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Abstract

We show that all minimal dominating sets of a chordal bipartite graph can be
generated in incremental polynomial, hence output polynomial, time. Enumeration of
minimal dominating sets in graphs is equivalent to enumeration of minimal transversals
in hypergraphs. Whether the minimal transversals of a hypergraph can be enumerated
in output polynomial time is a well-studied and challenging question that has been
open for several decades. With this result we contribute to the known cases having
an affirmative reply to this important question.

1 Introduction

Enumeration in graphs is a central area of graph algorithms, and it involves generating or
listing all vertex or edge subsets of a graph satisfying a given property. As the number of
objects to be enumerated is usually exponential in the size of the input graph, tractability
of an enumeration problem is defined based on the size of the output. In particular, if
an enumeration algorithm runs in time that is polynomial in the size of the input graph
plus the number of enumerated objects, then it is called output polynomial. A large
amount of results have been dedicated to output polynomial enumeration algorithms, e.g.,
[1, 2,10, 11, 12, 18, 24, 25, 26, 28, 32, 33, 34], and for various enumeration problems it has
been shown that no output polynomial time algorithm can exist unless P = NP [24, 26, 28].

A famous and well-studied enumeration problem is that of enumerating the min-
imal hitting sets of the hyperedges, called minimal transversals, of a hypergraph
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[12, 13]. Whether the minimal transversals of a hypergraph can be enumerated in out-
put polynomial time has been identified as a fundamental open question by several au-
thors [10, 11, 12, 13, 14, 18, 31], and it has remained unresolved for the last 30 years. It
has recently been shown that enumerating the minimal transversals of a hypergraph is
equivalent to enumerating the minimal (total) dominating sets of a graph [19]. This has
enabled attacking the mentioned enumeration problem in new ways, as (total) dominating
sets form one of the best studied notions in computer science [17].

Since the tractability of enumerating the minimal transversals of a hypergraph, or
equivalently, the minimal dominating sets of a graph, has been open for so long, several
tractable special cases have been identified [4, 5, 8, 9, 10, 12, 13, 29, 30]. In particular,
output polynomial algorithms to enumerate minimal dominating sets in graphs exist for
graphs of bounded treewidth and of bounded clique-width [7], interval graphs [10], strongly
chordal graphs [10], chordal graphs [22], planar graphs [12], degenerate graphs [12], split
graphs [19], path graphs [20], permutation graphs [21], line graphs [15, 20, 23|, and graphs
of girth at least 7 [15].

Table 1 summarizes for well-known classes of graphs the best known output polynomial
time algorithm to enumerate all minimal dominating sets. The definitions of incremental
polynomial (IncP), polynomial delay (DelayP) and linear delay (DelayL) are given in
Section 2. (Total P) indicates output polynomial.

Graph Classes TotalP | IncP | DelayP | DelayL
degenerate graphs [12]
log(n)-degenerate graphs [12]
bounded conformality (3]
line graphs [15] (23]
chordal graphs [22]
(C<g)-free graphs [15]
(Cy, Cs, claw)-free graphs [20]
split graphs [19]
Ps-free chordal graphs [19]
strongly chordal graphs [10]
permutation graphs [20]

interval graphs [20]

bounded clique-width graphs [7]

chordal bipartite graphs [*]

Table 1: Algorithms to enumerate all minimal dominating sets. ([*] this paper)

Based on the supergraph technique for enumerating vertex subsets in graphs [2, 23,
25, 32, 34], Golovach et al. [15] presented a flipping method to generate the out-neighbors
of a node of the supergraph, i.e., to generate new minimal dominating sets from a parent
dominating set. Using this flipping method they were able to give output polynomial



algorithms for enumerating the minimal dominating sets of line graphs and graphs of
large girth.

In this paper we show that the mentioned flipping method can be used on chordal
bipartite graphs as well. In particular, we show that the minimal dominating sets of
a chordal bipartite graph can be enumerated in incremental polynomial, hence output
polynomial, time. To obtain our result we first show how to enumerate with polynomial
delay the minimal total dominating sets of a chordal bipartite graph. This first part does
not involve the flipping method and can be of independent interest. In particular, a direct
consequence of our algorithm is another polynomial delay algorithm for enumerating the
minimal transversals of totally balanced hypergraphs [6]. Chordal bipartite graphs are
graphs that are weakly chordal and bipartite. They form a well studied graph class
[6], as they mimic in bipartite graphs the behavior of the more famous class of chordal
graphs. It should be noted that the complexity of enumerating all minimal dominating
sets in weakly chordal graphs is the same as the complexity of enumerating all minimal
transversals in hypergraphs [19]. On the other hand, it is an open question whether all
minimal dominating sets of a bipartite graph can be enumerated in output polynomial
time; same holds for unit disk graphs.

2 Definitions and notation

We consider finite undirected graphs without loops or multiple edges. Let G = (V, E) be
such a graph. The subgraph of G induced by a subset U C V is denoted by G[U]. We
write G — U for G|V \ U]; if U = {u}, we simply write G — u. For a vertex v, we denote
by Ng(v) its (open) neighborhood, that is, the set of vertices that are adjacent to v. The
closed neighborhood of v is the set Ng(v) U {v}, and it is denoted by Ng[v]. If Ng(v) =0
then v is isolated, and if v has exactly one neighbor, it is pendant. For a set U C V|,
N¢[U] = UpyeuNg(v], and Ng(U) = Ng[U]\ U. We may omit subscripts when there is no
confusion. G is a bipartite graph if its set of vertices can be partitioned into two sets
and V5 in such a way that for any edge e € E, one endpoint of e is in V] and the other is in
V5. In this case we write G = (V1, Vo, E). An edge uv € E is bisimplicial if the subgraph
induced by N(u)U N(v) is a complete bipartite graph.

A vertex v dominates a vertex u if w € N[v]; similarly v dominates a set of vertices U
if U C N[v]. For two sets D,U C V, D dominates U if U C N[D]. A set of vertices D
is a dominating set of G = (V, E) if D dominates V, and D is a total dominating set if
each vertex of G has a neighbor in D. A (total) dominating set is minimal if no proper
subset of it is a (total) dominating set. Let D be a dominating set of G, and let v € D.
Vertex u is a private vertex, or simply private, for a vertex v (with respect to D) if u is
dominated by v but is not dominated by D\ {v}. Clearly, a dominating set D is a minimal
dominating set if and only if each vertex of D has a private vertex. We denote by Pp[v]
the set of all private vertices for v; a vertex of D can be private for itself. Vertex u is a
private neighbor of v € D if u € N(v) N Pp[v]. The set of all private neighbors of v is
denoted by Pp(v). Note that Pp[v] = Pp(v) U{v} if v is isolated in G[D], and otherwise



Ppv] = Pp(v).

For the definition of red-blue domination, consider a bipartite graph G = (R, B, E).
We refer to the vertices of R as the red vertices, the vertices of B as the blue vertices,
and we say that G is a red-blue graph. A set of vertices D C R is a red dominating set if
D dominates B, and D is minimal if no proper subset of it dominates B. As above, we
say that a vertex u € B is a private vertex, or simply private, for a vertex v € D if u is
dominated by v but is not dominated by D \ {v}. It is straightforward to see that D C R
is a minimal red dominating set if and only if D dominates B and each vertex of D has a
private vertex. Similarly, we define (minimal) blue dominating sets as (minimal) subsets
of B that dominate R.

Let D be a family of subsets of the vertex set of a given graph G on n vertices and
m edges. An enumeration algorithm for D lists the elements of D without repetitions.
The running time of an enumeration algorithm A is said to be output polynomial if there
is a polynomial p(x,y) such that all the elements of D are listed in time bounded by
p((n +m),|D|). Assume now that Di,..., Dy are the elements of D enumerated in the
order in which they are generated by A. Let us denote by T'(A,7) the time .4 requires until
it outputs D;, also T'(A, £+ 1) is the time required by A until it stops. Let delay(A,1) =
T(A,1) and delay(A,i) = T(A,i) — T(A,i —1). The delay of A is max{delay(A,i)}.
Algorithm A runs in incremental polynomial time if there is a polynomial p(z, ) such that
delay(A,i) < p(n + m,i). Furthermore A is a polynomial delay algorithm if there is a
polynomial p(x) such that the delay of A is at most p(n +m). Finally A is a linear delay
algorithm if delay(.A, 1) is bounded by a polynomial in n +m and delay(.A, i) is bounded
by a linear function in n + m.

A graph is a chordal bipartite graph if it is bipartite and every cycle of length at least
6 has a chord, i.e., an edge between two non-consecutive vertices of the cycle. Chordal
bipartite graphs were introduced by Golumbic and Goss [16] as a natural bipartite analogue
of chordal graphs. We need the following property of chordal bipartite graphs.

Theorem 1 ([16]). Every non-trivial chordal bipartite graph contains a bisimplicial edge.
Moreover, a bipartite graph is chordal bipartite if and only if every non-trivial induced
subgraph of it has a bisimplicial edge.

3 Enumeration of minimal red dominating sets in red-blue
chordal bipartite graphs

In this section we give a polynomial delay algorithm for enumerating the minimal red
dominating sets of a red-blue chordal bipartite graph. This result is needed for the next
section, and of independent interest, it implies that the minimal total dominating sets of
a chordal bipartite graph can be enumerated with polynomial delay.

Theorem 2. All minimal red dominating sets of a red-blue chordal bipartite graph with n
vertices and m edges can be enumerated with delay O(n - min{mlogn,n?}).



Proof. Let G = (R, B, E) be a chordal bipartite graph. We describe a recursive branching
algorithm that achieves the statement of the theorem.

If B = (, then @ is the unique minimal red dominating set. Observe that G has no
minimal red dominating set if and only if B has an isolated vertex. Consequently, if G
has an isolated blue vertex, we output an empty list. For the rest of the proof we assume
that B # () and there is no isolated vertex in B.

The algorithm takes as input a set of red vertices D and a red-blue induced subgraph
H = (R',B',E’) of G such that B’ # () and there is no isolated vertex in B, DN R’ = (),
and the vertices of B’ are not adjacent to the vertices of D in G. Initially we call the
algorithm with D = () and H = G.

Since B’ # () and has no isolated blue vertex, H has an edge, and we find a bisimplicial
edge uv with v € R’ and v € B’, which exists by Theorem 1. Then we branch in two
directions for u, where in the one branch we generate all the minimal red dominating sets
containing u, and in the other branch all of those that do not contain w. This is done in
two recursive calls: in the first we include u into the current red dominating set suggestion
D, and in the second we exclude it from such a possibility for the rest of the execution of
the algorithm. In each of the cases, we check to make sure that we can obtain a minimal
red dominating set by this selection before we proceed with the recursive calls. If we
cannot, or if we already have found a minimal red dominating set, the recursion stops.

Branch 1: include u. If Ny(u) = B’, then output D U {u}. Otherwise, if H' =
H — (Npg(u) U Ng(v)) has no isolated blue vertex, then call the algorithm with input
(DU {u}, 7).

Branch 2: exclude u. If H —u has no isolated blue vertex, then call the algorithm with
input (D, H — u).

Let us prove the correctness of this algorithm. Assume that B’ # (), H has no isolated
blue vertex, all the vertices of B\ B’ are dominated by D, and each vertex of D has a
private that is not adjacent to the vertices of R’. These conditions are satisfied trivially
in the beginning, as H = G and D = (). By these conditions, H has a minimal red
dominating set D', and D’ C R’ is a minimal red dominating set of H if and only if DU D’
is a minimal red dominating set of G. Clearly, for each minimal red dominating set D’ of
H, either ue D' or u ¢ D'

If Ng(u) = B’, then D’ = {u} is the unique minimal dominating set of H that contains
u. Suppose that H has a minimal red dominating set D" # {u} such that u € D’. Notice
that B = B\ Ng(u) # 0 in this case. For any w € Ng(v), we have that Ny (u) C Ny (w)
since uw is a bisimplicial edge. Consequently, (Ng(v)\ {u})N D" = () as otherwise u would
have no privates and, therefore, D" = D'\ {u} C R'\ Ng(v). Because D’ dominates B’,
D" dominates B"'. Moreover, because D’ is a minimal red dominating set of H, D" is a
minimal set that dominates B”. Hence, D" is a minimal red dominating set of H’. Notice
that because H’' has a minimal red dominating set, H' has no isolated blue vertex. Assume
now that D" # () is a minimal red dominating set of H’. Then B"” = B’ \ Ng(u) # () and
H' has no isolated blue vertex. Also D' = D" U{u} is a red dominating set of H. We have
that Ny (v)ND"” = (). Hence, v is not dominated in H by any vertex of D" and, therefore,



v is a private for u with respect to D’. Any vertex w € D" has its private w’ in B"" with
respect to D, Since w’ € B"”, w' ¢ Ny (u), i.e., w' is a private for w with respect to D’.
We obtain that D’ is a minimal red dominating set of H. It follows that in Branch 1 we
enumerate all minimal red dominating sets of H that include u.

If H —w has an isolated blue vertex, then any minimal red dominating set of H contains
u. Also D' is a minimal red dominating set of H that does not include u if and only if D’
is a minimal red dominating set of H — u. It follows that in Branch 2 we enumerate all
minimal red dominating sets of H that exclude .

To complete the correctness proof, observe that our algorithm constructs a search tree
every leaf of which corresponds to a distinct minimal red dominating set.

It remains to evaluate the running time. A bisimplicial edge can be found in time
O(min{m logn,n?}) by the results of Kloks and Kratsch [27]. Then H' can be constructed
and we can verify that H' has no isolated blue vertex in time O(n+m). Because the depth
of the search tree is at most n, then the delay is bounded by O(n - min{mlogn,n?}). O

In the next section, we will use Theorem 2 in the construction of an algorithm for
enumerating all minimal dominating sets of a chordal bipartite graph. As a separate
result, Theorem 2 implies that all minimal total dominating sets of chordal bipartite
graphs can be enumerated with polynomial delay.

Corollary 1. All minimal total dominating sets of a chordal bipartite graph with n vertices
and m edges can be enumerated with delay O(n - min{mlogn,n?}).

Proof. Assume that G = (R, B, F) is a red-blue chordal bipartite graph. We claim that
D is a minimal total dominating set of GG if and only if Dr = D N R is a minimal red
dominating set and Dp = DN B is a minimal blue dominating set. To see it, it is sufficient
to observe that because R and B are independent sets, D is a total dominating set of G
if and only if Dr dominates B and Dg dominates R, i.e., D is a red dominating set and
Dp is a blue dominating set.

By this claim , we can enumerate all minimal total dominating sets as follows. We use
Theorem 2 to enumerate all minimal red dominating sets, and then for each minimal red
dominating set, we enumerate all minimal blue dominating sets and output all the unions
of this minimal red dominating set and all blue dominating sets. O

4 Enumeration of minimal dominating sets of chordal bi-
partite graphs

In this section we show that the minimal dominating sets of chordal bipartite graphs can
be enumerated in incremental polynomial time. We use the flipping method proposed by
Golovach, Heggernes, Kratsch, and Villanger in [15]. Given a minimal dominating set D*,
the flipping operation replaces an isolated vertex of G[D*| with a neighbor outside of D*,
and, if necessary, adds or deletes some vertices to obtain new minimal dominating sets D,
such that G[D] has more edges compared to G[D*]. The enumeration algorithm starts



Figure 1: [15] A minimal dominating set D and its parent D*; the vertices of D and D*
are black.

with enumerating all maximal independent sets of the input graph G using the algorithm
of Johnson, Papadimitriou, and Yannakakis [18], which gives the initial set of minimal
dominating sets. Then the flipping operation is applied to every appropriate minimal
dominating set found, to find new minimal dominating sets inducing subgraphs with more
edges.

Let us describe the flipping operation of [15]. Let G be the input graph; we fix an
(arbitrary) order of its vertices: vy, ..., v,. Suppose that D’ is a dominating set of G. We
say that the minimal dominating set D is obtained from D’ by greedy removal of vertices
(with respect to order vy, ...,vy,) if we initially let D = D’, and then recursively apply the
following rule: If D is not minimal, then find a vertex v; with the smallest index i such that
D\ {v;} is a dominating set in G, and set D = D\ {v;}. Clearly, when we apply this rule,
we never remove vertices of D’ that have private neighbors. Whenever greedy removal of
vertices of a dominating set is performed, it is done with respect to this ordering.

Let D be a minimal dominating set of G such that G[D] has at least one edge uw.
Then vertex u € D is dominated by vertex w € D. Let v € Pp(u). Let Xy, € Pp(u)\N[v]
be a maximal independent set in G[Pp(u)\ N[v]] selected greedily with respect to ordering
U1,...,Un, i.e., we initially set X,, = () and then recursively include in X, the vertex of
Pp(u) \ (N[{v} U Xy,]) with the smallest index as long as it is possible. Consider the set
D" = (D \ {u}) U Xy U {v}. Notice that D’ is a dominating set in G, since all vertices
of Pp(u) are dominated by X, U {v}, but D’ is not necessarily minimal, because it can
happen that X,, U {v} dominates all the privates of some vertex of D \ {u}. We apply
greedy removal of vertices to D’ to obtain a minimal dominating set. Let Z,, be the set
of vertices that are removed by this to ensure minimality. Observe that X, N Z,, = 0 by
the definition of these sets; in fact there is no edge between a vertex of X, and a vertex
of Zyy. Finally, let D* = ((D \ {u}) U Xyp U {v}) \ Zuy; see Figure 1 from [15] for an
example.

It is important to notice that |E(G[D*])| < |E(G[D])|. Indeed, to construct D*, we



remove the endpoint u of the edge uw € E(G[D]) and, therefore, reduce the number of
edges. Then we add X, U {v} but these vertices compose an independent set in G and,
because they are privates for u with respect to D, they are not adjacent to any vertex of
D\ {u}. Therefore, |E(G[D*])| < |E(G[D'])| < |E(G[D])].

The flipping operation is exactly the reverse of how we generated D* from D; i.e., it
replaces an isolated vertex v of G[D*] with a neighbor u in G to obtain D. In particular,
we are interested in all minimal dominating sets D that can be generated from D* in this
way. Given D and D* as defined above, we say that D* is a parent of D with respect to
flipping v and v. We say that D* is a parent of D if there are vertices u,v € V(G) such
that D* is a parent with respect to flipping v and v. It is important to note that each
minimal dominating set D such that E(G[D]) # () has a unique parent with respect to
flipping of any vertices u € D N N[D \ {u}| and v € Pp(u), as both sets X, and Z,, are
lexicographically first sets selected by a greedy algorithm. Similarly, we say that D is a
child of D* (with respect to flipping v and v) if D* is the parent of D (with respect to
flipping u and v).

The description of the flipping operation is complete. Golovach, Heggernes, Kratsch
and Villanger [15] proved the following lemma.

Lemma 1 ([15]). Suppose that there is an enumeration algorithm A that, given a minimal
dominating set D* of a graph G with n vertices and m edges such that G[D*] has isolated
vertices, an isolated vertex v of G[D*|, and a neighbor u of v in G, generates with delay
O(p(n,m)) a family of minimal dominating sets D with the property that D contains all
minimal dominating sets D that are children of D* with respect to flipping u and v. Then
all minimal dominating sets of G can be enumerated with delay O((p(n,m) + n?)m|L|?)
and total running time O((p(n, m)+n?)m|L*|?), where L is the family of already generated
minimal dominating sets and L* is the family of all minimal dominating sets.

To obtain our main result, we will show that there is indeed an algorithm as algorithm
A described in the statement of Lemma 1 when the input graph G is chordal bipartite. We
first need the following observation about Z,, with respect to flipping v and v to obtain a
child D from a parent D*; it states that no vertex in Z,,, is private for itself with respect
to D.

Observation 1. If D = (D* \ (Xyu U {v})) U (Zuy U{u}) is a child of D* with respect to
flipping w and v, then for each x € Zy,, x ¢ Pplz].

Proof. Recall that D* is constructed from D’ = (D \ {u}) U Xy, U {v} by greedy removal
of vertices. The greedy removal does not remove a vertex that is not dominated by other
vertices, hence it will never place into Z,, a vertex that is private for itself with respect
to D’ (and hence D). Furthermore, if v; € Z,,, then when greedy removal of vertices
considers a vertex v; with j > i, if v; is the unique vertex that dominates v; with respect
to the current dominating set at that point, it will never place v; into Z,. O

We are now ready to state our main theorem.



Theorem 3. All minimal dominating sets of a chordal bipartite graph can be enumerated
in incremental polynomial time. On input graphs with n vertices and m edges, the delay is
O(n3m|L|?), and the total running time is O(n3m|L*|?), where L is the family of already
generated minimal dominating sets and L* is the family of all minimal dominating sets.

Proof. Let G = (V1, Vs, E) be a chordal bipartite graph. Let D* be a minimal dominating
set of G such that v is an isolated vertex of G[D*], and let u be a neighbor of v in G. We
construct an algorithm that generates with delay O(n?) a family of minimal dominating
sets D such that D contains all minimal dominating sets D that are children of D* with
respect to flipping v and v. By Lemma 1, this is sufficient to prove the theorem.

First of all, we output D = () and stop if there is © € Ng(v) such that Ng(z) = {v},
i.e., x is a pendant vertex adjacent to v. Assume from now on that this is not the case.

Let R C (Ng(u) \ {v}) N D* be the set of all vertices = € (Ng(u) \ {v}) N D* such that
x € Pp-[x], i.e., these vertices are not dominated by other vertices of D*. Denote by B
the set of all vertices y € Ng(RU{v})\ {u} such that Ng(y)ND* C RU{v}. Observe that
by the definition of R, BN D* = (). Notice also that R and B are subsets of distinct sets
of the bipartition of G. Without loss of generality we assume that R C V; and B C Vs.
Let R' = Ng(B) \ {v}. Clearly, R C R’ C V;. Consider the red-blue bipartite graph
F = G[R' U B], where R’ and B are the sets of red and blue vertices respectively. Using
Theorem 2 we enumerate all minimal red dominating sets of F.

For each minimal red dominating set X of F', we consider the (not necessarily minimal)
dominating set D' = (D*\ (RU{v}))U(X U{u}) of G. We apply greedy removal of vertices
to obtain a minimal dominating set D from D’, and output D.

Denote by D the collection of generated sets. We prove the following two claims to
show that D is a family of minimal dominating sets of G and D includes all children of
D* with respect to flipping v and v.

Claim A. All elements of D are pairwise distinct minimal dominating sets of G.

Proof of Claim A. Assume that D # (. Let Y = D*\ (RU{v}). Because D* is a minimal
dominating set and Y is a proper subset of D*, Y is not a dominating set. Let U; C V; and
U C V5 be the sets of vertices that are not dominated by Y. Because all the vertices that
are deleted from D* to obtain Y are in Vi, U; € RU{v}. All these vertices are dominated
by u € D', i.e., these vertices are dominated by D’ and, consequently, by D. Each vertex
y € Uy is dominated by D* but is not dominated by Y. Hence, y € N(R U {v}) and
Nea(y) N D* € RU {v}. Therefore, B C Uy C BU {u}. Clearly, u is dominated by itself
in D’. If there is a vertex y € B that is an isolated blue vertex of F, then y is adjacent
only to v in G, but D = () in this case. We have that I’ has minimal red dominating
sets, and each minimal red dominating set X of F' dominates B, and X U {u} dominates
Us. Tt follows that D' = (D*\ (RU{v})) U (X U {u}) is a dominating set of G for each
minimal red dominating set X of F. Then greedy removal of vertices produces a minimal
dominating set produces the minimal dominating set D when applied to D’. We conclude
that all elements of D are minimal dominating sets of G.



To show that the elements of D are pairwise distinct, consider D’ and observe that
because X is a minimal red dominating set of F', each vertex x € X has a private neighbor
in B with respect to X in F' and this vertex is not dominated by u as u € V5. Then these
privates are privates with respect to D’ in G. Hence, the vertices of X cannot be deleted
by greedy removal of vertices. Since elements of D are constructed for distinct minimal
red dominating sets X of F', the elements of D are distinct as well. O

Claim B. For each child D of D* with respect to flipping v and v, D € D.

Proof of Claim B. Let D = (D*\ (Xyuy U{v})) U (Zuy U{u}) be a child of D* with respect
to flipping v and v; X, and Z,, are the corresponding sets introduced in the definition
of parents.

Suppose that v has a pendant neighbor x. Because v ¢ D, x € D. Since v € Pp(u),
we have that = u, but then u has no neighbors in G[D]. It contradicts the condition
that w is not an isolated vertex of G[D]. We conclude that v has no pendant neighbors,
and the algorithm does not stop when it checks the existence of such neighbors of v.

Observe that X, € V; and Z,, C Vi. The vertices of X, are privates for v with
respect to D, and for any x € Xy, € Pp«[z]. Hence, X, C R. Let z € Z,,. We have
that z has no private with respect to the dominating set D" = (D \ {u}) U X, U {v},
but z has a private y with respect to D. It follows that y € Ng(Xyu U {v}) \ {u} C
Na(R) \ {u}. Clearly, y ¢ D*, as the vertices of Xy, and v are isolated in D*. Also any
neighbor of y in D* is in X, U {v}, because y is not dominated by D* \ (X, U {v}).
Therefore, Ng(y) N D* C Xy, U{v} € RU {v}. Recall that B is the set of all vertices
y € Ng(RU{v}) \ {u} such that Ng(y) N D* C RU {v}. It follows that y € B and,
therefore, z € R’. Since this holds for every z € Z,,, we conclude that Z,, C R’.

Next we show that X = (R \ Xy) U Zyy € R’ is a minimal red dominating set of F.
Recall that B C V5 \ {u} and BN D* = (). Because Z,, C V1, BN D =10. Let y € B. By
the definition, Ng(y) N D* C RU{v}. Since D is a dominating set, y is dominated by a
vertex of D, and if it is not dominated by R\ Xy, it should be dominated by Z,,. We
conclude that X is a red dominating set of F.

To show minimality, we prove that for each x € X, x has a private with respect to X
in F. Suppose that z € R\ X,,,. Since x € D, Pp[z]| # (. Furthermore, since R C Ng(u),
Pplx] = Pp(z). Let y € Pp(x). Then y # w and Ng(y) N D = {z}, and we have that
Na(y)ND* C {zx}UXy,U{v} € RU{v}, i.e., y € B. Then y is a private for x with respect
to X in F. Let # € Zy,, \ (R\ Xuv). Because x € D, Pplz] # (). Since D is a child of D*,
D* is a parent of D with respect to flipping u and v. By Observation 1, Pp[z] = Pp(x).
Let y € Pp(x). Vertex y is dominated in D*, but it is not dominated by D*\ (X, U{v}).
Therefore, y € Ng(Xuy U {v}) € RU{v}. Since y # u, Ng(y) N D = {z} and = ¢ D*, we
have that Ng(y) N D* C X, U{v} C RU{v}, i.e., y € B. Then y is a private for x with
respect to X in F'.

We proved that X is a minimal red dominating set of F'. Therefore, X is generated
by our algorithm. It remains to observe that D = (D*\ (RU{v})) U (X U {u}). Since D
is a minimal dominating set, then it is output, i.e, D € D. O
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To complete the proof, it remains to evaluate the running time. Observe that checking
whether v has pendant neighbors can be done in time O(n). Then the sets B, R, R’ and
the auxiliary graph I can be constructed in time O(n?). The minimal red dominating sets
X of F can be enumerated with delay O(n3) by Theorem 2. For each generated set X,
the minimal dominating set D is constructed in time O(n?). It follows that we generate
elements of D with delay O(n?). O
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