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Enumeration of the BranchedmZp-Coverings of Closed Surfaces

JAEUN LEE† AND JONG-WOOK K IM ‡

In this paper, we enumeratethe equivalence classes of regular branched coverings of surfaces
whose covering transformation groups are the direct sum ofm copies ofZp, p prime.

c© 2001 Academic Press

1. INTRODUCTION

Throughout this paper, a surfaceS means a compact connected 2-manifold without bound-
ary. By the classification theorem of surfaces,S is homeomorphic to one of the following:

Sk =

{
the orientable surface withk handles ifk ≥ 0,
the nonorientable surface with− k crosscaps ifk < 0.

A continuous functionp : S̃ → S between two surfaces̃S andS is called abranched
covering if there exists a finite setB in S such that the restriction ofp to S̃ − p−1(B),
p
| S̃−p−1(B) : S̃− p−1(B)→ S− B, is a covering projection in the usual sense. The smallest

setB of S which has this property is called thebranch set. A branched coveringp : S̃ → S

is regular if there exists a (finite) groupA which acts pseudofreely oñS so that the surfaceS
is homeomorphic to the quotient spaceS̃/A, say byh, and the quotient map̃S→ S̃/A is the
compositionh◦p of p andh. In this case, the groupA is the group of covering transformations
of the branched coveringp : S̃→ S. We call it abranchedA-covering. Two branched cover-
ings p : S̃→ S andq : S̃′ → S areequivalentif there exists a homeomorphismh : S̃→ S̃

′

such thatp = q ◦ h.
Since A. Hurwitz showed how to classify the branched coverings of a given surface [6], this

area has been studied in [1, 2, 5] and their references. Recently, Kwaket al. enumerated the
number of equivalence classes of the branchedA-coveringsof surfaces, whenA is the cyclic
groupZp or the dihedral groupDp of order 2p, p prime [7, 9].

In this paper, we enumerate the equivalence classes of branchedA-coveringsp : Si → S

with branch setB, whenA is the groupZp ⊕ Zp ⊕ · · · ⊕ Zp ≡ mZp, the direct sum ofm
copies ofZp.

2. A CLASSIFICATION OF REGULAR BRANCHED COVERINGS

Let G be a finite connected graph with vertex setV(G) and edge setE(G). We allow self-
loops and multiple edges. Notice by regarding the vertices ofG as 0-cells and the edges ofG
as 1-cells, the graphG can be identified with a one-dimensional CW complex in the Euclidean
3-spaceR3 so that every graph map is continuous.

A graph mapp : G̃ → G is said to be aregular covering(simply,A-covering) if p :
G̃ → G is a covering projection in a topological sense and there is a subgroupA of the
automorphism group Aut(̃G) of G̃ acting freely onG̃ so thatG is isomorphic to the quotient
graphG̃/A, say byh, and the quotient map̃G→ G̃/A is the compositionh ◦ p of p andh.
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Every regular covering of agraphG can be constructed as follows [3]: every edge of a graph
G givesrise to a pair of edges in opposite directions. Bye−1

= vu, we meanthe reverse edge
to a directed edgee= uv. We denote the set of directed edges ofG by D(G). AnA-voltage
assignmenton G is a functionφ : D(G) → A with the property thatφ(e−1) = φ(e)−1

for eache ∈ D(G). The values ofφ are calledvoltages. For a graphG and a finite group
A, let C1(G;A) denote the set of allA-voltage assignments onG. The ordinary derived
graph G×φ A derived from anA-voltage assignmentφ : D(G) → A has as its vertex
setV(G) × A and as its edge setE(G) × A. For every edgee betweenu andv in G and
g ∈ A, there is an edge from(u, g) to (v, gφ(e)) in the derived graphG×φA. In the ordinary
derived graphG ×φ A, a vertex(u, g) is denoted byug, and an edge(e, g) by eg. The first
coordinate projectionpφ : G ×φ A → G, called thenatural projection, commutes with the
right multiplication action of theφ(e) and left action ofA on the fibers, which is free and
transitive, so thatpφ : G×φ A→ G is anA-covering.

An embeddingof a graphG into the surfaceS is a continuous one-to-one functionı : G→
S. If every component ofS − ı(G), called aregion, is homeomorphic to an open disk, then
ı : G→ S is called a 2-cellembedding. Anembedding scheme(ρ, λ) for a graphG consists
of a rotation schemeρ which assigns a cyclic permutationρv on N(v) = {e ∈ D(G) :
the initial vertex ofe is v} to eachv ∈ V(G) and a voltage assignmentλ which assigns a
valueλ(e) in Z2 = {−1,1} to eache∈ E(G).

Stahl [10] showed that every embedding scheme determines a 2-cell embedding ofG into
an orientable or nonorientable surfaceS, and every 2-cell embedding ofG into asurfaceS is
determined by such a scheme.

If an embedding scheme(ρ, λ) for a graphG determines a 2-cell embedding ofG into a
surfaceS, then the orientability ofS can be detected by looking at the values of cycles of
G under the voltage assignmentλ. In fact,S is orientable if and only if every cycle ofG is
λ-trivial, that is, the number of edgese with λ(e) = −1 is even in every cycle ofG.

Let ı : G→ S be a 2-cell embedding with embedding scheme(ρ, λ) andφ be anA-voltage
assignment. The ordinary derived graphG ×φ A has thederived embedding scheme(ρ̃, λ̃),
which is defined bỹρvg(eg) = (ρv(e))g andλ̃(eg) = λ(e) for eacheg ∈ D(G×φ A). Then it
induces a 2-cell embeddingı̃ : G×φ A→ S

φ such that the following diagram commutes.

G×φ A S
φ

G S

-

-

ı̃

ı
?

pφ
?

p̃φ

Moreover, if G ×φ A is connected, thenSφ is connected and̃pφ : Sφ → S is a branched
A-covering. Conversely, letp : S̃→ S be a branchedA-covering of a surfaceS. Then there
exist a 2-cell embeddingı : G → S such that each face of the embedding has at most one
branch point interior to it and anA-voltage assignmentφ : D(G)→ A such that the branched
A-covering p̃φ : Sφ → S is equivalent to the given branchedA-coveringp : S̃→ S [4].

A surfaceSk can be represented by a 4k-gon with identification data
∏k

s=1 asbsa−1
s b−1

s on
its boundaryif k > 0; a bigon with identification dataaa−1 on its boundary ifk = 0; and a
−2k-gon with identification data

∏
−k
s=1 asas on its boundary ifk < 0.

Let B be a finite set of points inSk. We note the fact that the fundamental groupπ1(Sk −

B, ∗) of the punctured surfaceSk − B with the base point∗ ∈ Sk − B can be represented by〈
a1, . . . ,ak,b1, . . . ,bk, c1, . . . , c|B| ;

k∏
s=1

asbsa
−1
s b−1

s

|B|∏
t=1

ct = 1

〉
if k > 0;
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a1, . . . ,a−k, c1, . . . , c|B| ;

−k∏
s=1

asas

|B|∏
t=1

ct = 1

〉
if k < 0;

〈
c1, . . . , c|B| ;

|B|∏
t=1

ct = 1

〉
if k = 0.

We call this thestandard presentationof the fundamental groupπ1(Sk − B, ∗). For each
t = 1,2, . . . , |B|, we take a simple closed curve based at∗ lying in the face determined by
the polygonal representation of the surfaceSk so that it represents the homotopy class of the
generatorct . Then, it induces a 2-cell embedding of a bouquet ofn circles, denoted byBn,
into the surfaceSk such that the embedding has|B| 1-sided regions and one(|B| + 4k)-sided
region if k > 0; |B| 1-sided regions and one(|B| − 2k)-sided region ifk < 0; and|B| 1-
sided regions and one|B|-sided region ifk = 0, wheren is the number of the generators of
the corresponding fundamental group. We call this embeddingı : Bn → Sk the standard
embedding, simply denoted byBn ↪→ Sk − B.

Now, we identify each loop̀ i in Bn with a generator inπ1(Sk − B) and this identifica-
tion gives a direction on each loop ofBn so that a positively oriented loop̀i represents the
corresponding generator ofπ1(Sk − B).

Let C1(Bn ↪→ Sk − B;A) denote the subset ofC1(Bn;A) consisting of allA-voltage
assignmentsφ of Bn which satisfy the following two conditions:

(1) φ(`1), . . . , φ(`n) generateA, and
(2) (i) if k ≥ 0, thenφ(`i ) 6= idA for eachi = 2k+ 1, . . . ,2k+ |B| = n and

k∏
i=1

φ(`i )φ(`k+i )φ(`i )
−1φ(`k+i )

−1
|B|∏
i=1

φ(`2k+i ) = 1,

(ii) if k < 0, thenφ(`i ) 6= idA for eachi = −k+ 1, . . . ,−k+ |B| = n and

−k∏
i=1

φ(`i )φ(`i )

|B|∏
i=1

φ(`−k+i ) = 1.

Note that the condition (1) guarantees thatS
φ is connected, and the condition (2) guarantees

that the setB is the same as the branch set of the branched coveringp̃φ : Sφ → S.
By using these, Kwaket al. obtained the following theorem.

THEOREM 1. (EXISTENCE AND CLA SSIFICATION OF REGULAR BRANCHED COVER-
INGS [7]). Let n = 2k + |B| if k ≥ 0, and let n= −k + |B| if k < 0. Every voltage
assignment in C1(Bn ↪→ Sk − B;A) induces a connected branchedA-covering ofSk with
branch set B. Conversely, every connected branchedA-covering ofSk with branch set B is in-
duced by a voltage assignment in C1(Bn ↪→ Sk − B;A). Moreover, for two givenA-voltage
assignmentsφ,ψ ∈ C1(Bn ↪→ S − B;A), two branchedA-coveringsp̃φ : Sφ → S and
p̃ψ : Sψ → S are equivalent if and only if there exists a group automorphismσ : A → A
such that

ψ(`i ) = σ(φ(`i ))

for all `i ∈ D(Bn).

In fact, the last statement is equivalent to saying that the two graph coveringspφ : Bn ×φ

A→ Bn and pψ : Bn ×ψ A→ Bn of Bn are equivalent as graph coverings [7, 8].
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To enumerate the equivalence classes ofconnected branchedA-coverings of a surfaceS,
we define an Aut(A)-action onC1(Bn ↪→ S− B;A) as follows:

(σφ)(`i ) = σ(φ(`i )),

for eachσ ∈ Aut(A), φ ∈ C1(Bn ↪→ S − B;A) and all `i ∈ D(Bn). Notice that this
Aut(A)-action on the setC1(Bn ↪→ S− B;A) is free, becauseφ(`1), . . . , φ(`n) generateA.

COROLLARY 1. [7] Let A be a finite group. Then the number of equivalence classes of
connected branchedA-coverings of the surfaceSk with branch set B isequal to

|C1(Bn ↪→ Sk − B;A)|
|Aut(A)|

,

where

n =

{
2k+ |B| if k ≥ 0,
−k+ |B| if k < 0.

For convenience, letak = 2k if k ≥ 0, andak = −k if k < 0. Let b be the cardinality of a
branch setB. Therebyn in Theorem 1 and Corollary 1 isak + b for each integerk.

3. ENUMERATION OF BRANCHED mZp-COVERINGS OFORIENTABLE SURFACES

In this section, we enumerate the equivalence classes of the branchedmZp-coverings of the
orientable surfaces.

Notice that there is a one-to-one correspondence between the setC1(Bn;mZp) of all mZp-
voltage assignments onBn and the setMm×n(Zp) of all m× n matrices over the fieldZp.
Indeed, for eachM ∈ Mm×n(Zp), we define a voltage assignmentφM in C1(Bn;mZp) so that
φM (`i ) is thei th column ofM for each̀ i ∈ D(Bn). Conversely, for eachφ ∈ C1(Bn;mZp),
we defineMφ as the matrix whosei th column isφ(`i ) for eachi = 1, . . . ,n. Under this
correspondence, each voltage assignmentφ in C1(Bak+b ↪→ Sk− B;mZp) can be identified
with the matrixMφ in Mm×(ak+b)(Zp) which has the following properties;

(1
′

) The rank ofMφ is m,

(2
′

) (i) if k ≥ 0, thenMφ
tUk = O, where the matrixUk =

[ ak=2k︷ ︸︸ ︷
0 · · · 0

b︷ ︸︸ ︷
1 · · · 1

]
,

(ii) if k < 0, thenMφ
tUk = O, where the matrixUk =

[ ak=−k︷ ︸︸ ︷
2 · · · 2

b︷ ︸︸ ︷
1 · · · 1

]
,

wheret A is the transpose of a matrixA andO is the zero matrix, and
(3
′

) For eachi = ak + 1, . . . ,ak + b, thei th column ofMφ is a non-zero vector inmZp.

Consequently, the cardinalityof the setC1(Bak+b ↪→ Sk − B;mZp) is equal to that of
the set{M ∈ Mm×(ak+b)(Zp) : M satisfies the conditions (1′),(2′) and (3′)}. Now, for each
integerk and non-negative integerb, we denote

ζ(m, k,b) = |{M ∈ Mm×(ak+b)(Zp) : M satisfies the conditions (1′),(2′), and (3′)}|.

Notice thatmZp is a vector space over the fieldZp and Aut(mZp) is the set of all linear
isomorphisms onmZp. Hence we have

|Aut(mZp)| = (p
m
− 1)(pm

− p) · · · (pm
− pm−1) = p

m(m−1)
2

m∏
s=1

(ps
− 1).
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Now, Corollary 1 implies that the number of equivalence classes ofconnected branched
mZp-coverings of a given surfaceSk with branch setB is equal to

ζ(m, k,b)

p
m(m−1)

2

m∏
s=1

(ps
− 1)

.

To obtain a formula for computing the numberζ(m, k,b), we define a numberη(m, k,b)
as follows:

η(m, k,b) = |{M ∈ Mm×(ak+b)(Zp) : M satisfies the conditions (1′) and (2′)}|.

LEMMA 1. For an integer k and a non-negative integerb, we have:

(1) ζ(m, k,b) ≤ η(m, k,b).
(2) If b = 0, thenζ(m, k,b) = η(m, k,b). If also ak < m,then these values arezero.
(3) If b 6= 0 and ak + b ≤ m, thenζ(m, k,b) = η(m, k,b) = 0.
(4) If b 6= 0 and ak + b ≥ m+ 1, then

ζ(m, k,b) =
b∑

t=0

(−1)t
(

b

t

)
η(m, k,b− t).

If also ak < m, then

ζ(m, k,b) =
ak+b−(m+1)∑

t=0

(−1)t
(

b

t

)
η(m, k,b− t).

PROOF. First, (1) and (2) are clear by the properties of the matrixMφ . Next, if b 6= 0 and
ak+ b ≤ m, thenη(m, k,b)must be zero, because the sum ofat mostm linearly independent
vectors inmZp cannot be the zero vector. Hence, (3) comes from (1). Finally, we prove (4).
For eachi = ak + 1, . . . ,ak + b, letPi be the property that thei th column vector is zero. For
each subsetSof {ak+1, . . . ,ak+b}, let N(PS) be the number of matrices inMm×(ak+b)(Zp)

which satisfy the properties (1′),(2′) andPi for all i ∈ S. Then∑
S⊂{ak+1,...,ak+b}

|S|=t

N(PS) =

(
b

t

)
η(m, k,b− t).

Notice that the numberζ(m, k,b) is equal to the number of matrices inMm×(ak+b)(Zp)which
have properties (1′) and (2′), but does not have any propertyPi for eachi = ak+1, . . . ,ak+b.
Now, it follows from the principle of inclusion and exclusion that

ζ(m, k,b) =
b∑

t=0

(−1)t
(

b

t

)
η(m, k,b− t).

Moreover, ifak < m, then it follows from (3) thatη(m, k,b− t) = 0 for eacht ≥ ak+b−m.
That completes the proof. 2

To complete the computation of the numberζ(m, k,b), we need to obtain a formula to
compute the numberη(m, k,b).
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LEMMA 2. For a non-negativeinteger b, we have:

(a) For each k≥ 0,

η(m, k,b) =


p

m(m−1)
2

m−1∏
s=0

(p2k−s
− 1) if 2k≥ m, b = 0,

p
m(m−1)

2

m∏
s=1

(p2k+b−s
− 1) if 2k+ b ≥ m+ 1, b 6= 0,

0 otherwise.

(b) For each k< 0,

η(m, k,b) =



0 if − k+ b ≤ m,

p
m(m−1)

2

m−1∏
s=0

(p−k−s
− 1) if − k ≥ m+ 1, b = 0, p = 2,

p
m(m−1)

2

m∏
s=1

(p−k+b−s
− 1) otherwise.

PROOF. Obviously,η(m, k,b) = 0 for the caseak+b < m or the caseak+b = m, b 6= 0.
First, we prove the casek ≥ 0.

Case1. 2k ≥ m, b = 0.
Since the matrixUk is the zero matrix,η(m, k,b) is equal to the number of matrices in
Mm×(2k+b)(Zp) whose rank ism. By looking at the row space, we see that the num-
ber of such matrices is equal to that of all sequences of linearly independent vectors of
lengthm in the 2k-dimensional vector space over the finite fieldZp. Hence,η(m, k,b) =
(p2k
− 1)(p2k

− p) · · · (p2k
− pm−1).

Case 2. 2k+ b ≥ m+ 1, b 6= 0.
The conditionMφ

tUk = O means that each row vector ofMφ is an element ofker(tUk)

which is a subspace of(2k+ b)Zp. Since the rank oftUk is 1, the dimension ofker(tUk) is
2k+ b− 1. Since the rank ofMφ is m, η(m, k,b) is equal to the number of all sequences of
linearly independent vectors of lengthm in the(2k+ b− 1)-dimensional subspaceker(tUk).
Hence,η(m, k,b) = (p2k+b−1

− 1)(p2k+b−1
− p) · · · (p2k+b−1

− pm−1).
Now, we prove the casek < 0.

Case 3.−k ≥ m+ 1, b = 0, p = 2.
The proof of this case is similar to the proof of Case 1, because the matrixUk is also the zero
matrix.

Case 4.−k+ b ≥ m+ 1, b ≥ 0, p 6= 2; or−k+ b ≥ m+ 1, b 6= 0, p = 2.
The proof of this case is similar to the proof of Case 2. 2

From the definition ofC1(Bak+b ↪→ Sk − B;mZp), the derived embeddingBak+b ×φ

mZp ↪→ S
φ
k is determined by the lifting of the embedding scheme for the standard embedding

Bak+b ↪→ Sk − B. Moreover, ifk ≥ 0, thenak = 2k, and the derived embedding haspm

(4k+b)-sided regions, andbpm−1 p-sided regions. Ifk < 0, thenak = −k, and the regions of
the derived embedding are similarly determined. Thus the Euler characteristic of the branched
covering surfaceSφk is obtained as follows.
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LEMMA 3. Let B be a finite subset ofSk and|B| = b. Then for each voltage assignmentφ
in C1(Bak+b ↪→ Sk − B;mZp), theEuler characteristicχ(Sφk ) of the surfaceSφk is{

pm−1
{b− p (2k+ b− 2)} if k ≥ 0,

pm−1
{b− p (−k+ b− 2)} if k < 0.

Now, we enumerate the equivalence classes of branchedmZp-coverings of the orientable
surfaceSk with branch setB. Notice that every branchedmZp-covering surface of the ori-
entable surfaceSk is orientable. Hence, from Lemma 3, the genus ofS

φ
k , k ≥ 0, is

1−
χ(S

φ
k )

2
= 1−

pm−1

2
(b− p (2k+ b− 2))

for eachφ ∈ C1(B2k+b ↪→ Sk − B;mZp). Thus, the following theorem comes from Corol-
lary 1 andLemma 2.

THEOREM 2. LetSk, k ≥ 0, be an orientable surface and B a finite set of pointsin Sk and
let b= |B|. The number of equivalence classes of branched mZp-coverings p: Si → Sk of
Sk with branch set B is equal to



m−1∏
s=0

(p2k−s
− 1)

m∏
s=1

(ps
− 1)

if i = 1+ pm(k− 1)≥ 0, b = 0,

b−1∑
t=0

(−1)t
(

b

t

) m∏
s=1

(p2k+b−t−s
− 1)+ (−1)b

m−1∏
s=0

(p2k−s
− 1)

m∏
s=1

(ps
− 1)

if i = 1+ pm(k− 1)+
bpm−1

2
(p− 1)≥ 0, b 6= 0,

0 otherwise.

For convenience, we introduce a polynomialR(Sk,B,A)(x), called the branchedcovering
distribution polynomial, which was defined by Kwaket al. [7]. For a finite groupA, the
polynomialR(Sk,B,A)(x) is defined by

R(Sk,B,A)(x) =
∞∑

i=−∞

ai (Sk, B,A)xi ,

whereai (Sk, B,A) denotes the numberof equivalence classes of branchedA-coveringsp :
Si → Sk with branch setB. Notice that

ai (Sk, B,mZp) =
ζ(m, k,b)

p
m(m−1)

2

m∏
s=1

(ps
− 1)

,

where|B| = b.
Some polynomialsR(S,B,mZp)(x) are listed in Tables 1 and 2 whenS is the sphereS0 or the

torusS1.
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TABLE 1.
R(S0,B,mZp)(x).

(m, p) b = 0 b = 1 b = 2 b = 3 b = 4 · · ·

(1, 2) 0 0 1 0 x · · ·

(1, 3) 0 0 1 x 3x2
· · ·

(1, 5) 0 0 1 3x2 13x4
· · ·

(1, 7) 0 0 1 5x3 31x6
· · ·

...
...

(2, 2) 0 0 0 1 3x · · ·

(2, 3) 0 0 0 x 9x4
· · ·

(2, 5) 0 0 0 x6 27x16
· · ·

(2, 7) 0 0 0 x15 53x36
· · ·

...
...

(3, 2) 0 0 0 0 x · · ·

(3, 3) 0 0 0 0 x10
· · ·

(3, 5) 0 0 0 0 x76
· · ·

(3, 7) 0 0 0 0 x246
· · ·

...
...

TABLE 2.
R(S1,B,mZp)(x).

(m, p) b = 0 b = 1 b = 2 b = 3 b = 4 · · ·

(1, 2) 3x 0 4x2 0 4x3
· · ·

(1, 3) 4x 0 9x3 9x4 27x5
· · ·

(1, 5) 6x 0 25x5 75x7 325x9
· · ·

(1, 7) 8x 0 49x7 245x10 1519x13
· · ·

...
...

(2, 2) x 0 6x3 16x4 54x5
· · ·

(2, 3) x 0 12x7 93x10 765x13
· · ·

(2, 5) x 0 30x21 715x31 17265x41
· · ·

(2, 7) x 0 56x43 2681x64 128989x85
· · ·

...
...

(3, 2) 0 0 x5 12x7 101x9
· · ·

(3, 3) 0 0 x19 37x28 1056x37
· · ·

(3, 5) 0 0 x101 153x151 19688x201
· · ·

(3, 7) 0 0 x295 399x442 138456x589
· · ·

...
...



Enumeration of branched mZp-coverings 1133

4. ENUMERATION OF BRANCHED mZp-COVERINGS OF NONORIENTABLE SURFACES

In this section, we enumerate the equivalence classes of branchedmZp-coverings of the
nonorientable surfaceSk with branch setB. In this case,k < 0 andak = −k. We observe that
the embedding scheme(ρ, λ) for the standard embeddingB−k+b ↪→ Sk−B can be described
as follows:

ρv = (`1`
−1
1 `2`

−1
2 · · · `−k+b`

−1
−k+b),

λ(`t ) =

{
−1 if t = 1,2, . . . ,−k,
1 if t = −k+ 1,−k+ 2, . . . ,−k+ b.

Notice that a branched covering surface of a nonorientable surface can be orientable. In order
to investigate the orientability of a surfaceSφk , we recall that the surfaceSφk is orientable if
and only if every cycle of the covering graphB−k+b ×φ mZp is λ̃-trivial, i.e., the number of
edgese with λ̃(e) = −1 is even in every cycle of the covering graphB−k+b ×φ mZp.

If p is an odd prime, then every branchedmZp-covering surface of the nonorientable sur-
faceSk is nonorientable. Indeed, for any loop`i , i = 1, . . . ,−k, and for any voltage assign-
mentφ ∈ C1(B−k+b ↪→ Sk − B;mZp), p−1

φ (`i ) contains either a loop or a cycle of length
p. Sinceλ(`i ) = −1 for eachi = 1, . . . ,−k, the covering graphB−k+b×φ mZp contains at
least one cycle which is notλ̃-trivial. Therefore the following is a consequence of Corollary 1
and Lemmas 1, 2, and 3.

THEOREM 3. Let Sk, k < 0, be a nonorientable surface and B a finite set of pointsin
Sk, let p be an odd prime number, and let b= |B|. The number of equivalence classes of
branched mZp-coverings p: Si → Sk of the nonorientable surfaceSk with branch set B is
equal to

m∏
s=1

(p−k−s
− 1)

m∏
s=1

(ps
− 1)

if i = pm(k+ 2)− 2< 0, b = 0,

b−1∑
t=0

(−1)t
(

b

t

) m∏
s=1

(p−k+b−t−s
− 1)+ (−1)b

m∏
s=1

(p−k−s
− 1)

m∏
s=1

(ps
− 1)

if i = pm(k+ 2)− bpm−1(b− 1)− 2< 0, b 6= 0,

0 otherwise.

However, if p = 2, then some branchedmZ2-covering surfaces of a nonorientable surface
can be orientable.

EXAMPLE . Let B3 ↪→ S−1 − B be a standard embedding of the bouquet of three
loops `1, `2, and `3. Then the correspondingembedding scheme is(ρ, λ), whereρv =
(`1`

−1
1 `2`

−1
2 `3`

−1
3 ) and λ(`1) = −1, λ(`2) = λ(`3) = 1. Let φ be an element in

C1(B3 ↪→ Sk − B;Z2 × Z2) such thatφ(`1) = (0,1), φ(`2) = (1,0), andφ(`3) = (1,0).
Let W̃ be a closed walk inB3×φ (Z2×Z2). Thenpφ(W̃) = e1 · · · em is a closed walk inB3,
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andφ(e1) · · ·φ(em) must be theidentity (0,0). This implies that theedge`1 must appear an
even number of times in the projectionpφ(W̃) of W̃, which means̃W is λ̃-trivial. Therefore,
the derived surfaceSφk is orientable.

We now aim to classify the orientable branchedmZ2-covering surfacesSφk of the nonori-
entable surfaceSk with branch setB. For eachφ ∈ C1(B−k+b ↪→ Sk−B;mZ2), we define the
netφ-voltageof closed walkC = eε1

1 eε2
2 · · · e

εn
n in B−k+b by the productφ(e1)

ε1φ(e2)
ε2 · · ·

φ(en)
εn . Let (mZ2)φ(v) be the local group of all netφ-voltages occurring onv-based closed

walks. Let(mZ2)
0
φ(v) be the set of the netφ-voltages on all closed walksC which areλ-

trivial in the standard embeddingB−k+b ↪→ Sk − B. Then(mZ2)
0
φ(v) is a subgroup of the

local group(mZ2)φ(v). By the definition ofC1(B−k+b ↪→ Sk − B;mZ2), the local voltage
group(mZ2)φ(v) is equal to the groupmZ2. It is known [4] that the derived surfaceSφk is
orientable if and only if the group(mZ2)

0
φ(v) is a subgroup of index 2 inthe groupmZ2. We

observe that the netφ-voltage of any closed walkC of B−k+b is an element of(mZ2)
0
φ(v) if

and only if the closed walkC contains an even number of loops in the set{`i : i = 1, . . . ,−k}.
Let C1

o(B−k+b ↪→ Sk − B;mZ2) be the set of the voltage assignmentsφ ∈ C1(B−k+b

↪→ Sk− B;mZ2) such that the subgroup(mZ2)
0
φ(v) is of index 2 in the groupmZ2. Thus for

anyφ in C1
o(B−k+b ↪→ Sk − B;mZ2), the derived surfaceSφk is orientable.

Now, let C1
so(B−k+b ↪→ Sk − B;mZ2) be the set of all elements inC1

o(B−k+b ↪→ Sk −

B;mZ2) such that

φ(`i ) ∈ (m− 1)Z2⊕ {1} for eachi = 1, . . . ,−k, and

φ(` j ) ∈ (m− 1)Z2⊕ {0} for each j = −k+ 1, . . . ,−k+ b.

Then, for eachφ ∈ C1
so(B−k+b ↪→ Sk− B;mZ2), the group(mZ2)

0
φ(v) is clearly isomorphic

to the group(m−1)Z2. Notice that the voltage assignment given in our example is of this
type. LetS be a subgroup of index 2 inmZ2. Then, it is not hard to show that there exists an
automorphismσ : mZ2→ mZ2 such thatσ(S) = (m−1)Z2⊕{0}. Therefore, the following
lemma comes from Theorem1.

LEMMA 4. Let Sk be a nonorientable surface and letφ be an mZ2-voltage assignment
in the set C1

o(B−k+b ↪→ Sk − B;mZ2). If the branched mZ2-covering p̃φ : S
φ
k → Sk is

orientable, then there existsψ ∈ C1
so(B−k+b ↪→ Sk − B;mZ2) such that the two branched

mZ2-coveringsp̃φ : S
φ
k → Sk and p̃ψ : S

ψ
k → Sk are equivalent. Moreover, ifφ, ψ ∈

C1
so(B−k+b ↪→ Sk − B;mZ2), then the two branched mZ2-coveringsp̃φ : S

φ
k → Sk and

p̃ψ : S
ψ
k → Sk are equivalent if and only if there exists an automorphismσ : mZ2 → mZ2

such thatσ((m− 1)Z2⊕ {0})= (m− 1)Z2⊕ {0}.

Consequently,C1
so(B−k+b ↪→ Sk − B;mZ2) contains representatives of all equivalence

classes of orientable branchedmZ2-coverings of the nonorientable surfaceSk.
It is not hard to show that there is a one-to-one correspondence between the setC1

so(B−k+b

↪→ Sk − B;mZ2) and the setMo
m×(−k+b) of all m× (−k + b)-matrices over the fieldZp

which satisfy the conditions(1′), (2′), (3′), and the following additional condition:

(4′) Themth row of the matrix inMo
m×(−k+b) is

( −k︷ ︸︸ ︷
1 · · · 1

b︷ ︸︸ ︷
0 · · · 0

)
.

For convenience, letζo(m, k,b) denote the cardinality of the setMo
m×(−k+b), and let

ηo(m, k,b) denote the cardinality of the set of all elements inMo
m×(−k+b) which satisfy the

conditions(1′), (2′), and(4′).
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Let Aut(mZ2, (m−1)Z2 ⊕ {0}) denote the subgroup ofall automorphismsσ of mZ2 such
thatσ((m− 1)Z2⊕ {0})= (m− 1)Z2⊕ {0}. Then

|Aut(mZ2, (m−1)Z2⊕ {0})| = (2
m−1
− 1)(2m−1

− 2) · · · (2m−1
− 2m−2) 2m−1

= 2
m(m−1)

2

m−1∏
s=1

(2s
− 1).

Now, by Lemma4 and Corollary 1, the number of equivalence classes ofthe orientable
branchedmZ2-coverings of the nonorientable surfaceSk with branch setB is equal to

|C1
so(B−k+b ↪→ Sk − B;mZ2)|

|Aut(mZ2, (m−1)Z2⊕ {0})|
=

ζo(m, k,b)

2
m(m−1)

2

m−1∏
s=1

(2s
− 1)

.

Here, by using a method similar to the proof of Lemmas 1 and 2, we cansee the following:

LEMMA 5. For a negative integer k and a non-negative integer b, we have:

(1)

ηo(m, k,b) =



1 if m = 1,b = 0

2
m(m−1)

2

m−1∏
s=1

(2−k−s
− 1) if − k ≥ m,m 6= 1,b = 0,

2
m(m−1)

2

m∏
s=2

(2−k+b−s
− 1) if − k+ b ≥ m+ 1,m 6= 1,b 6= 0.

0 otherwise.

(2) ζo(m, k,b) =
b∑

t=0

(−1)t
(

b

t

)
ηo(m, k,b− t). In particular, if−k < m, then

ζo(m, k,b) =
−k+b−m∑

t=0

(−1)t
(

b

t

)
ηo(m, k,b− t),

where
(0
0

)
is defined to be1, and the summation over the empty index set is defined to

be0.

Now, by applying Lemmas 3 and 5, we obtain the following theorem.

THEOREM 4. Let Sk, k < 0, be a nonorientable surface, B a finite set of pointsin Sk,
and b= |B|. Then the number of equivalence classes of orientable branched mZ2-coverings
p : Si → Sk of the surfaceSk with branch set B is equal to



1136 J. Lee and J.-W. Kim

m−1∏
s=1

(2−k−s
− 1)

m−1∏
s=1

(2s
− 1)

if i = 1− 2m−1(k+ 2)≥ 0, b = 0,

b−1∑
t=0

(−1)t
(

b

t

) m∏
s=2

(2−k+b−t−s
− 1)+ (−1)b

m−1∏
s=1

(2−k−s
− 1)

m−1∏
s=1

(2s
− 1)

if i = 1− 2m−1(k+ 2)+ 2m−2b ≥ 0, b 6= 0,

0 otherwise,

where
(0
0

)
is defined to be1, and theproduct over the empty index set is defined to be1.

On the other hand, from Lemmas 1 and 2, we can see that the number of equivalence classes
of branchedmZ2-covering surfacesSφk of the nonorientable surfaceSk with branch setB is
equal to



m−1∏
s=0

(2−k−s
− 1)

m∏
s=1

(2s
− 1)

if b = 0,

b∑
t=0

(−1)t
(

b

t

)
η(m, k,b− t)

2
m(m−1)

2

m∏
s=1

(2s
− 1)

if b 6= 0.

Now, the number of equivalence classes of nonorientable branchedmZ2-coveringsp :
Si → Sk of the nonorientable surfaceSk with branch setB comes from the above discus-
sion and Theorem 4.

THEOREM 5. Let Sk, k < 0, be a nonorientable surface and B a finite set of pointsin
Sk and b= |B|. Then the number of equivalence classes of nonorientable branched mZ2-
coverings p: Si → Sk of the surfaceSk with branch set B is equal to



Enumeration of branched mZp-coverings 1137

TABLE 3.
R(S−1,B,mZp)(x).

m, p) b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 · · ·

(1, 2) 1 0 2x−2 0 2x−4 0 · · ·

(1, 3) 0 x−1 2x−3 4x−5 8x−7 16x−9
· · ·

(1, 5) 0 x−1 4x−5 16x−9 64x−13 256x−17
· · ·

(1, 7) 0 x−1 6x−7 36x−13 216x−19 1296x−25
· · ·

...
...

(2, 2) 0 0 1 4x−4 x3
+ 12x−6 40x−8

· · ·

(2, 3) 0 0 x−5 10x−11 84x−17 680x−23
· · ·

(2, 5) 0 0 x−17 28x−37 688x−57 16576x−77
· · ·

(2, 7) 0 0 x−37 54x−79 2628x−121 126360x−163
· · ·

...
...

(3, 2) 0 0 0 x3 3x5
+ 8x−10 10x7

+ 80x−14
· · ·

(3, 3) 0 0 0 x−29 36x−47 1020x−65
· · ·

(3, 5) 0 0 0 x−177 152x−277 19536x−337
· · ·

(3, 7) 0 0 0 x−541 396x−835 138060x−1129
· · ·

...
...



(2−k
− 2m)

m−1∏
s=1

(2−k−s
− 1)

m∏
s=1

(2s
− 1)

if i = 2m(k+ 2)− 2< 0, b = 0,

b−1∑
t=0

(−1)t
(

b

t

) m∏
s=2

(2−k+b−t−s
− 1)(2−k+b−t−1

− 2m)+ (−1)b(2−k
− 2m)

m−1∏
s=1

(2−k−s
− 1)

m∏
s=1

(2s
− 1)

if i = 2m(k+ 2)− 2(1+ 2m−2b) < 0, b 6= 0,

0 otherwise,

where
(0
0

)
is defined to be1, and the product over the empty index set is defined to be1.

Table 3 lists the branchedmZp-covering distribution polynomialR(S,B,mZp)(x), whenS is
the projective planeS−1.
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