
Discrete Applied Mathematics 157 (2009) 112–117

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Listing minimal edge-covers of intersecting families with applications to
connectivity problems
Zeev Nutov ∗
The Open University of Israel, 108 Ravutski Street, 43107 Raanana, Israel

a r t i c l e i n f o

Article history:
Received 4 January 2007
Received in revised form 21 December 2007
Accepted 29 April 2008
Available online 24 June 2008

Keywords:
Listing
Minimal edge-covers
Intersecting families
Steiner network

a b s t r a c t

Let G = (V , E) be a directed/undirected graph, let s, t ∈ V , and let F be an intersecting
family on V (that is, X ∩ Y , X ∪ Y ∈ F for any intersecting X, Y ∈ F) so that s ∈ X and
t 6∈ X for every X ∈ F . An edge set I ⊆ E is an edge-cover of F if for every X ∈ F there
is an edge in I from X to V − X . We show that minimal edge-covers of F can be listed
with polynomial delay, provided that, for any I ⊆ E the minimal member of the residual
family FI of the sets in F not covered by I can be computed in polynomial time. As an
application, we show that minimal undirected Steiner networks, andminimal k-connected
and k-outconnected spanning subgraphs of a given directed/undirected graph, can be listed
in incremental polynomial time.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The problem, motivation, and previous work

We consider listing problems of the following type: given a graph G and a prescribed graph property Π , list the family
Π(G) of all subgraphs H of G that satisfy Π . For example, the property Π can be ‘‘H is a spanning tree’’, ‘‘H is an st-
path’’, ‘‘H is a cycle’’, and so on, c.f., [10]. In listing problems, the output may be exponential in the input size, and thus
the time complexity is usually expressed in both the input and the output sizes (see e.g., [12,9,6]). A listing algorithm runs
in incremental polynomial time if it lists any N ≤ |Π(G)| members of Π(G) in time polynomial in N and the input size; if
every additional member ofΠ(G) is listed in time polynomial in the size of G, then the algorithm has polynomial delay.
Graph connectivity is a fundamental concept in network reliability theory. While in the simplest case only the

connectedness is required, in many applications higher levels of connectivity are desirable. Some methods computing
network reliability depend on the efficient listing of all minimal sub-networks with the required connectivity [12,4]. In
a very general setting, the type of problems we consider can be defined as follows. The S-connectivity λSG(u, v) of (u, v) in G
is the maximum number of uv-paths such that no two of them have an edge or a node in S − {u, v} in common.
Steiner Networks Listing (SNL)
Input: A (possibly directed) graph G = (V , E), S ⊆ V , and requirements r(u, v) on V × V .
Output: A list of minimal spanning subgraphs H of G that satisfy

λSH(u, v) ≥ r(u, v) ∀(u, v) ∈ V × V . (1)

Common particular choices of S are: S = ∅ (edge-connectivity), S = V (node-connectivity), and any S so that r(u, v) = 0
whenever u ∈ S or v ∈ S (so called element-connectivity). In the undirected setting, the requirements are symmetric,
namely, r(u, v) = r(v, u) for all u, v ∈ V . For brevity, let λH(u, v) = λ∅H(u, v) and κH(u, v) = λ

V
H(u, v).

∗ Fax: +972 9 7780605.
E-mail address: nutov@openu.ac.il.

0166-218X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.04.026

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82777608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:nutov@openu.ac.il
http://dx.doi.org/10.1016/j.dam.2008.04.026

Z. Nutov / Discrete Applied Mathematics 157 (2009) 112–117 113

In [3] it was shown that for {0, 1}-requirements undirected SNL can be solved in incremental polynomial time, while for
directed graphs no such algorithm exists, unless P = NP. However, for listing minimal directed Steiner trees, [3] gave an
algorithm with polynomial delay. We consider the undirected edge-connectivity SNL, and directed/undirected edge/node-
connectivity variants of the following two problems. A graph is k-outconnected from s if κ(s, v) ≥ k for all v ∈ V − s, namely,
if it contains k internally-disjoint sv-paths for every v ∈ V . A graph is k-connected if it is k-outconnected from every s ∈ V .
k-Outconnected Subgraphs Listing (k-OSL)
Input: A (possibly directed) graph G = (V , E), s ∈ V , and an integer k.
Output: A list of minimal k-outconnected from s spanning subgraphs of G.

k-Connected Subgraphs Listing (k-CSL)
Input: A (possibly directed) graph G = (V , E) and an integer k.
Output: A list of minimal k-connected spanning subgraphs of G.
We also consider edge-connectivity listing problems. These include as a special case the problems of listing:

directed/undirected spanning trees [10,11,5], minimal strongly connected subgraphs [2], simple st-paths [10], and others.
In [1] is given an incremental polynomial time algorithm for undirected k-Edge-Connected Subgraphs Listing, and for k-CSL
for any fixed k. In [1] was posed an open problem if k-CSL admits an incremental polynomial time algorithm when k is not
fixed, but is a part of the input.
Throughout the paper, let G = (V , E) denote the input graph. Let n = |V | and m = |E|. Given G and graph propertyΠ ,

our goal is to list the familyΠmin of minimal members of the familyΠ(G) of all subgraphs of G that satisfyΠ . We assume
that G ∈ Π(G) and thatΠ(G) 6= ∅; otherwise our algorithms can be easily modified to return an error message.

1.2. Results in this paper

In this paper we characterize SNL instances that can be solved in incremental polynomial time; recall that in [3] it was
shown that directed SNL with {0, 1}-requirements (in this case all the choices of S are equivalent) does not admit such
algorithm, unless P = NP. We prove:

Theorem 1.1. Undirected edge-connectivity SNL, directed/undirected edge/node-connectivity k-CSL, and directed edge/node-
connectivity k-OSL, admit an incremental polynomial time algorithm.

Theorem 1.1 is just a summary of (some) applications of an algorithm that lists minimal edge-covers of an intersecting
st-family. A family F of subsets of V is an intersecting family if X ∩ Y , X ∪ Y ∈ F for any intersecting X, Y ∈ F . F is an
st-family if s ∈ X and t ∈ V − X for every X ∈ F . An edge set I covers F if for every X ∈ F there is uv ∈ I with u ∈ X
and v ∈ V − X . We give an algorithm for listing minimal (possibly directed) edge-covers of an intersecting st-family F , but
its efficient implementation, in case F is not given explicitly, requires that certain queries related to F can be answered
in polynomial time. Given an edge set I on V , the residual family FI of F (w.r.t. I) consists of all members of F that are
uncovered by edges of I . It is well known that if F is intersecting, or if F is an st-family, so is FI , for any I . An inclusion
minimal member of F is called an F -core. Clearly, the F -cores of an intersecting family F are pairwise disjoint, and an
intersecting st-family has a unique core. For any edge set I on V , make the following assumption:
The Core Assumption: Computing the FI-core C of an intersecting st-family F , or determining that I is an F -cover, can be
implemented in Q (m, n) time, where Q (m, n) is polynomial inm and n.

Theorem 1.2. Directed/undirectedminimal edge-covers of an intersecting st-family can be listed with delay O(n(Q (m, n)+m)),
under the Core Assumption.

Let G = (V , E) be a graph. For disjoint X, Y ⊆ V let δG(X, Y) = δE(X, Y) be the set of edges from X to Y in E; let
δE(X) = δE(X, V − X) and let dE(X) = |δE(X)| be the degree of X in G.
Example: A natural example of an intersecting st-family is the family F = {X ⊆ V − t : s ∈ X, dH(X) = λH(s, t)} of
minimum st-cuts in a (possibly directed) graph H = (V , E). It is well known that this F is intersecting. The F -core C can
be found using one max-flow computation; after a maximum flow is computed, C is the set of nodes reachable from s in the
corresponding ‘‘residual’’ network.
We consider the following generalizations of Theorem 1.2. Let p : 2V → Z+ be a set-function on V . An edge set J on V

is a p-cover, if dJ(X) ≥ p(X) for every X ⊆ V . Connectivity listing problems can be formulated as a Set-Function Covers
Listing (SFCL) problem: given a directed/undirected graph G = (V , E) and a set-function p on V , list all minimal p-covers
contained in E. In the undirected setting, we assume that p is symmetric, namely, that p(X) = p(V − X) for all X ⊆ V . The
following two types of set-functions often arise in various connectivity problems (c.f., [8]).

Definition 1.1. A set function p on V is skew-supermodular if for every X, Y ⊆ V at least one of the following holds:

p(X)+ p(Y) ≤ p(X ∩ Y)+ p(X ∪ Y) (2)
p(X)+ p(Y) ≤ p(X − Y)+ p(Y − X). (3)

If (2) always holds whenever X ∩ Y 6= ∅ and X ∪ Y 6= V then p is crossing-supermodular.

114 Z. Nutov / Discrete Applied Mathematics 157 (2009) 112–117

Definition 1.2. Let p be a set function on V and let J be an edge set on V . The residual function pJ of p (w.r.t. J) is

pJ(X) = max{p(X)− dJ(X), 0} ∀X ⊆ V .

Let F (p) = {X ∈ F : p(X) > 0} denote the support family of p. For s ∈ V let F s(p) = {X ∈ F (p) : s ∈ X}.

Note that for any p-cover J and e = st ∈ J , pJ−e is a 0, 1 function and F s(pJ−e) is an st-family.

Proposition 1.3. If p is symmetric skew-supermodular, or if p is crossing-supermodular, then F = F s(pJ−e) is an intersecting
st-family for any e = st ∈ J ∈ Πmin.

Proof. If p is symmetric skew-supermodular, or if p is crossing-supermodular, so is pJ for any edge set J , c.f., [8]. Thus if p
is skew supermodular then X ∪ Y , X ∩ Y ∈ F or X − Y , Y − X ∈ F for any X, Y ∈ F ; if p is crossing-supermodular then
X ∩ Y , X ∪ Y ∈ F for any X, Y ∈ F . In both cases, since F is an st-family, it is an intersecting st-family. �

We say that the Core Assumption holds for p if F = F s(pJ−e) satisfies the Core Assumption for any p-cover J and
e = st ∈ J . Using Theorem 1.2 we prove:

Theorem 1.4. SFCL admits an incremental polynomial time algorithm for: undirected G and symmetric skew-supermodular p,
and for directed G and crossing-supermodular p, under the Core Assumption.

Theorems 1.2, 1.4 and 1.1 are proved in Sections 2–4, respectively.

2. Proof of Theorem 1.2

Let G = (V , E) be a graph and let F be a non-empty intersecting st-family on V . Clearly, F has a unique core. A naive
approach to generate an F -cover I is as follows: start with I = ∅, and while I is not an F -cover, repeatedly add an edge
e ∈ δ(CI) to I , where CI is the minimal FI-core. Note that then, at every step, the edges in I have both endpoints in CI . This
indeed generates an F -cover, but it might not be minimal, e.g., the last edge added might cover the whole F , and thus
the edges added at previous steps are redundant. We may fix this by removing redundant edges from the obtained cover,
but this makes difficult to force the algorithm to generate every cover exactly once. To ensure minimality, we maintain the
following property of a partial cover I: for every e ∈ I there exists C ∈ F so that δI(C) = {e}. To achieve that, when an edge
e ∈ δ(CI) is added to I , we delete all the other edges in δ(CI), after verifying that E− δE(CI) coversFI+e. This guarantees that
the F -cover produced is minimal, and we use recursion to produce each F -cover exactly once. Formally, the algorithm is:

Initialization: E ′ ← E, I ← ∅.
LIST(E ′, I)
Let C be the FI-core.
For every e ∈ δE′(C) do:
If e is an FI-cover then return I + e;
Else If E ′ − δE′(C) is an FI+e-cover then do:

LIST(E ′ − δE′(C), I + e).
EndIf

EndIf
EndFor

The following (known) statement is used to prove that the algorithm lists every minimal F -cover exactly once.

Lemma 2.1. Let I be a minimal (directed or undirected) cover of an intersecting st-family F and let C be the F -core. Then
dI(C) = 1.

Proof. Suppose to the contrary that there are e 6= f ∈ δI(C). By the minimality of I , there exists We,Wf ∈ F such that
δI(We) = {e} and δI(Wf) = {f }. Note that C ⊆ We ∩ Wf and thus each of e, f covers We ∩ Wf . There is an edge in I that
coversWe ∪Wf , sinceWe,Wf ∈ F impliesWe ∪Wf ∈ F . This edge must be one of e, f , since if for arbitrary intersecting
sets X, Y an edge covers X ∪ Y then it also covers one of X, Y . Consequently, one of e, f covers bothWe ∩Wf andWe ∪Wf ,
and thus covers each ofWe,Wf (if for arbitrary intersecting sets X, Y an edge covers both X ∩ Y , X ∪ Y then it also covers
each of X, Y). This contradicts that δI(We) = {e} and δI(Wf) = {f }. �

Corollary 2.2. Every minimal F -cover of an intersecting st-family F is listed by LIST exactly once.

Proof. By induction on |F |. For |F | = 1 the statement is obvious. Assuming that the statement is true for any family F ′

with 1 ≤ |F ′| < |F |, we will prove it forF . Let C be the minimalF -core. By Lemma 2.1, any minimalF -cover I contains a
unique edge in δE(C). We claim that when an edge e ∈ δE′(C) is considered in themain loop, the algorithm lists exactly once
every minimal F -cover in E containing e. As we examine every edge in δE(C) exactly once, the statement follows. Indeed,

Z. Nutov / Discrete Applied Mathematics 157 (2009) 112–117 115

if e covers F , then {e} is the unique minimal F -cover containing e. If E − δE(C) + e is not an F -cover, then no F -cover
containing e exists. Else, by the induction hypothesis, the algorithm lists exactly once every minimal cover of F ′ = Fe, and
adds e to each Fe-cover listed. �

Lemma 2.3. LIST can be implemented to run with delay O(n(Q (m, n)+m)).

Proof. Let I be a partial F -cover generated in the run of the algorithm, and let C be an FI-core. Recall that C can be found
in Q (m, n) time. Using fundamental data structures, we can find an edge e (in fact, all the edges) in δE′(C) in O(m) time.
Checking if e is an FI-cover, or if E ′ − δE′(C) is an FI+e-cover can be done in Q (m, n) time. Hence, the time invested in the
pair C, e is O(Q (m, n)+ m). After e is chosen (added to the partial cover), at most n− |C | = O(n) core examinations occur
until a new minimal F -cover is discovered. Hence the delay is O(n(Q (m, n)+m)). �

The proof of Theorem 1.2 is complete.

3. Proof of Theorem 1.4

To prove Theorem 1.4, we use a reduction from [3,7] implied by the backtracking method for enumeration [10]. Given a
monotone family Π (namely I ∈ Π and I ⊆ I ′ implies I ′ ∈ Π) of subsets of E, let Πmin be the family of inclusion minimal
members ofΠ . Recall that our goal is to list the familyΠmin.

Proposition 3.1 ([3,7]). Let Π be amonotone family of subsets of E so that that themembership inΠ can be tested in polynomial
time. If for any pair e, J with e ∈ J ∈ Πmin we can list the minimal members of Π(J, e) = {Y ⊆ E − J : J − e + Y ∈ Π} in
incremental polynomial time, thenΠmin can also be listed in incremental polynomial time.

Let G = (V , E) be a directed/undirected graph, let p be a (symmetric, if G is undirected) set function on V , and letΠ be
the family of p-covers in E. Clearly, the family of p-covers is monotone, and under the Core Assumption, checking whether
J is a (minimal) p-cover can be done in polynomial time. Thus Proposition 3.1 together with Theorem 1.2 determines the
following reduction.

Corollary 3.2. If F s(pJ−e) is an intersecting st-family for any e = st, J with e ∈ J ∈ Πmin, thenΠmin can be listed in incremental
polynomial time, under the Core Assumption.

Proof. Since J is an F -cover, pJ−e is a 0, 1 valued function. It is easy to see that in the directed setting, F (pJ−e) = F s(pJ−e),
namely, that pJ−e(X) = 1 implies s ∈ X and t ∈ V − X . Thus in the directed setting, an edge set is a pJ−e-cover if, and only
if, it is an F s(pJ−e)-cover. This is also so in the undirected setting, since p, and thus also pJ−e, is symmetric. The statement
now easily follows from Proposition 3.1 and Theorem 1.2. �

Theorem 1.4 now follows from Proposition 1.3.

4. Proof of Theorem 1.1

Edge-connectivity SNL can be formulated as SFCL as follows (c.f., [8]). By Menger’s Theorem, H = (V , J) satisfies (1)
(with S = ∅) if, and only if,

dJ(X) ≥ p(X) ≡ max{r(u, v) : u ∈ X, v ∈ V − X} ∀∅ 6= X ⊂ V . (4)

We set p(∅) = p(V) = 0. (Remark: For general SNL instances a more general model is required, where p is defined on
pairs of subsets of V , see [8].) The set-function p defined in (4) is skew-supermodular, c.f., [8]. Furthermore, p is symmetric,
if r is symmetric and J is undirected. Thus, undirected edge-connectivity SNL is equivalent to the problem of listingminimal
edge covers of the skew-supermodular symmetric set-function p defined by (4).

Lemma 4.1. Let p defined by (4). Then F = F s(pJ−e) is an intersecting st-family for any (undirected) p-cover J and e = st ∈ J;
furthermore, F satisfies the Core Assumption.

Proof. F is an intersecting st-family by Proposition 1.3. We show that F satisfies the Core Assumption. Given an edge set
I , the minimalFI-core can be computed in polynomial time as follows. In the graph H = (V , J− e+ I), for every {u, v} ⊆ V ,
compute a maximum uv-flow. If its value is r(u, v) − 1, find the minimal set Cuv so that s ∈ Cuv , |Cuv ∩ {u, v}| = 1, and
dH(Cuv) = r(u, v)−1. If no set Cuv exists, then I is anF -cover. Otherwise, theminimumsize set among the sets Cuv computed
is the F -core. �

The SNL part of Theorem 1.1 now follows from Theorem 1.4.
It remains to prove the k-OSL/k-CSL part. Undirected edge-connectivity k-CSL is just a particular case of SNL. For edge-

connectivity, directed k-OSL (in fact, the reverse problem of k-OSL, when we require k disjoint paths from every v ∈ V
to s) and k-CSL are particular cases of directed SFCL with crossing supermodular p. However, we do not see such an
immediate reduction for directed node-connectivity k-OSL/k-CSL, nor for the undirected node-connectivity k-CSL. We

116 Z. Nutov / Discrete Applied Mathematics 157 (2009) 112–117

thus will present a different formal proof, which wewill also be able to extend to all the variants of k-OSL/k-CSL considered
in Theorem 1.1.
We show that Proposition 3.1 reduces both directed/undirected k-CSL and the directed k-OSL (but not the undirected

k-OSL) to the directed/undirected variants of following problem which we think is of independent interest:
Minimal k-Paths Augmentations Listing (k-PAL):
Input: An integer k, a graph H = (V , J) with (k − 1) edge/internally-disjoint st-paths where s, t ∈ V , and an edge set E

on V disjoint to J .
Output: A list of minimal augmenting edge-sets I ⊆ E so that H + I has k edge/internally- disjoint st-paths.

Lemma 4.2. If directed/undirected edge/node-connectivity k-PAL admits an incremental polynomial time algorithm, then so are
directed/undirected edge/node-connectivity k-CSL and directed edge/node-connectivity k-OSL.

Proof. This follows from Proposition 3.1 and the following two known facts. Let H = (V , J) be a graph, let e ∈ J , and let I
be an edge set on V .
Fact 1: If H is directed/undirected k-edge/node-connected and e = st ∈ J , then H − e + I is k-connected if, and only if,
H − e+ I contains k edge/internally-disjoint st-paths.
Fact 2: If H directed and k-outconnected from s, and e = ut ∈ J , then H − e + I is k-outconnected from s if, and only if,
H − e+ I contains k edge/internally-disjoint st-paths. �

Remark: Fact 2 in the proof of Lemma 4.2 does not extend to undirected node-connectivity k-OSL. E.g., let V = {s, x, y, u, t},
J = {sx, sy, su, st, xy, ut}, e = ut , and I = xt . The reason is that some of the ‘‘deficient sets’’ created by the deletion of
ut contain u, while the others contain t (so we should require both k internally disjoint st- and su-paths). We believe that
undirected k-OSL also admits an incremental polynomial time algorithm, but resolving this question is beyond the scope of
this paper.
To complete the proof of Theorem 1.1, in the rest of this section we prove:

Theorem 4.3. Directed/undirected edge/node-connectivity k-PAL admits an algorithm with polynomial delay.

The proof of Theorem 4.3 folows. The directed/undirected version of k-PAL when the paths are required to be edge-
disjoint is easily reduced to the the problem of listing minimal directed/undirected covers of an intersecting st-family.
Specifically, it is well known that the set family F = {X ⊂ V − t : s ∈ X, dH(X) = k − 1} is intersecting if H has k − 1
edge-disjoint st-paths, and that (byMenger’s Theorem) H+ I has k edge-disjoint st-paths if, and only if, I is anF -cover. The
other details are also straightforward.
To handle directed k-PALwith internally-disjoint paths, we apply a standard reduction to the edge-disjoint variant of k-

PAL. Specifically, one can view the graph H = (V , J + E) as a network with source s and sink t where the nodes in V − s and
all edges have unit capacity. Apply a standard conversion of node capacities to edge capacities: replace every node v ∈ V − s
by the two nodes v+, v− connected by the edge v+v− having the same capacity as v, and redirect the heads of the edges
entering v to v+ and the tails of the edges leaving v to v−.
A natural approach to solve the undirected (edge/node-connectivity) k-PAL is to reduce it to the directed k-PAL with

H and E replaced by their bidirections D(H) and D(E), that are obtained from H and E, respectively, by replacing every
undirected edge by two opposite directed edges. Then we list all directed augmenting edge sets for the obtained directed
k-PAL instance, and output their underlying undirected edge sets. It is not hard to see that this will produce all augmenting
edge sets for the original undirected k-PAL instance. However, since in general, an undirected edge set hasmanyorientations,
it is not obvious that such an algorithm will list every undirected augmenting edge set exactly once. Hence, to prove that
this approach works, we need the following statement:

Lemma 4.4. Let H = (V , J) be an undirected graph containing k− 1 internally disjoint st-paths, let I be a minimal edge set on
V so that H + I contains k internally disjoint st-paths, and let D be the bidirection of H. Then there exists a unique orientation ID
of I so that D+ ID contains k internally disjoint st-paths.

The proof of Lemma 4.4 follows. We need several definitions and preliminary statements.

Definition 4.1. An ordered pair (S, T) of disjoint subsets of V is called a setpair; (S, T) is an st-setpair if s ∈ S and t ∈ T .
An edge set I covers a setpair family F if dI(S, T) ≥ 1 for all (S, T) ∈ F . A family F of setpairs is intersecting if
(S ′ ∩ S ′′, T ′ ∪ T ′′), (S ′ ∪ S ′′, T ′ ∩ T ′′) ∈ F for any (S ′, T ′), (S ′′, T ′′) ∈ F with S ′ ∩ S ′′, T ′ ∩ T ′′ 6= ∅; (S, T) ∈ F is an
F -core if S ⊆ S ′ and T ⊇ T ′ for any (S ′, T ′) ∈ F .

Other definitions, e.g., the residual family FI of a setpair family F , are also natural analogues of the ones used for set
families. The proof of the following ‘‘setpair analogue’’ of Lemma 2.1 is identical to that of Lemma 2.1, and thus is omitted.

Lemma 4.5. Let I be a minimal (directed or undirected) cover of an intersecting setpair st-familyF and let (S, T) be theF -core.
Then dI(S, T) = 1.

Z. Nutov / Discrete Applied Mathematics 157 (2009) 112–117 117

Corollary 4.6. Let I be a minimal directed/undirected cover of an intersecting setpair st-family F . Then there exist a unique
ordering e1, . . . , eq of I, and a family (S1, T1), . . . (Sq, Tq) of setpairs in F , so that:

(i) T1 ⊆ T2 · · · ⊆ Tq and S1 ⊇ S2 · · · ⊇ Sq;
(ii) (Sj, Tj) is the FIj−1-core where I0 = ∅ and Ij−1 = {e1, . . . , ej−1} for j = 2, . . . , q;
(iii) δI(Sj, Tj) = {ej}, j = 1, . . . , q.

Thus if I is undirected, then I has a unique orientation that covers F , namely, every ej is oriented from Sj to Tj.

Proof. The required orderings are uniquely determined as follows. (S1, T1) is the F -core. By Lemma 4.5, there is a unique
edge in δI(S1, T1), say e1. (S2, T2) is the Fe1-core and δI(S2, T2) = {e2}. And so on, namely, (Sj, Tj) is the FIj−1-core and
δI(Sj, Tj) = {ej}. �

Let us now get back to the proof of Lemma 4.4.

Proof of Lemma 4.4. Wemay assume that st 6∈ J; otherwise, the same proof applies on H − st with k replaced by k− 1. Let
us say that an st-setpair is tight in H (in D), if |S ∪ T | = k− 1 and dH(S, T) = 0. Since D is a bidirection of H, (S, T) is tight
in D if, and only if, it is tight in H . Let F be the family of tight setpairs in H (in D). By Menger’s Theorem, H + I (or D + I)
contains k internally disjoint st-paths if, and only if, I covers F . It is also known that F is an intersecting setpair family.
Thus, by Corollary 4.6, I has a unique orientation ID that covers F . The statement follows. �

The proof of Theorem 4.3, and thus also of Theorem 1.1 is complete.
Remark:Our algorithm for listingminimal directed/undirected edge-covers of an intersecting st-family easily extends from
set-families to setpair-families, by replacing the set-core C by the setpair-core (S, T). This results in the following statement,
that also provides an alternative proof of Theorem 4.3:
Directed/undirected minimal edge-covers of an intersecting st-family can be listed with delay O(n(Q (m, n)+m)), under the

Core Assumption.
The proof of this statement is identical to that of Theorem 1.2, except that we use Lemma 4.5 instead of Lemma 2.1.

5. Conclusions and open problems

In this paper we characterized several minimal connectivity structures that can be listed in incremental polynomial
time. In particular, we gave incremental polynomial time listing algorithms for: undirected edge-connectivity SNL,
directed/undirected k-CSL, and directed k-OSL. We note that the undirected element-connectivity SNL admits a similar
result, by a similar proof.
One open problem is if some of the problems we considered admits a listing algorithm with polynomial delay. Another

question iswhether there are additional interestingSNL/SFCL instances, especially those that correspond to directed graphs,
that admit an efficient listing algorithm; e.g., the result of [3] that directed Steiner trees can be listed with polynomial delay,
cannot be deduced from any statement in this paper. Finally, a natural question is whether the results in this paper can
be extended to setpair families, that correspond to node-connectivity requirements. In particular, is the undirected k-OSL
admits an efficient listing algorithm?

Acknowledgment

I thank an anonymous referee for many useful comments.

References

[1] E. Boros, K. Borys, K. Elbassioni, V. Gurvich, K. Makino, G. Rudolf, Generating k-vertex connected spanning subgraphs and k-edge connected spanning
subgraphs. Manuscript, 2007.

[2] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, Enumerating minimal dicuts and strongly connected subgraphs and related geometric problems,
in: Integer Programming and Combinatorial Optimization (IPCO), in: LNCS, vol. 3153, 2004, pp. 152–162.

[3] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, K. Makino, Generating paths and cuts in multi-pole(di)graphs, in: MFCS, vol. 3153, 2004, pp. 298–309.
[4] C.J. Coulbourn, The Combinatorics of Network Reliability, Oxford University Press, 1987.
[5] H.N. Gabow, E.W. Mayers, Finding all spanning trees of directed and undirected graphs, SIAM Journal on Computing 7 (3) (1978) 280–287.
[6] D.S. Johnson, H. Papadimitriou, On generating all maximal independent sets, Information Processing Letters 27 (1988) 119–123.
[7] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, K. Makino, Generating cut conjunctions and bridge avoiding extensions in graphs, in:
Algorithms and Computation: 16th International Symposium, ISAAC 2005, 2005, pp. 156–165.

[8] G. Kortsarz, Z. Nutov, Approximating minimum cost connectivity problems, in: T.F. Gonzalez (Ed.), Approximation Algorithms and Metaheuristics,
CRC, 2005.

[9] E. Lawler, J.K. Lenstra, A.H.G.R. Kan, Generating all maximal independent sets: NP-hardness and polynomial-time algorithms, SIAM Journal on
Computing 9 (1980) 558–565.

[10] R.C. Read, R.E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and spanning trees, Networks 5 (1975) 237–252.
[11] A. Shioura, A. Tamura, T. Uno, An optimal algorithm for scanning all spanning trees of undirected graphs, SIAM Journal on Computing 26 (3) (1997)

678–692.
[12] L. Valiant, The complexity of enumeration and reliability problems, SIAM Journal on Computing 8 (1979) 410–421.

	Listing minimal edge-covers of intersecting families with applications to connectivity problems
	Introduction
	The problem, motivation, and previous work
	Results in this paper

	Proof of Theorem 1.2
	Proof of Theorem 1.4
	Proof of Theorem 1.1
	Conclusions and open problems
	Acknowledgment
	References

