1,835 research outputs found

    Enumeration of Circuits and Minimal Forbidden Sets

    Get PDF
    In resource-constrained scheduling, it is sometimes important to know all inclusion-minimal subsets of jobs that must not be scheduled simultaneously. These so-called minimal forbidden sets are given implicitly by a linear inequality system, and can be interpreted more generally as the circuits of a particular independence system. We present several complexity results related to computation, enumeration, and counting of the circuits of an independence system. On this account, we also propose a backtracking algorithm that enumerates all minimal forbidden sets for resource constrained scheduling problems

    On the sum of the Voronoi polytope of a lattice with a zonotope

    Full text link
    A parallelotope PP is a polytope that admits a facet-to-facet tiling of space by translation copies of PP along a lattice. The Voronoi cell PV(L)P_V(L) of a lattice LL is an example of a parallelotope. A parallelotope can be uniquely decomposed as the Minkowski sum of a zone closed parallelotope PP and a zonotope Z(U)Z(U), where UU is the set of vectors used to generate the zonotope. In this paper we consider the related question: When is the Minkowski sum of a general parallelotope and a zonotope P+Z(U)P+Z(U) a parallelotope? We give two necessary conditions and show that the vectors UU have to be free. Given a set UU of free vectors, we give several methods for checking if P+Z(U)P + Z(U) is a parallelotope. Using this we classify such zonotopes for some highly symmetric lattices. In the case of the root lattice E6\mathsf{E}_6, it is possible to give a more geometric description of the admissible sets of vectors UU. We found that the set of admissible vectors, called free vectors, is described by the well-known configuration of 2727 lines in a cubic. Based on a detailed study of the geometry of PV(e6)P_V(\mathsf{e}_6), we give a simple characterization of the configurations of vectors UU such that PV(E6)+Z(U)P_V(\mathsf{E}_6) + Z(U) is a parallelotope. The enumeration yields 1010 maximal families of vectors, which are presented by their description as regular matroids.Comment: 30 pages, 4 figures, 4 table

    An algorithm for counting circuits: application to real-world and random graphs

    Full text link
    We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.Comment: 7 pages, 3 figures, minor corrections, accepted versio

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement
    • …
    corecore