3 research outputs found

    Оценка числа решетчатых разбиений плоскости на полимино заданной площади

    Get PDF
    We study a problem of a number of lattice plane tilings by given area polyominoes. A polyomino is a connected plane geometric figure formed by joining edge to edge a finite number of unit squares. A tiling is a lattice tiling if each tile can be mapped to any other tile by translation which maps the whole tiling to itself. Let T(n) be a number of lattice plane tilings by given area polyominoes such that its translation lattice is a sublattice of Z². It is proved that 2n−3 + 2[ n−3 2 ] ≤ T(n) ≤ C(n + 1)3 (2.7)n+1. In the proof of a lower bound we give an explicit construction of required lattice plane tilings. The proof of an upper bound is based on a criterion of the existence of lattice plane tiling by polyomino and on the theory of self-avoiding walk. Also, it is proved that almost all polyominoes that give lattice plane tilings have sufficiently large perimeters.Рассматривается задача о числе решетчатых разбиений плоскости на полимино заданной площади. Полимино представляет собой связную фигуру на плоскости, составленную из конечного числа единичных квадратов, примыкающих друг к другу по сторонам. Разбиение называется решетчатым, если любую фигуру разбиения можно перевести в любую другую фигуру параллельным переносом, переводящим все разбиение в себя. Пусть T(n) – число решетчатых разбиений плоскости на полимино площади n, решетка периодов которых является подрешеткой решетки Z² . Доказано, что 2 n−3 + 2[ n−3 2 ] ≤ T(n) ≤ C(n + 1)3 (2.7)n+1. При доказательстве нижней оценки использована явная конструкция, позволяющая построить требуемое число решетчатых разбиений плоскости. Доказательство верхней оценки основано на одном критерии существования решетчатого разбиения плоскости на полимино, а также на теории самонепересекающихся блужданий на квадратной решетке. Также доказано, что почти все полимино, дающие решетчатые разбиения плоскости, имеют большой периметр

    Оценка числа решетчатых разбиений плоскости на центрально-симметричные полимино заданной площади

    Get PDF
    We study a problem about the number of lattice plane tilings by the given area centrosymmetrical polyominoes. A polyomino is a connected plane geomatric figure formed by joiining a finite number of unit squares edge to edge. At present, various combinatorial enumeration problems connected to the polyomino are actively studied. There are some interesting problems on enuneration of various classes of polyominoes and enumeration of tilings of finite regions or a plane by polyominoes. In particular, the tiling is a lattice tiling if each tile can be mapped to any other tile by a translation which maps the whole tiling to itself. Earlier we proved that, for the number T(n) of a lattice plane tilings by polyominoes of an area n, holds the inequalities 2n−3 + 2[ n−3 2 ] ≤ T(n) ≤ C(n + 1)3 (2, 7)n+1 . In the present work we prove a similar estimate for the number of lattice tilings with an additional central symmetry. Let Tc(n) be a number of lattice plane tilings by a given area centrosymmetrical polyominoes such that its translation lattice is a sublattice of Z 2 . It is proved that C1( √ 2)n ≤ Tc(n) ≤ C2n 2 ( √ 2.68)n . In the proof of a lower bound we give an explicit construction of required lattice plane tilings. The proof of an upper bound is based on a criterion of the existence of lattice plane tiling by polyominoes, and on the theory of self-avoiding walks on a square lattice.В работе рассматривается задача о числе решетчатых разбиений плоскости на центрально–симметричные полимино заданной площади. Полимино представляет собой связную фигуру на плоскости, составленную из конечного числа единичных квадратов, примыкающих друг к другу по сторонам. В настоящее время активно исследуются различные перечислительные комбинаторные задачи, связанные с полимино. Представляет интерес подсчет числа полимино определенных классов, а также подсчет числа разбиений конечных фигур или плоскости на полимино определенного типа. В частности, разбиение называется решетчатым, если любую фигуру разбиения можно перевести в любую другую фигуру параллельным переносом, переводящим все разбиение в себя. Ранее нами было доказано, что если T(n) – число решетчатых разбиений плоскости на полимино площади n, то справедливы неравенства 2 n−3 + 2[ n−3 2 ] ≤ T(n) ≤ C(n + 1)3 (2, 7)n+1 . В настоящей работе мы получаем аналогичную оценку для числа решетчатых разбиений, дополнительно обладающих центральной симметрией. Пусть Tс(n) – число решетчатых разбиений плоскости на центрально–симметричные полимино площади n, решетка периодов которых является подрешеткой решетки Z 2 . В работе доказано, что C1( √ 2)n ≤ Tс(n) ≤ C2n 2 ( √ 2.68)n . При доказательстве нижней оценки исполь- зована явная конструкция, позволяющая построить требуемое число решетчатых разбиений плоскости. Доказательство верхней оценки основано на критерии существования решетчатого разбиения плоскости на полимино, а также на теории самонепересекающихся блужданий на квадратной решетке

    Novos métodos para enumeração de configurações não isomorfas de robôs metamórficos com módulos quadrados

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-graduação em Engenharia Mecânica, Florianópolis, 2013Robôs metamórficos ou robôs modulares reconfiguráveis são robôs constituídos de módulos autônomos e capazes de se conectar a outros módulos. Desta forma, o conjunto de módulos pode assumir novas configurações e funções. Além disto, o crescente interesse neste tipo de robôs deve-se justamente à capacidade de autoconfiguração, pois esta característica confere aos robôs adaptabilidade a novas circunstâncias e tarefas, bem como a capacidade de recuperação de falhas mecânicas. Assim, visto que é a capacidade de assumir diferentes configurações que torna estes robôs versáteis, para que se possam aproveitar todas as potencialidades dos robôs metamórficos, é necessário que se conheçam todas as diversas configurações que um dado número de módulos pode assumir. Neste contexto, o presente trabalho foca-se no problema de enumeração de configurações para robôs metamórficos de módulos quadrados, mais especificamente, no problema de enumeração de configurações distintas ou não isomorfas. Nele, são introduzidos dois novos métodos, que são contribuições originais, para enumeração de configurações distintas para robôs de módulos quadrados. O primeiro método é denominado Método das Simetrias e baseia-se em ferramentas de teoria dos grupos. Por outro lado, o segundo método, denominado Método das Órbitas, baseia-se em ferramentas de teoria dos grupos e de teoria dos grafos. Além disto, ambos os métodos foram implementados em C++ , o que possibilitou a enumeração, para um total de onze módulos, de todas as configurações distintas para robôs de módulos quadrados, bem como outros resultados que são apresentados no trabalho. Estes resultados constituem um avanço frente a literatura existente na área <br
    corecore