Z. Butler, and D. Rus. Recon�guration planning for heterogeneous self-recon�guring robots. IntelligentRobots and Systems, 3:2460� 2467, 2003.[22] R. Fitch, Z. Butler, and D. Rus. Recon�guration planning among obstacles for heterogeneous self-recon�guringrobots. Robotics and Automation, pages 117 � 124, 2005.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 107[23] S. Fukuda, Toshio & Nakagawa. Dynamically recon�gurable robotic system, volume 1, pages 1581�1586. IEEE,1988.[24] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss. Self organizing robots based on cell structures - CEBOT.In Intelligent Robots, Proceeding, IEEE Int. Workshop on, 1988.[25] R. Ghrist. Shape complexes for metamorphic robot systems. Proc. Workshop in Algorithmic Foundations ofRobotics, 2002.[26] R. Ghrist and V. Peterson. The geometry and topology of recon�guration. Advances in Applied Mathematics,38:302�323, 2007.[27] S. C. Goldstein, J. D. Campbell, and T. C. Mowry. Programmable matter. IEEE Computer, 38(6):99�101, June2005.[28] S. W. Golomb. Tiling with sets of polyominoes. Journal of Combinatorial Theory, 9(1):60 � 71, 1970.[29] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data mining software:an update. SIGKDD Explor. Newsl., 11(1):10�18, 2009.[30] F. Hou and W.-M. Shen. On the complexity of optimal recon�guration planning for modular recon�gurablerobots. In Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), 2010.[31] M. Jorgensen, E. Ostergaard, and H. Lund. Modular ATRON: modules for a self-recon�gurable robot. InIntelligent Robots and Systems, Proceeding, IEEE Int. Conf. on (IROS), 2004.[32] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning inhigh-dimensional con�guration spaces. Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA),pages 566�580, 1997.[33] A. Kawakami, A. Torii, K. Motomura, and S. Hirose. Smc rover: Planetary rover with transformable wheels. InExperimental Robotics, Int. Symposium on, (ISER), pages 498�506, 2002.[34] B. Khoshnevis, P. Will, and W.-M. Shen. Highly compliant and self-tightening docking modules for precise andfast connection of self-recon�gurable robots. In Robotics and Automation, Proceedings, IEEE Int. Conf. on(ICRA), pages 2311�2316, Taiwan, 2003.[35] B. Kirby, B. Aksak, J. Campbell, J. Hoburg, T. Mowry, P. Pillai, and S. Goldstein. A modular robotic systemusing magnetic force e�ectors. Intelligent Robots and Systems, Proceeding, IEEE Int. Conf. on (IROS), pages2787�2793, 29 2007-Nov. 2 2007.[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671�679,1983.[37] J. A. G. Knight. The latest developments of FMS in Japan. Flexible Manufacturing Systems, Proceedings of,Int. Conf. on,, pages 31�47, 1982.[38] J. Ku�ner and S. LaValle. RRT-Connect: An e�cient approach to single-query path planning. Robotics andAutomation, Proceedings, IEEE Int. Conf. on (ICRA), pages 995�1001, 2000.[39] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Kokaji, and S. Murata. M-TRAN II: Metamorphosisfrom a four-legged walker to a caterpillar. In Proceedings of IEEE/RSJ International Conference on IntelligentRobots and Systems, pages 2454�2459, 2003.[40] H. Kurokawa, S. Murata, E. Yoshida, K. Tomita, and S. Kokaji. A three-dimensional self-recon�gurable system.Advanced Robotics, 13(6):591�602, 1998.[41] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata. Distributed self-recon�gurationof M-TRAN III modular robotic system. Int. J. Robotics Research, 27:373�386, 2008.[42] H. Kurokawa, E. Yoshida, K. Tomita, A. Kamimura, S. Murata, and S. Kokaji. Deformable multi M-TRANstructure works as walker generator. In Intelligent Autonomous Systems, Proceedings, IEEE Int. Conf. on(IAS), pages 746�753, 2004.[43] T. Larkworthy and G. Hayes. Utilizing redundancy in modular robots to achieve greater accuracy. Robot Com-munication and Coordination, Proceedings of, Int. Conf. on (Robocomm), 2009.[44] T. Larkworthy, G. Hayes, and S. Ramamoorthy. General motion planning methods for self-recon�gurationplanning. Towards Autonomous Robotic Systems, Proceedings of, (TAROS), 2009.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 108[45] T. Larkworthy and S. Ramamoorthy. An e�ecient centralized algorithm for self-recon�guration planning in amodular robot. In Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), 2010.[46] T. Larkworthy and S. Ramamoorthy. A characterization of the recon�guration space of self-recon�guring roboticsystems. Robotica, 29(1):73�85, 2011.[47] S. M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. Cambridge University Press,1998.[48] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.[49] H. Lipson. Principles of modularity, regularity, and hierarchy for scalable systems. In In GECCO Workshop onModularity, Regularity, and Hierarchy in Evolutionary Computation, 2004.[50] D. Martins and R. Simoni. Enumeration of planar metamorphic robots. Recon�gurable Mechanisms and Robots,ASME/IFToMM Int. Conf. on, ReMAR, pages 610�611, 2009.[51] J. McLurkin and D. Yamins. Dynamic task assignment in robot swarms. Proceedings of Robotics: Science andSystems, June, 8, 2005.[52] F. Mondada, G. C. Pettinaro, I. Kwee, L. Gambardella, D. Floreano, S. Nol�, J. louis Deneubourg, andM. Dorigo. M.: Swarm-bot: A swarm of autonomous mobile robots with self-assembling capabilities. In Self-Organisation and Evolution of Social Behaviour, Int. Workshop on,, 2002.[53] S. Murata and H. Kurokawa. Self-recon�gurable robots, shape-changing cellular robots can exceed conventionalrobot �exibility. IEEE Robotics Automation Magazine, 14:71�78, 2007.[54] S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. In Robotics and Automation, Proceedings,IEEE Int. Conf. on (ICRA), pages 441�448, 1994.[55] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji. M-tran: self-recon�gurablemodular robotic system. Mechatronics, IEEE/ASME Transactions on, 7(4):431�441, 2002.[56] E. H. Ostergaard, K. Tomita, and H. Kurokawa. Distributed metamorphosis of regular M-TRAN structures.Distributed Autonomous Robotic Systems, 6:169�178, 2004.[57] R. Oung, F. Bourgault, M. Donovan, and R. D'Andrea. The distributed �ight array. pages 601�607, May 2010.[58] A. Pamecha, I. Ebert-Upho�, and G. Chirikjian. Useful metrics for modular robot motion planning. Roboticsand Automation, IEEE Transactions on, 13(4):531�545, Aug 1997.[59] K. Payne, J. Everist, F. Hou, and W.-M. Shen. Single-sensor probabilistic localization on the SeReS self-recon�gurable robot. In Intelligent Autonomous Systems, Proceedings, IEEE Int. Conf. on (IAS), Tokyo, Japan,March 2006.[60] K. Payne, B. Salemi, P. Will, and W.-M. Shen. Sensor-based distributed control for chain-typed self-recon�guration. In Intelligent Robots and Systems, Proceeding, IEEE Int. Conf. on (IROS), pages 2074�2080,Sendai, Japan, Sept./Oct. 2004.[61] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81�106, Mar. 1986.[62] J. R. Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning). MorganKaufmann, 1 edition, Oct. 1992.[63] R. J. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA,USA, 1993.[64] M. Rubenstein, K. Payne, P. Will, and W.-M. Shen. Docking among independent and autonomous CONRO self-recon�gurable robots. In Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), pages 2877�2882,New Orleans, USA, April/May 2004.[65] D. Rus and M. Vona. Self-recon�guration planning with compressible unit modules. Robotics and Automation,Proceedings, IEEE Int. Conf. on (ICRA), 4:2513�2520, 1999.[66] D. Rus and M. Vona. Crystalline robots: Self-recon�guration with compressible unit modules. AutonomousRobots, 10(1):107�124, 2001.[67] S. J. Russell and P. Norvig. Arti�cial intelligence: a modern approach. Prentice-Hall, Inc., Upper Saddle River,NJ, USA, 1995.

MOTION PLANNING FOR SELF-RECONFIGURING ROBOTIC SYSTEMS 109[68] B. Salemi, M. Moll, and W.-M. Shen. SUPERBOT: A deployable, multi-functional, and modular self-recon�gurable robotic system. In Intelligent Robots and Systems, Proceeding, IEEE Int. Conf. on (IROS),Beijing, China, Oct. 2006. To appear.[69] B. Salemi and W.-M. Shen. Distributed behavior collaboration for self-recon�gurable robots. In Robotics andAutomation, Proceedings, IEEE Int. Conf. on (ICRA), pages 4178�4183, New Orleans, USA, April/May 2004.[70] B. Salemi, P. Will, and W.-M. Shen. Distributed task negotiation in self-recon�gurable robots. In IntelligentRobots and Systems, Proceeding, IEEE Int. Conf. on (IROS), pages 2448�2453, 2003.[71] W.-M. Shen and P. Will. Docking in self-recon�gurable robots. In Intelligent Robots and Systems, Proceeding,IEEE Int. Conf. on (IROS), pages 1049�1054, 2001.[72] K. Støy. Controlling self-recon�guration using cellular automata and gradients. In Intelligent Autonomous Sys-tems, Proceedings, IEEE Int. Conf. on (IAS), pages 693�702, 2004.[73] K. Støy and R. Nagpal. Self-recon�guration using directed growth. In Distributed Autonomous Robotic Systems,In Proceedings, Symp. on, (DARS), pages 1�10, 2004.[74] J. W. Suh, S. B. Homans, and M. Yim. Telecubes: Mechanical design of a module for self-recon�gurable robotics.In Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), volume 4, pages 4095�4101, 2002.[75] S. Vassilvitskii, M. Yim, and J. W. Suh. A complete, local and parallel recon�guration algorithm for cubestyle modular robots. In Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), volume 1, pages117�122, 2002.[76] J. E. Walter, M. E. Brooks, D. F. Little, and N. M. Amato. Enveloping multi-pocket obstacles with hexagonalmetamorphic robots. In Robotics and Automation, Proceedings, IEEE Int. Conf. on (ICRA), pages 2204�2209,2004.[77] J. E. Walter, J. L. Welch, and N. M. Amato. Distributed recon�guration of metamorphic robot chains. Distrib.Comput., 17:171�189, August 2004.[78] J. E. Walter, J. L. Welch, and N. M. Amato. Distributed recon�guration of metamorphic robot chains. Dis-tributed Computing, 17:171 � 189, 2004.[79] P. J. White, K. Kopanski, and H. Lipson. Stochastic self-recon�gurable cellular robotics. In Robotics and Au-tomation, Proceedings, IEEE Int. Conf. on (ICRA), pages 2888�2893. IEEE Computer Society Press, 2004.[80] G. D. Yim, M. and A. Casal. Connectivity planning for closed-chain recon�guration. SPIE, Sensor Fusion andDecentralized control in Robotic Systems, 4196, Nov 2000.[81] M. Yim. Locomotion With A Unit-Modular Recon�gurable Robot. PhD thesis, Dept. of Mech. Eng. StanfordUniv., 1994.[82] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. S. Chirikjian. Modular self-recon�gurable robot systems � challenges and opportunities for the future. IEEE Robotics and AutomationMagazine, March:43�53, 2007.[83] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and S. Kokaji. Evolutionary motion synthesisfor a modular robot using genetic algorithm. J. of Robotics and Mechatronics, 15:227�237, 2003.[84] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and S. Kokaji. Evolutionary synthesis ofdynamic motion and recon�guration process for a modular robot. In Robotics and Automation, Proceedings,IEEE Int. Conf. on (ICRA), pages 1004�1010, 2003.[85] E. Yoshida, S. Murata, S. Kokaji, K. Tomita, and H. Kurokawa. Micro self-recon�gurable modular robot usingshape memory alloy. J. of Robotics and Mechatronics, 13:212�219, 2001.

	PhD coversheet April 2012.pdf
	Total2

