193 research outputs found

    New results on torus cube packings and tilings

    Full text link
    We consider sequential random packing of integral translate of cubes [0,N]n[0,N]^n into the torus Zn/2NZnZ^n / 2NZ^n. Two special cases are of special interest: (i) The case N=2N=2 which corresponds to a discrete case of tilings (considered in \cite{cubetiling,book}) (ii) The case N=∞N=\infty corresponds to a case of continuous tilings (considered in \cite{combincubepack,book}) Both cases correspond to some special combinatorial structure and we describe here new developments.Comment: 5 pages, conference pape

    The equivalence between enumerating cyclically symmetric, self-complementary and totally symmetric, self-complementary plane partitions

    Get PDF
    We prove that the number of cyclically symmetric, self-complementary plane partitions contained in a cube of side 2n2n equals the square of the number of totally symmetric, self-complementary plane partitions contained in the same cube, without explicitly evaluating either of these numbers. This appears to be the first direct proof of this fact. The problem of finding such a proof was suggested by Stanley

    Enumeration of Matchings: Problems and Progress

    Full text link
    This document is built around a list of thirty-two problems in enumeration of matchings, the first twenty of which were presented in a lecture at MSRI in the fall of 1996. I begin with a capsule history of the topic of enumeration of matchings. The twenty original problems, with commentary, comprise the bulk of the article. I give an account of the progress that has been made on these problems as of this writing, and include pointers to both the printed and on-line literature; roughly half of the original twenty problems were solved by participants in the MSRI Workshop on Combinatorics, their students, and others, between 1996 and 1999. The article concludes with a dozen new open problems. (Note: This article supersedes math.CO/9801060 and math.CO/9801061.)Comment: 1+37 pages; to appear in "New Perspectives in Geometric Combinatorics" (ed. by Billera, Bjorner, Green, Simeon, and Stanley), Mathematical Science Research Institute publication #37, Cambridge University Press, 199

    Kasteleyn cokernels

    Full text link
    We consider Kasteleyn and Kasteleyn-Percus matrices, which arise in enumerating matchings of planar graphs, up to matrix operations on their rows and columns. If such a matrix is defined over a principal ideal domain, this is equivalent to considering its Smith normal form or its cokernel. Many variations of the enumeration methods result in equivalent matrices. In particular, Gessel-Viennot matrices are equivalent to Kasteleyn-Percus matrices. We apply these ideas to plane partitions and related planar of tilings. We list a number of conjectures, supported by experiments in Maple, about the forms of matrices associated to enumerations of plane partitions and other lozenge tilings of planar regions and their symmetry classes. We focus on the case where the enumerations are round or qq-round, and we conjecture that cokernels remain round or qq-round for related ``impossible enumerations'' in which there are no tilings. Our conjectures provide a new view of the topic of enumerating symmetry classes of plane partitions and their generalizations. In particular we conjecture that a qq-specialization of a Jacobi-Trudi matrix has a Smith normal form. If so it could be an interesting structure associated to the corresponding irreducible representation of \SL(n,\C). Finally we find, with proof, the normal form of the matrix that appears in the enumeration of domino tilings of an Aztec diamond.Comment: 14 pages, 19 in-line figures. Very minor copy correction

    Enumeration of lozenge tilings of hexagons with cut off corners

    Get PDF
    Motivated by the enumeration of a class of plane partitions studied by Proctor and by considerations about symmetry classes of plane partitions, we consider the problem of enumerating lozenge tilings of a hexagon with ``maximal staircases'' removed from some of its vertices. The case of one vertex corresponds to Proctor's problem. For two vertices there are several cases to consider, and most of them lead to nice enumeration formulas. For three or more vertices there do not seem to exist nice product formulas in general, but in one special situation a lot of factorization occurs, and we pose the problem of finding a formula for the number of tilings in this case.Comment: 23 pages, AmS-Te
    • …
    corecore