11 research outputs found

    Listing minimal edge-covers of intersecting families with applications to connectivity problems

    Get PDF
    AbstractLet G=(V,E) be a directed/undirected graph, let s,t∈V, and let F be an intersecting family on V (that is, X∩Y,X∪Y∈F for any intersecting X,Y∈F) so that s∈X and t∉X for every X∈F. An edge set I⊆E is an edge-cover of F if for every X∈F there is an edge in I from X to V−X. We show that minimal edge-covers of F can be listed with polynomial delay, provided that, for any I⊆E the minimal member of the residual family FI of the sets in F not covered by I can be computed in polynomial time. As an application, we show that minimal undirected Steiner networks, and minimal k-connected and k-outconnected spanning subgraphs of a given directed/undirected graph, can be listed in incremental polynomial time

    Enumerating Minimal Dominating Sets in Chordal Bipartite Graphs *

    Get PDF
    Abstract We show that all minimal dominating sets of a chordal bipartite graph can be generated in incremental polynomial, hence output polynomial, time. Enumeration of minimal dominating sets in graphs is equivalent to enumeration of minimal transversals in hypergraphs. Whether the minimal transversals of a hypergraph can be enumerated in output polynomial time is a well-studied and challenging question that has been open for several decades. With this result we contribute to the known cases having an affirmative reply to this important question

    Generating vertices of polyhedra and related problems of monotone generation

    Full text link

    Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem for Digraphs

    Get PDF
    A feedback vertex set (FVS) of an undirected or directed graph G=(V, A) is a set F such that G-F is acyclic. The minimum feedback vertex set problem asks for a FVS of G of minimum cardinality whereas the weighted minimum feedback vertex set problem consists of determining a FVS F of minimum weight w(F) given a real-valued weight function w. Both problems are NP-hard [Karp72]. Nethertheless, they have been found to have applications in many fields. So one is naturally interested in approximation algorithms. While most of the existing approximation algorithms for feedback vertex set problems rely on local properties of G only, this thesis explores strategies that use global information about G in order to determine good solutions. The pioneering work in this direction has been initiated by Speckenmeyer [Speckenmeyer89]. He demonstrated the use of Markov chains for determining low cardinality FVSs. Based on his ideas, new approximation algorithms are developed for both the unweighted and the weighted minimum feedback vertex set problem for digraphs. According to the experimental results presented in this thesis, these new algorithms outperform all other existing approximation algorithms. An additional contribution, not related to Markov chains, is the identification of a new class of digraphs G=(V, A) which permit the determination of an optimum FVS in time O(|V|^4). This class strictly encompasses the completely contractible graphs [Levy/Low88]

    Enumerating Minimal Dicuts and Strongly Connected Subgraphs and Related Geometric Problems

    No full text
    We consider the problems of enumerating all minimal strongly connected subgraphs and all minimal dicuts of a given directed graph G=(V,E). We show that the first of these problems can be solved in incremental polynomial time, while the second problem is NP-hard: given a collection of minimal dicuts for G, it is NP-complete to tell whether it can be extended. The latter result implies, in particular, that for a given set of points , it is NP-hard to generate all maximal subsets of contained in a closed half-space through the origin. We also discuss the enumeration of all minimal subsets of whose convex hull contains the origin as an interior point, and show that this problem includes as a special case the well-known hypergraph transversal problem
    corecore