68 research outputs found

    Enumeration of the BranchedmZp-Coverings of Closed Surfaces

    Get PDF
    AbstractIn this paper, we enumerate the equivalence classes of regular branched coverings of surfaces whose covering transformation groups are the direct sum of m copies of Zp, p prime

    The concordance genus of knots

    Full text link
    In knot concordance three genera arise naturally, g(K), g_4(K), and g_c(K): these are the classical genus, the 4-ball genus, and the concordance genus, defined to be the minimum genus among all knots concordant to K. Clearly 0 <= g_4(K) <= g_c(K) <= g(K). Casson and Nakanishi gave examples to show that g_4(K) need not equal g_c(K). We begin by reviewing and extending their results. For knots representing elements in A, the concordance group of algebraically slice knots, the relationships between these genera are less clear. Casson and Gordon's result that A is nontrivial implies that g_4(K) can be nonzero for knots in A. Gilmer proved that g_4(K) can be arbitrarily large for knots in A. We will prove that there are knots K in A with g_4(K) = 1 and g_c(K) arbitrarily large. Finally, we tabulate g_c for all prime knots with 10 crossings and, with two exceptions, all prime knots with fewer than 10 crossings. This requires the description of previously unnoticed concordances.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-1.abs.htm

    Spin Hurwitz numbers and topological quantum field theory

    Full text link
    Spin Hurwitz numbers count ramified covers of a spin surface, weighted by the size of their automorphism group (like ordinary Hurwitz numbers), but signed ±1\pm 1 according to the parity of the covering surface. These numbers were first defined by Eskin-Okounkov-Pandharipande in order to study the moduli of holomorphic differentials on a Riemann surface. They have also been related to Gromov-Witten invariants of of complex 2-folds by work of Lee-Parker and Maulik-Pandharipande. In this paper, we construct a (spin) TQFT which computes these numbers, and deduce a formula for any genus in terms of the combinatorics of the Sergeev algebra, generalizing the formula of Eskin-Okounkov-Pandharipande. During the construction, we describe a procedure for averaging any TQFT over finite covering spaces based on the finite path integrals of Freed-Hopkins-Lurie-Teleman.Comment: 38 pages, substantially rewritten and reorganized following referees' advice. Diagrams added. The key results are unchange

    Algorithmic aspects of branched coverings

    Get PDF
    This is the announcement, and the long summary, of a series of articles on the algorithmic study of Thurston maps. We describe branched coverings of the sphere in terms of group-theoretical objects called bisets, and develop a theory of decompositions of bisets. We introduce a canonical "Levy" decomposition of an arbitrary Thurston map into homeomorphisms, metrically-expanding maps and maps doubly covered by torus endomorphisms. The homeomorphisms decompose themselves into finite-order and pseudo-Anosov maps, and the expanding maps decompose themselves into rational maps. As an outcome, we prove that it is decidable when two Thurston maps are equivalent. We also show that the decompositions above are computable, both in theory and in practice.Comment: 60-page announcement of 5-part text, to apper in Ann. Fac. Sci. Toulouse. Minor typos corrected, and major rewrite of section 7.8, which was studying a different map than claime

    Cut-and-join structure and integrability for spin Hurwitz numbers

    Full text link
    Spin Hurwitz numbers are related to characters of the Sergeev group, which are the expansion coefficients of the Q Schur functions, depending on odd times and on a subset of all Young diagrams. These characters involve two dual subsets: the odd partitions (OP) and the strict partitions (SP). The Q Schur functions Q_R with R\in SP are common eigenfunctions of cut-and-join operators W_\Delta with \Delta\in OP. The eigenvalues of these operators are the generalized Sergeev characters, their algebra is isomorphic to the algebra of Q Schur functions. Similarly to the case of the ordinary Hurwitz numbers, the generating function of spin Hurwitz numbers is a \tau-function of an integrable hierarchy, that is, of the BKP type. At last, we discuss relations of the Sergeev characters with matrix models.Comment: 22 page

    Strings from Feynman Graph counting : without large N

    Full text link
    A well-known connection between n strings winding around a circle and permutations of n objects plays a fundamental role in the string theory of large N two dimensional Yang Mills theory and elsewhere in topological and physical string theories. Basic questions in the enumeration of Feynman graphs can be expressed elegantly in terms of permutation groups. We show that these permutation techniques for Feynman graph enumeration, along with the Burnside counting lemma, lead to equalities between counting problems of Feynman graphs in scalar field theories and Quantum Electrodynamics with the counting of amplitudes in a string theory with torus or cylinder target space. This string theory arises in the large N expansion of two dimensional Yang Mills and is closely related to lattice gauge theory with S_n gauge group. We collect and extend results on generating functions for Feynman graph counting, which connect directly with the string picture. We propose that the connection between string combinatorics and permutations has implications for QFT-string dualities, beyond the framework of large N gauge theory.Comment: 55 pages + 10 pages Appendices, 23 figures ; version 2 - typos correcte
    corecore