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Abstract

In resource-constrained scheduling, it is sometimes important to know all inclusion-
minimal subsets of jobs that must not be scheduled simultaneously. These so-called
minimal forbidden sets are given implicitly by a linear inequality system, and can
be interpreted more generally as the circuits of a particular independence system.
We present several complexity results related to computation, enumeration, and
counting of the circuits of an independence system. On this account, we also propose
a backtracking algorithm that enumerates all minimal forbidden sets for resource
constrained scheduling problems.
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1 Introduction

Given a finite ground set V', an independence system is defined as a family
T of subsets of V' with two properties. First, ) € Z, and second, any subset
of any member of Z also belongs to Z. The sets in Z are called independent
sets, and the inclusion-maximal independent sets are the bases B of Z. The
sets not in Z are called dependent sets, and inclusion-minimal dependent sets
are the circuits C of Z; see also [6]. Given a membership oracle for such an
independence system Z, we are interested in the problem to enumerate all
circuits of Z. It is obvious that the output size may be exponential in terms
of the size of V. The complexity is thus measured in terms of the size of both,
in— and output. Given that |V| = n, and given a (poly(n)) membership oracle
for some collection of subsets S C 2", we use the following definitions; see [4].

Definition 1 The enumeration problem for S is solvable in polynomial to-
tal time if there exists an algorithm and a polynomial p( -, -), such that the
algorithm correctly outputs all members of S in p(n, |S|) time.
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Given a sub-collection X C &, the increments problem is the problem: either
decide that X = S, otherwise output a new element in S\ X.

Definition 2 The enumeration problem for S is solvable in incremental poly-
nomial time if there exists an algorithm and a polynomial p( -, -), such that
the algorithm correctly solves the increments problem in p(n,|X|) time, for
any X C S.

If the enumeration problem for S is solvable in incremental polynomial time,
it is also solvable in polynomial total time: Starting with X = (), the iterative
solution of the increments problem yields the complete collection S, in time
polynomial in n and |S|. The reverse, however, need not be true.

2 The general case

The following theorem is well known; it is proved using a reduction from the
NP-complete decision problem SATISFIABILITY [3].

Theorem 3 ([5]) Unless P=NP, there does not exist a polynomial total time
algorithm that enumerates the bases B of any independence system T.

Likewise, using a simple duality argument, we can show the following.

Theorem 4 Unless P=NP, there does not exist a polynomial total time algo-
rithm that enumerates the circuits C of any independence system T.

The proof uses the fact that the circuits of Z are the bases of the following,
dual independence system: Z” = {W C V | V\ W ¢ T}. These two theorems
say that, unless P=NP, an algorithm cannot exist which solves the problem
for any independence system Z. For particular realizations of the membership
oracle of Z however, efficient enumeration algorithms may well exist.

3 Scheduling and linear inequality systems

In resource-constrained scheduling, the input consists of a set of partially or-
dered jobs (V, <) (the partial order representing the precedence constraints)
and resource constraints. The latter are given through a number of resource
types k with availabilities b, and resource requirements ay; of these resource
types for all jobs j € V. If a subset S of jobs consumes more of a resource
type than available, the respective jobs in S may not be processed in par-
allel. The subsets of jobs that may be processed in parallel define an inde-



pendence system. The circuits of this independence system are either pairs
of (precedence-)related jobs, {i,j} with i < j, or the so-called minimal for-
bidden sets (minimal anti-chains of (V<) which may not be processed in
parallel). For several algorithmic purposes, e.g. in stochastic scheduling [8], a
complete list of the minimal forbidden sets is required. This amounts to the
computation of the circuits of the corresponding independence system. The
membership oracle of this system is a linear inequality system Az < b, where
A, b contains one row in for each resource type k, and one row for each edge
in the comparability graph of the partial order (V,<). The circuits are the
minimally infeasible {0, 1}-vectors for Az < b; they are the incidence vectors
of either pairs of (precedence-)related jobs, or minimal forbidden sets.

Inspired by [2], and using a reduction from the NP-complete decision problem
INDEPENDENT SET in graphs [3], we show:

Theorem 5 Unless P=NP, there does not exist a polynomzial total time algo-
rithm that enumerates the minimally infeasible {0, 1} -vectors of an arbitrary
linear inequality system Az < b.

In fact, in [2] it is shown that the decision version of the corresponding incre-
ments problem is NP-complete. What is interesting is the fact that the ‘dual’
problem is apparently much easier: It follows from [2] that the increments
problem for the maximally feasible {0, 1}-vectors of an arbitrary linear in-
equality system Az < b can be solved in quasi-polynomial time, hence there is
also a quasi-polynomial total time algorithm for this problem. (Such a result is
not likely for the problem considered here, because then all NP-hard problems
could be solved in quasi-polynomial time.)

In terms of scheduling, Theorem 5 immediately yields:

Corollary 6 Unless P=NP, there does not exist a polynomial total time al-
gorithm that enumerates the minimal forbidden sets for any instance of the
resource-constrained project scheduling problem.

It turns out that even the computation of the number of minimal forbidden
sets is a hard problem, because we can show:

Theorem 7 The problem to compute the number of minimally infeasible (maz-
imally feasible) {0, 1} -vectors of an arbitrary linear inequality system Az <b
15 #P-complete.

The proof uses a reduction from the problem to compute a maximum cardinal-
ity anti-chain of a partial order. While this problem is polynomially solvable,

the associated counting problem is known to be #P-complete [7].

Nevertheless, for practical purposes we implemented a simple backtracking al-



gorithm that lists the minimal forbidden sets for any instance of the resource-
constrained project scheduling problem. In general, this algorithm can have
an exponential running time in terms of in— and output of the problem. Yet,
empirically it improves considerably upon a divide-and-conquer algorithm pre-
viously suggested in [5,1]; see [9]. Moreover, we can show that the algorithm
is efficient for an important special case.

Proposition 8 There exists an incremental polynomial time (hence also a
polynomial total time algorithm) that enumerates the minimal forbidden sets
for any instance of the resource-constrained project scheduling problem, given
that the number of resource types is 1.

We refer to [9] for several other results related to enumeration and computation
of minimal forbidden sets, as well as detailed computational results.
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