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1. INTRODUCTION

Throughout this paper, a surfaSeneans a compact connected 2-manifold without bound-
ary. By the classification theorem of surfac&ss homeomorphic to one of the following:

S, — the orientable surface withhandles itk > 0,
K the nonorientable surface witk k crosscaps ik < 0.

A continuous functionp : S — S between two surfaceS andS is called abranched
coveringif there exists a finite seB in S such that the restriction op to S — p~1(B),
Pispim: :S— p~1(B) — S — B, is a covering projection in the usual sense. The smallest

setB of S which has this property is called tieanch set. A branched covering: S — S

is regularif there exists a (finite) groupl which acts pseudofreely dhso that the surfacg

is homeomorphic to the quotient spake4, say byh, and the quotient map — S/ A is the
compositiorho p of p andh. In this case, the groud is the group of covering transformations
of the branched covering : S — S. We call it abranchedA-covering. Two branched cover-
ingsp:S — Sandq : S — S areequivalentf there exists a homeomorphism: S — §’
such thatp = q o h.

Since A. Hurwitz showed how to classify the branched coverings of a given surface [6], this
area has been studied in [1, 2, 5] and their references. Recently, &vedkenumerated the
number of equivalence classes of the brancezbveringsof surfaces, whent is the cyclic
groupZ, or the dihedral grouf, of order 2o, p prime [7, 9].

In this paper, we enumerate the equivalence classes of brantlederingsp : S; — S
with branch seB, when.A is the groupZ, @ Zp @ - - - @ Zp = MZp, the direct sum ofm
copies ofZy.

2. A CLASSIFICATION OF REGULAR BRANCHED COVERINGS

Let G be a finite connected graph with vertex $&G) and edge seE (G). We allow self-
loops and multiple edges. Notice by regarding the vertic&s af 0-cells and the edges Gf
as 1-cells, the grapB can be identified with a one-dimensional CW complex in the Euclidean
3-spaceR? so that every graph map is continuous.

A graph mapp : G — G is said to be aegular covering(simply, .A-covering) if p :
G — G is a covering projection in a topological sense and there is a subgdoopthe
automorphism group Au®) of G acting freely onG so thatG is isomorphic to the quotient
graphG/ A, say byh, and the quotient mag — G/A is the compositiot o p of p andh.
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Every regular covering of graphG can be constructed as follows [3]: every edge of a graph
G givesrise to a pair of edges in opposite directions.8y} = vu, we mearthe reverse edge
to a directed edge = uv. We denote the set of directed edgeolby D(G). An A-voltage
assignmenbn G is a functiong : D(G) — A with the property thap(e 1) = ¢(e)~L
for eache € D(G). The values ofp are calledvoltages. For a grap and a finite group
A, let C1(G; A) denote the set of all-voltage assignments oB. The ordinary derived
graph G x4 A derived from anA-voltage assignment : D(G) — A has as its vertex
setV(G) x A and as its edge s&(G) x A. For every edge betweenu andv in G and
g € A, there is an edge frorfu, g) to (v, g¢ (e)) in the derived grapks x4 .A. In the ordinary
derived graplG x4 A, a vertex(u, g) is denoted byug, and an edgge, g) by eq. The first
coordinate projectiop, : G x4 A — G, called thenatural projection, commutes with the
right multiplication action of thep(e) and left action of4 on the fibers, which is free and
transitive, so thapy : G x4 A — G is an.A-covering.

An embeddingf a graphG into the surfac is a continuous one-to-one function G —

S. If every component of — 1(G), called aregion, is homeomorphic to an open disk, then
I : G — Sis called a 2-celembedding. Arembedding schenig, A) for a graphG consists
of a rotation scheme which assigns a cyclic permutatign, on N(v) = {e € D(G) :
the initial vertex ofeis v} to eachv € V(G) and a voltage assignmehtwhich assigns a
valuei(e) in Z, = {—1,1} to eache € E(G).

Stahl [10] showed that every embedding scheme determines a 2-cell embed@irigtof
an orientable or nonorientable surfa&eand every 2-cell embedding & into asurfaceS is
determined by such a scheme.

If an embedding schem@, 1) for a graphG determines a 2-cell embedding Gfinto a
surfaceS, then the orientability o can be detected by looking at the values of cycles of
G under the voltage assignmentin fact, S is orientable if and only if every cycle @ is
A-trivial, that is, the number of edgeswith 1(e) = —1 is even in every cycle db.

Letl : G — S be a 2-cell embedding with embedding sch&mger) and¢ be anA-voltage
assignment. The ordinary derived gra@hx 4 A has thederived embedding schergg, 1),
which is defined bys,, (eg) = (pu(€))g andi(ey) = A(e) for eachey € D(G x4 .A). Then it
induces a 2-cell embeddirig G x4 .A — S? such that the following diagram commutes.

p¢l lﬁ(ﬁ
G S

Moreover, ifG x4 A is connected, theB? is connected anghy : S* — S is a branched
A-covering. Conersely, letp : S — S be a branched!-covering of a surfacé. Then there
exist a 2-cell embedding: G — S such that each face of the embedding has at most one
branch point interior to it and ad-voltage assignmexgt : D(G) — A such that the branched
A-coveringpy : S? — S is equivalent to the given brancheticoveringp : S — S [4].

A surfaceSk can be represented by a-gkn with identification dat;ﬂ‘;:l asbsas—lb‘;1 on
its boundaryif k > 0; a bigon with identification dataa~! on its boundary ik = 0; and a
—2k-gon with identification datﬂs;kl asas on its boundary ik < 0.

Let B be a finite set of points i8k. We note the fact that the fundamental grougSyk —
B, x) of the punctured surfac® — B with the base point € Sy — B can be represented by

k |B|
<a1,...,ak, br.....bc.cr....cp: [ [asbsastbst [ [ =1> if k > 0;
s=1 t=1
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—k |B]
<a1,...,a_k,cl,...,c|5| : Hasasl_[ct = 1> if k < 0:
s=1 t=1

[B|
<cl,...,c|B|; l_[ct :1> if k=0.
t=1

We call this thestandard presentatioof the fundamental groug1(Sx — B, *). For each
t=1,2,...,|B|, we take a simple closed curve based &ting in the face determined by
the polygonal representation of the surf&geso that it represents the homotopy class of the
generatoic;. Then, it induces a 2-cell embedding of a bouquen afrcles, denoted b¥3,,
into the surfac&y such that the embedding hgs| 1-sided regions and on§B| + 4k)-sided
region ifk > 0; |B| 1-sided regions and ongB| — 2k)-sided region ifk < 0; and|B| 1-
sided regions and on@|-sided region itk = 0, wheren is the number of the generators of
the corresponding fundamental group. We call this embeddin®,, — Sk the standard
embedding, simply denoted B, <— Sk — B.

Now, we identify each loog; in %, with a generator int1(Sx — B) and this identifica-
tion gives a direction on each loop &, so that a positively oriented loof represents the
corresponding generator of (Sx — B).

Let C1(%B, — Sk — B; A) denote the subset @*(Bn; A) consisting of allA-voltage
assignments of B, which satisfy the following two conditions:

(1) ¢(t1), ..., »(Ln) generated, and
(2) () ifk=0,theng(¢) # id 4 foreachi = 2k+1,...,2k+ Bl =nand

[BI

k
[Tee kgt o @) ™ [ [ o Carsi) = 1,

i=1 i=1
(ii) if k <0, theng(¢;) #id 4 foreachi = -k +1,...,—k+ |B| =nand

Bl

—k
[Tewrsen o) =1.

i=1 i=1

Note that the condition (1) guarantees tfis connected, and the condition (2) guarantees
that the seB is the same as the branch set of the branched covégng? — S.
By using these, Kwalkt al. obtained the following theorem.

THEOREM 1. (EXISTENCE AND CLASSIFICATION OF REGULAR BRANCHED COVER-
INGS [7]). Letn = 2k + |B] if k > 0, and let n= —k + |B| if k < 0. Every voltge
assignment in &8, — Sk — B: A) induces a connected branchegticovering ofSk with
branch set B. Conversely, every connected branchedvering ofSk with branch set B is in-
duced by a voltage assignment i@, — Sk — B; .A). Moreover, for two givepd-voltage
assignments, v € C1(Bp — S — B; A), two branchedA-coveringsp, : S* — S and
Py : SY — S are equivalent if and only if there exists a group automorphismA — A
such that

Yti) =o(pti)

forall ¢; € D(Bn).

In fact, the last statement is equivalent to saying that the two graph covegng®, x4
A — Bpandpy : Bn xy A — By of By, are equivalent as graph coverings [7, 8].
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To enumerate the equivalence classesafnected branched-coverings of a surfacs,
we define an Aut(A)-action 081(B,<— S — B; A) as follows:

(0p)(li) = o (@(Li)),

for eacho € Aut(A), ¢ € CL(B, — S — B; A) and all¢; € D(%B,). Notice that this
Aut(A)-action on the se€1 (B, S — B; A) is free, becausg (1), . .., ¢ (£n) generateA.

COROLLARY 1. [7] Let A be a finite group. Then the number of equivalence classes of
connected anchedA-coverings of the surfac® with branch set B igqual to
ICY(Bn— Sk — B; A)|
|AUt(A)|

9

where .
| 2k+1B] if k >0,

_{—k+|B| ifk < 0.

For convenience, ledy = 2k if k > 0, anday = —k if k < 0. Letb be the cardinality of a
branch seB. Therebyn in Theorem 1 and Corollary 1 & + b for each integek.

3. ENUMERATION OF BRANCHED MZp-COVERINGS OFORIENTABLE SURFACES

In this section, we enumerate the equivalence classes of the branZhedoverings of the
orientable surfaces.

Notice that there is a one-to-one correspondence between @é(&4; mZp) of all mZ -
voltage assignments dB, and the seMmxn(Zp) of all m x n matrices over the fieldp.
Indeed, for eaciVl € Mmxn(Zp), we define a voltage assignmeni in Cl(®Bn: mZp) so that
¢m (¢i) is theith column ofM for each?¢; € D(25y). Conversely, for each € Cl(®B,; MZp),
we defineMy as the matrix whoseth column is¢ (¢;) for eachi = 1,...,n. Under this
correspondence, each voltage assignmentC* (B4, b < Sk — B; mZp) can be identified
with the matrixMg in Mmx @a+b)(Zp) Which has the following properties;

(1) The rank ofMg ism, a=2k b
, . i —_—— —
(2) (i) if k>0, thenM, 'Ux = O, where the matridy =[ 0 --- 0 1--- 1],
ax=—k b

(ii) if k <0, thenMg 'Ux = O, where the matri}Jy = [ 2--- 2 1--- 1],
where! A is the transpose of a matrik andO is the zero matrix, and
(3’) Foreach =ax+1,...,a + b, theith column ofM is a non-zero vector imZp.

Consequently, the cardinalif the setC*(Ba, b < Sk — B; mZp) is equal to that of
the setfM € Mmx@a+b)(Zp) : M satisfies the conditions(1(2') and (3)}. Now, for each
integerk and non-negative integéer we denote

¢(m, K, b) = {M € Mmyxa+b)(Zp) : M satisfies the conditions(1(2), and (3)}|.

Notice thatmZ, is a vector space over the fieleh, and Aut(nZp) is the set of all linear
isomorphisms omZ,. Hence we have

m
AUMZ )| = (P™ = 1)(P™ = p) - (p™ — p™ ) = p™F ] (p° - 1),
s=1
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Now, Corollary 1 implies that the number of equivalence classesonhected branched
mZp-coverings of a given surfac with branch seB is equal to

c(m, k, b)

- .
P [T -1
s=1

To obtain a formula for computing the numhgim, k, b), we define a numbey(m, k, b)
as follows:

n(m, k, b) = [{M € Mmy(a+b)(Zp) : M satisfies the conditions(land (2)}|.

LEMMA 1. For an integer k and a non-negative intedgrwe have:

(1) ¢(m, K, b) < n(m, K, b).

(2) If b =0, thenz(m, k, b) = n(m, k, b). If also & < m,then these values agero.
(3) If b #£0and & + b < m, then;(m, k, b) = n(m, k, b) = 0.

(4) Ifb#0and & + b > m+ 1, then

b
g(m.k.b) => (-1 (?)n(m, k,b—1).
t=0

If also & < m, then

ax+b—(m+1)

tmk b= Y (-1 (?)n(m, k,b—1).

t=0

PROOF. First, (1) and (2) are clear by the properties of the ma¥jx Next, if b # 0 and
ax +b < m, thenn(m, k, b) must be zero, because the sunabmostm linearlyindependent
vectors inmZ, cannot be the zero vector. Hence, (3) comes from (1). Finally, we prove (4).
Foreach =ax+1,...,ak+ b, letP; be the property that thieh column vector is zero. For
each subse$of {ax+1, ..., ax+b}, let N(Ps) be the number of matrices Mmy a, +b)(Zp)
which satisfy the properties’(1(2') andP; for alli € S. Then

Y N(Ps) = (?)n(m, k,b—1t).
}

Notice that the number(m, k, b) is equal to the number of matriceshfiy a,+b) (Zp) which
have properties (Land (2), but does not have any prope®y for eachi = ax+1, ..., ac+b.
Now, it follows from the principle of inclusion and exclusion that

b
g(m. k. by => (-1 (?)n(m, k,b—1).
t=0

Moreover, ifaxy < m, then it follows from (3) thaty(m, k, b—t) = O for eacht > ax +b—m.
That completes the proof. ]

To complete the computation of the numhkgm, k, b), we need to obtain a formula to
compute the number(m, k, b).
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LEMMA 2. For a non-negativénteger b, we have:

(a) Foreath k> 0,

m-1
pm(n;l) l—[ (p%s —1) if 2k>m, b=0,
s=0

ﬁ(m, k’ b) = mm-1) m
pz [[(p*™—-1) if 2k+b>m+1, b#0,
=1
° otherwise.
(b) Foreach k< 0,
0 if —k+b<m,
m(m—1) m-1
poz [[(p**-1 if —k=m+1,b=0 p=2
n(ma kv b) = Srﬁo
p™E [Jp ™ —1) otherwise.
s=1

ProOFE Obviously,n(m, k, b) = 0 for the casex +b < morthe casex+b=m, b #0.
First, we prove the cade> 0.

Casel. k >m, b=0.

Since the matrixUg is the zero matrix;(m, k, b) is equal to the number of matrices in
Mmx k+b) (Zp) whose rank ism. By looking at the row space, we see that the num-
ber of such matrices is equal to that of all sequences of linearly independent vectors of
lengthm in the 2kdimensional vector space over the finite figld. Hence,n(m,k, b) =

(PP = 1)(p?* = p)--- (p* = p™H.

Case2.2k-b>m+1, b#0.
The conditionMg tUx = O means that each row vector bf, is an element oker(tUy)
which is a subspace @2k + b)Zp. Since the rank ofUy is 1, the dimension dfer(tUy) is
2k 4 b — 1. Since the rank oM, is m, n(m, k, b) is equal to the number of all sequences of
linearly independent vectors of lengthin the (2k + b — 1)-dimensional subspager(tUy).
Hence,)’](m, k, b) — (p2k+bfl _ 1)(p2k+bfl _ p) . (p2k+b71 _ pmfl)_

Now, we prove the cade < 0.

Case3-k>m+1,b=0, p=2.
The proof of this case is similar to the proof of Case 1, because the rifgtisxalso the zero
matrix.

Cased4—k+b>m+1,b>0, p#£2;or—-k+b>m+1,b#£0,p=2.
The proof of this case is similar to the proof of Case 2. O

From the definition ofCl(%aker — Sk — B; mZyp), the derived embeddin@a, b x4
MZp— Sl’f is determined by the lifting of the embedding scheme for the standard embedding
Ba+b — Sk — B. Moreover, ifk > 0, thenay = 2k, and the derived embedding ha¥
(4k+b)-sided regions, andp™* p-sided regions. Ik < 0, thenay = —k, and the regions of
the derived embedding are similarly determined. Thus the Euler characteristic of the branched
covering surfac@‘lf is obtained as follows.
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LEMMA 3. Let B be afinite subset 8f and|B| = b. Then for each volge assignmeng
in Cl(‘Bak+bL> Sk — B; mZp), theEuler characteristiq(Sff) of the surfac@‘((5 is

pP™ b —p@2k+b—-2)} ifk >0,
p"Lb— p(—k+b—2)} ifk <DO.

Now, we enumerate the equivalence classes of brangizggcoverings of the orientable
surfaceSk with branch setB. Notice that every branchedZp-covering surface of the ori-

entable surfacBy is orientable. Hence, from Lemma 3, the genu§f§1fk >0,is

xS0 _
2 T2
for eache € Cl(%2k+bv—> Sk — B; mZp). Thus, the following theorem comes from Corol-
lary 1 andLemma 2.

THEOREM 2. LetSk, k > 0, be an orientable surface and B a finite set of pointSx and
let b = |B|. The number of equivalence classes of branché&gtoverings p: S; — Sk of
Sk with branch set B is equal to

m—1
1 p

(b—p@2k+b—2)

m—1
[T*=-1
o if i =1+ p"(k—1)>0, b=0,
[ -1
s=1
b—1 b m m-1
Z(_l)t <t> l_[ (p2k+b7t7$ _ 1) + (_1)b 1_[ (p2k75 o 1)
t=0 s=1 s=0
m
[Tp-D
s=1 1
ifi=14+p"k-1)+ bp; (p—1)>0, b#0,
0 otherwise.

For convenience, we introduce a polynomik, g _4)(X), called the branchedovering
distribution polynomial, which was defined by Kwak al. [7]. For a finite groupA4, the
polynomialRs, B, 4)(X) is defined by

o
Rg.B.H00) = Y a(Sk B, AX,

i=—o00
whereag; (Sk, B, A) denotes the numbe@f equivalence classes of branchdecoveringsp :
Si — Sk with branch seB. Notice that

z(m, k, b)

m 9
m(m-1
p" [T(P° -1
s=1

where|B| = b.
Some polynomialsR(g’B,mZp)(x) are listed in Tables 1 and 2 whéris the spher&g or the
torussS;.
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TABLE 1.
R(S0.B.mZy) (X)-

(mp) |b=0 b=1 b=2 b=3 b=4
1,2 0 0 1 0 X
1,3) 0 0 1 X 3x?
(1,5) 0 0 1 X2 13t
a7 0 0 1 x3  31x8
2,2 0 0 0 1 X
(2,3) 0 0 0 X ox*
(2,5) 0 0 0 x6  27x16
2,7 0 0 0 x5  53x36
(3,2 0 0 0 0 X
(3,3) 0 0 0 0 x10
(3, 5) 0 0 0 0 x’6
(3,7) 0 0 0 0 x246
TABLE 2.
R(s1.B.mZy) (X)-
mp |b=0 b=1 b=2 b=3 b=4
(1,2 | 3x 0 4x? 0 4x3
(1,3) | 4x 0 ox3 x4 27x5
(1,5) | 6x 0 25>  75x’ 325¢°
1,7 | 8 0 497 245¢10 15113
2, 2) X 0 6x3 16x4 54x°
(2,3) X 0 12’ 93x10 765¢13
(2,5) X 0 33?713t 17264
2,7 X 0  56x*3 2681x54 12898%%°
(3,2 0 0 x° 12x’ 101x°
(3,3) 0 0 x19 378 1056¢37
(3,5) 0 0 x101 153151 19688201
0 0 x29% 39442 138456589

@7
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4. ENUMERATION OF BRANCHED MZp-COVERINGSOF NONORIENTABLE SURFACES

In this section, we enumerate the equivalence classes of branthgdaoverings of the
nonorientable surfac® with branch seB. In this casek < 0 andax = —k. We observe that
the embedding schenig, A) for the standard embeddi®g_xp <> Sk — B can be described
as follows:

po = (17 05t € iip L),

1 ift=1.2....-k
Wt)—{l if t = —k+1,—Kk+2,...,~k+b.

Notice that a branched covering surface of a nonorientable surface can be orientable. In order
to investigate the orientability of a surfa§§, we recall that the surfacﬁ‘f is orientable if

and only if every cycle of the covering grafb 1 x4 MZp is A-trivial, i.e., the number of
edgese with A(e) = —1 is even in every cycle of the covering grafh i X ¢ MZp.

If pis an odd prime, then every branched. ,-covering surface of the nonorientable sur-
faceSy is nonorientable. Indeed, for any loépi = 1, ..., —k, and for any voltage assign-
ment¢ € CY(B_xip— Sk — B; MZp), p(;l(ei) contains either a loop or a cycle of length
p. Sincer(¢j) = —1foreach =1, ..., —K, the covering grap®B _y,p x4 MZ, contains at
least one cycle which is nattrivial. Therefore the following is a consequence of Corollary 1
and Lemmas 1, 2, and 3.

THEOREM3. Let Sk, k < 0, be a nonorientable surface and B a finite set of points
Sk, let p be an odd prime number, and letsb |B|. The number of equivalence classes of
branched nZ,-coverings p: Si — Sk of the nonorientable surfac® with branch set B is
equal to

m
[ -1
=L if i =pMk+2)—2<0,b=0,
[Jp°-D
s=1
b—1 b m m
> (=1 (t) [Je ™ =+ P[P ° -1
t=0 s=1 s=1
m
[Jp°-D
s=1
if i =p™k+2)—bp™ib-1)—2<0,b#0,
0 otherwise.

However, if p = 2, then some branchadZ,-covering surfaces of a nonorientable surface
can be orientable.

EXAMPLE. Let 83 — S_1 — B be a standard embedding of the bouquet of three
loops ¢1, £2, and ¢3. Then the correspondingmbedding scheme i&, 1), wherep, =
(0107 000, seY) and A(€) = —1, A(L2) = A(fz) = 1. Let ¢ be an element in
Cl(®B3< Sk — B; Zy x Z») such thaw (¢1) = (0,1), ¢(¢2) = (1,0), andg (£3) = (1,0).
Let W be a closed walk iMB3 X ¢ (Z x Zp). Then p¢(V~\/) =€ ---enisaclosed walk in53,
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and¢(e1) - - - ¢ (em) must be thadentity (0, 0). This implies that thedge¢; must appear an
even number of times in the projectiqy (W) of W, which meansW is A-trivial. Therefore,
the derived surfac@‘lf is orientable.

We now aim to classify the orientable branched,-covering sun‘ace§qk5 of the nonori-
entable surfacBy with branch seB. For eachp € C1(B _y1p— Sk—B; mZ,), we define the
netg-voltageof closed walkC = €]'e}? - - - € in B_ip by the productp (e1)*1¢ (ep)®2 - - -
¢ (en)®. Let (MmZy)4 (v) be the local group of all neg-voltages occurring on-based closed
walks. Let(mZz)g(v) be the set of the net-voltages on all closed walk§ which arei-
trivial in the standard embeddity _x;p <— Sk — B. Then(mZz)g(v) is a subgroup of the
local group(mZz)4(v). By the definition ofCL(B_k b Sk — B; mZy), the local voltage
group (mZz)4(v) is equal to the groupnZs. It is known [4] that the derived surfa@ is
orientable if and only if the grou(mZz)g(v) is a subgroup of index 2 ithe groupmZ,. We
observe that the net-voltage of any closed walk of % _y,p, is an element o(mZz)g(v) if
and only if the closed wal& contains an even number of loopsinthe{get i =1, ..., —k}.

Let C&(%_Hb — Sk — B; mZy) be the set of the voltage assignmepts Cl(%_k+b
< Sk — B; mZ») such that the subgrOL{mZZ)g(v) is of index 2 in the groupnZ,. Thus for

any¢ in Cg(iB_kerH Sk — B; mZy), the derived surfac@‘lf is orientable.
Now, let C1,(B kb = Sk — B; mZy) be the set of all elements BL(B_yp — Sk —
B; mZ,) such that

¢oWi) e (m—1)Zo @ {1} foreachi =1,...,—k, and
¢(j) e (m—1)Z, @ {0} foreachj = -k +1,...,—k+b.

Then, for eaclyp < C&o(%_k+bc—> Sk — B; mZy), the group(mZz)g(v) is clearly isomorphic

to the group(m—1)Z,. Notice that the voltage assignment given in our example is of this
type. LetS be a subgroup of index 2 imZ,. Then, it is not hard to show that there exists an
automorphisne : mZ,; — mZ, such that (S) = (m — 1)Z, & {0}. Therefore, the following
lemma comes from Theorefin

LEMMA 4. Let Sk be a nonorientable surface and lgtbe an n¥;-voltage assignment
in the set (,}(%,Hb — Sk — B; mZy). If the branched nZ-covering py : S‘f — Sk is
orientable, then there existg < Céo(*B_ker — Sk — B; mZy) such that the two branched
mZp-coveringspy : Sl’f — Sk and py : Sf — Sk are equivalent. Moreover, i, ¢ €
Cslo(‘B_k+b — Sk — B; mZy), then the two branched #3-coveringspy : Sf — Sk and
Py : Sf — Sk are equivalent if and only if there exists an automorphismmZ, — mZ;
such thato (M —1)Z, @ {0}) = (m— 1)Zp & {0}.

Consequentlycs%o(%,kﬂJ — Sk — B; mZy) contains representatives of all equivalence
classes of orientable branchet.;-coverings of the nonorientable surfage

Itis not hard to show that there is a one-to-one correspondence between(ﬂig(&i‘:zlquJ
— Sk — B; mZy) and the seMr%X(_k+b) of all m x (—k + b)-matrices over the field,
which satisfy the conditiongl’), (2), (3), and the following additional condition:

—k b

/ I I 0 I PRI PR
(4) Themth row of the matrix inM3,_ ) is(1 10---0).

For convenience, lety,(m, k, b) denote the cardinality of the sdﬂ%x(_k+b), and let
no(M, k, b) denote the cardinality of the set of all elements!\llﬁx(_k+b) which satisfy the
conditions(1), (2'), and(4’).
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Let Aut(mZy, (m—1)Z, @ {0}) denote the subgroup afl automorphismg of mZ, such
thato (M — 1)Z> & {0}) = (m — 1)Z, @ {0}. Then

|AUt(MZy, (M—1)Z ® {O})] = (2™ — 1)(2"1 — 2)... (2M~1 — 2M=2) pm-1

m(m—1) m—1
=22 [[@-1.
s=1

Now, by Lemma4 and Corollary 1, the number of equivalence classetheforientable
branchednZ,-coverings of the nonorientable surfa@iewith branch seB is equal to

IC(B kb Sk — BimZy)|  go(m. k., b)
|Aut(mZp, (m—1)Z, & {0}~ m-1 '
2" @ -1

s=1

Here, by using a method similar to the proof of Lemmas 1 and 2, waearthe following:

LEMMA 5. For a negative integer k and a non-negative geeb, we have:

(1)
1 fm=1,b=0
mm-1) m-1
277 [[e**-1 if —k=mm#1b=0,
ﬂo(m, k’ b) == Snﬁl
2" [Te*P=-1 if —k+b>=m+1m#1b#0.

s=2

otherwise.

b
(2) ¢o(m, Kk, b) = Z(—l)t (?) no(M, Kk, b —t). In particular, if —k < m, then
t=0

—k+b—m b
Zo(m, k, b) = ; (-1f <t>770(m, k,b—1),

whee (8) is defined to bd, and the summation over the empty index set is defined to

beO.
Now, by applying Lemmas 3 and 5, we obtain the following theorem.

THEOREMA4. Let S, k < 0, be a nonorientable surface, B a finite set of point§y,
and b= |B|. Then the number of equivalence classes of orientable brancleecoverings
p:S; — Sk of the surfaceSy with branch set B is equal to



1136 J. Lee and J.-W. Kim

m—1
1_[ (27k75 _ 1)
s=1
m-1
[[@-1
s=1
b—-1 b m m—-1
Z(_l)t (t) l_[(z—k-i-b—t—s _ 1) + (_1)b l_[ (2—k—S _ 1)
t=0 s=2

s=1
m—-1
[[Te-1
s=1

ifi=1—2"1k+2)>0, b=0,

ifi=1—-2""Yk+2)+2"2%b>0, b0,

0 otherwise,

where(g) is defined to bd, and theproduct over the empty index set is defined td be

On the other hand, from Lemmas 1 and 2, we can see that the number of equivalence classes
of branchednZ,-covering surface§‘|f of the nonorientable surfad@ with branch seB is
equal to

m—1

l_[ (2—k—S _ l)
=0 if b=0,

[[@-1

s=1

b b
> (=1 (t)n(m, k,b—1t)
=0 — if b+£0.

2" @ -1
s=1

Now, the number of equivalence classes of nonorientable branoieecoveringsp
Si — Sk of the nonorientable surfac®c with branch seB comes from the above discus-
sion and Theorem 4.

THEOREMDS. Let Sk, k < 0, be a nonorientable surface and B a finite set of points
Sk and b = |B|. Then the number of equivalence classes of nonorientable brancigd m
coverings p: S — Sk of the surfaceSy with branch set B is equal to
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TABLE 3.
Ris_1.B.mzy) X)-
mp |b=0 b=1 b=2 b=3 b=4 b=5
1,2 1 0 X2 0 24 0
(1,3)| © x 1 2x3  4x® 8x—7’ 16x~°
(1,5 | O x1 4x>  1ex7° 64x 13 256x 17
1,77 o0 x 1 ex 7 36x 18 216x719 1296¢ 25
2,2 0 0 1 &4 x3412x0 40x 8
(2,3)| © 0 x~°  10x 1 84x—17 680x 23
(2,5 O 0 x~17 28x=3" 688>’ 1657677
2,77 0 0 x—37  Bax—79  262& 121 126360163
3,2)| © 0 0 x3 3x®4+8x10  10x” +80x 14
(3,3)| © 0 0 x—29 36x 47 1020¢ 65
(3,5 | O 0 0 x~ 177 152277 19536¢ 337
3,7 O 0 0 x—%41  396x 8% 1380601129
m-1
@*-2m[[e**-1
= if i =2M(k+2)—2<0,b=0,
[[@-1
s=1
b—1 b m m—1
Z(_l)t <t> H(27k+b7t7$_ 1)(27k+b7t71_ 2m) + (_1)b(27k_ 2m) 1_[ (szfs_ 1)
t=0 s=2 s=1
m
[[@-v
s=1
if i =2"(k+2)—2(1+2"2b) <0, b#0,
0 otherwise,

where(g) is defined to bd, and the product over the empty index set is defined tb. be

Table 3 lists the branchedZp-covering distribution polynomiaR(S,B’mZp) (X), whenS is
the projective plan&_;.
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