298 research outputs found

    Generating Random Elements of Finite Distributive Lattices

    Full text link
    This survey article describes a method for choosing uniformly at random from any finite set whose objects can be viewed as constituting a distributive lattice. The method is based on ideas of the author and David Wilson for using ``coupling from the past'' to remove initialization bias from Monte Carlo randomization. The article describes several applications to specific kinds of combinatorial objects such as tilings, constrained lattice paths, and alternating-sign matrices.Comment: 13 page

    Path representation of su(2)_k states II: Operator construction of the fermionic character and spin-1/2--RSOS factorization

    Full text link
    This is the second of two articles (independent of each other) devoted to the analysis of the path description of the states in su(2)_k WZW models. Here we present a constructive derivation of the fermionic character at level k based on these paths. The starting point is the expression of a path in terms of a sequence of nonlocal (formal) operators acting on the vacuum ground-state path. Within this framework, the key step is the construction of the level-k operator sequences out of those at level-1 by the action of a new type of operators. These actions of operators on operators turn out to have a path interpretation: these paths are precisely the finitized RSOS paths related to the unitary minimal models M(k+1,k+2). We thus unravel -- at the level of the path representation of the states --, a direct factorization into a k=1 spinon part times a RSOS factor. It is also pointed out that since there are two fermionic forms describing these finite RSOS paths, the resulting fermionic su(2)_k characters arise in two versions. Finally, the relation between the present construction and the Nagoya spectral decomposition of the path space is sketched.Comment: 28 page

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    On discrete surfaces : Enumerative geometry, matrix models and universality classes via topological recursion

    Get PDF
    The main objects under consideration in this thesis are called maps, a certain class of graphs embedded on surfaces. We approach our study of these objects from different perspectives, namely bijective combinatorics, matrix models and analysis of critical behaviors. Our problems have a powerful relatively recent tool in common, which is the so-called topological recursion introduced by Chekhov, Eynard and Orantin around 2007. Further understanding general properties of this procedure also constitutes a motivation for us. We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorial relation between fully simple and ordinary maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between (first and second order) correlation moments and free cumulants established by Collins--Mingo--'Sniady--Speicher in the setting of free probability, and implement the exchange transformation xleftrightarrowyx leftrightarrow y on the spectral curve in the context of topological recursion. These interesting features motivated us to investigate fully simple maps, which turned out to be interesting combinatorial objects by themselves. We then propose a combinatorial interpretation of the still not well understood exchange symplectic transformation of the topological recursion. We provide a matrix model interpretation for fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces -- which are generated by the Gaussian Unitary Ensemble -- and with boundary perimeters (lambda1,ldots,lambdan)(lambda_1,ldots,lambda_n) are strictly monotone double Hurwitz numbers with ramifications lambdalambda above inftyinfty and (2,ldots,2)(2,ldots,2) above 00. Combining with a recent result of Dubrovin--Liu--Yang--Zhang, this implies an ELSV-like formula for these Hurwitz numbers. Later, we consider ordinary maps endowed with a so-called O(mathsfn)O(mathsf{n}) loop model, which is a classical model in statistical physics. We consider a probability measure on these objects, thus providing a notion of randomness, and our goal is to determine which shapes are more likely to occur regarding the nesting properties of the loops decorating the maps. In this context, we call volume the number of vertices of the map and we want to study the limiting objects when the volume becomes arbitrarily large, which can be done by studying the generating series at dominant singularities. An important motivation comes from the conjecture that the geometry of large random maps is universal. We pursue the analysis of nesting statistics in the O(mathsfn)O(mathsf{n}) loop model on random maps of arbitrary topologies in the presence of large and small boundaries, which was initiated for maps with the topology of disks and cylinders by Borot--Bouttier--Duplantier. For this purpose we rely on topological recursion results for the enumeration of maps in the O(mathsfn)O(mathsf{n}) model. We characterize the generating series of maps of genus gg with kk boundaries and~k′k' marked points which realize a fixed nesting graph, which is associated to every map endowed with loops and encodes the information regarding non-separating loops, which are the non-contractible ones on the complement of the marked elements. These generating series are amenable to explicit computations in the so-called loop model with bending energy on triangulations, and we characterize their behavior at criticality in the dense and in the dilute phases, which are the two universality classes characteristic of the O(mathsfn)O(mathsf{n}) loop model. We extract interesting qualitative conclusions, e.g., which nesting graphs are more probable to occur. We also argue how this analysis can be generalized to other problems in enumerative geometry satisfying the topological recursion, and apply our method to study the fully simple maps introduced in the first part of the thesis

    Subject Index Volumes 1–200

    Get PDF

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic

    Applications of ordered weights in information transmission

    Get PDF
    This dissertation is devoted to a study of a class of linear codes related to a particular metric space that generalizes the Hamming space in that the metric function is defined by a partial order on the set of coordinates of the vector. We begin with developing combinatorial and linear-algebraic aspects of linear ordered codes. In particular, we define multivariate rank enumerators for linear codes and show that they form a natural set of invariants in the study of the duality of linear codes. The rank enumerators are further shown to be connected to the shape distributions of linear codes, and enable us to give a simple proof of a MacWilliams-like theorem for the ordered case. We also pursue the connection between linear codes and matroids in the ordered case and show that the rank enumerator can be thought of as an instance of the classical matroid invariant called the Tutte polynomial. Finally, we consider the distributions of support weights of ordered codes and their expression via the rank enumerator. Altogether, these results generalize a group of well-known results for codes in the Hamming space to the ordered case. Extending the research in the first part, we define simple probabilistic channel models that are in a certain sense matched to the ordered distance, and prove several results related to performance of linear codes on such channels. In particular, we define ordered wire-tap channels and establish several results related to the use of linear codes for reliable and secure transmission in such channel models. In the third part of this dissertation we study polar coding schemes for channels with nonbinary input alphabets. We construct a family of linear codes that achieve the capacity of a nonbinary symmetric discrete memoryless channel with input alphabet of size q=2^r, r=2,3,.... A new feature of the coding scheme that arises in the nonbinary case is related to the emergence of several extremal configurations for the polarized data symbols. We establish monotonicity properties of the configurations and use them to show that total transmission rate approaches the symmetric capacity of the channel. We develop these results to include the case of ``controlled polarization'' under which the data symbols polarize to any predefined set of extremal configurations. We also outline an application of this construction to data encoding in video sequences of the MPEG-2 and H.264/MPEG-4 standards

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    • …
    corecore