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Motivated by the enumeration of a class of plane partitions studied by Proctor and

by considerations about symmetry classes of plane partitions, we consider the

problem of enumerating lozenge tilings of a hexagon with ‘‘maximal staircases’’

removed from some of its vertices. The case of one vertex corresponds to Proctor’s

problem. For two vertices there are several cases to consider, and most of them lead

to nice enumeration formulas. For three or more vertices there do not seem to exist

nice product formulas in general, but in one special situation a lot of factorization

occurs, and we pose the problem of finding a formula for the number of tilings in this

case. # 2002 Elsevier Science (USA)
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1. INTRODUCTION AND STATEMENT OF RESULTS

The study of lozenge tilings is warranted by the many useful insights they
bring in the subject of plane partitions. Some important instances of these
are presented in [7, 23]. In this paper, we present some more such
connections.
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A plane partition is a rectangular array of non-negative integers
with the property that all rows and columns are weakly decreasing. A
plane partition contained in an a� b rectangle and with entries at
most c can be identified with its three-dimensional diagram}a stack
of unit cubes contained in an a� b� c box}which in turn can be regarded
as a lozenge tiling of a hexagon Hða; b; cÞ with side lengths a; b; c; a; b; c (in
cyclic order) and angles of 1208 (see Fig 1 and [9] or [29]; a lozenge
tiling of a region on the triangular lattice is a tiling by unit rhombi with
angles of 608 and 1208; referred to as lozenges). This simple bijection is the
crucial link between the theory of lozenge tilings and that of plane
partitions. For example, the number of tilings of Hða; b; cÞ follows to be
equal to the number of plane partitions that fit in an a� b� c box, which is,
by a result due to MacMahon [25, p. 243],

Qa
i¼1

Qb
j¼1

Qc
k¼1 ði þ j þ k� 1Þ=

ði þ j þ k� 2Þ:
As a variation of this, Proctor [28] considered the problem of enumerating

those plane partitions p contained in an a� b� c box for which
the projection of p on one of the coordinate planes, say on Oxy; fits in
the ‘‘maximal staircase’’ l ¼ ðb; b� 1; . . . ; b� aþ 1Þ (when l is viewed as
the corresponding Ferrers diagram) contained in the a� b basis rectangle
(we are assuming here, without loss of generality, that a4b; see Fig. 1 for an
example of such a plane partition with a ¼ 5; b ¼ 8; c ¼ 3). Proctor [28]
found that this number is given by the simple product

Ya
i¼1

Yb�aþ1

j¼1

cþ i þ j � 1

i þ j � 1

Yb�aþi

j¼b�aþ2

2cþ i þ j � 1

i þ j � 1

" #
: ð1:1Þ

By the above bijection, it is easily seen that Proctor’s problem is equivalent
to counting the lozenge tilings of Hða; b; cÞ with a maximal ‘‘staircase of
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lozenges’’ removed from a corner at which edges of lengths a and b meet
(simply view Fig. 1 as being two dimensional; there, a maximal staircase of
lozenges was removed from the southeastern corner).

What if we require that the projection of p on two of the coordinate planes
be contained in the corresponding staircases? The above bijection shows
that the question is equivalent to counting the number of tilings of Hða; b; cÞ
with two maximal staircases removed, from vertices that are non-adjacent
and non-opposite (this is illustrated in Fig. 2; there, maximal staircases
were removed from the southeastern and the western corner; the plane
partition is the same as in Fig. 1). There are six cases to consider,
corresponding to the six relative orderings of a; b and c: These are shown in
Figs. 3(a)–(f). (At this point, the special marks in form of ellipses should be
ignored.) Mirror reflection pairs up these six cases in three pairs}the rows
of Fig. 3.

We draw all the hexagons Hða; b; cÞ and the regions obtained
from them by cutting corners so that the horizontal edges have length
b; and the other two pairs of parallel edges, as we move counter-
clockwise, have lengths a and c: Let Hdða; b; cÞ be the region obtained from
Hða; b; cÞ by removing maximal staircases from the northwestern and
eastern corners (the subscript stands for the ‘‘diagonal’’ position of the cut-
off corners).

For a region R on the triangular lattice, denote by LðRÞ the number of its
lozenge tilings. In the special case when R is obtained from a hexagon
Hða; b; cÞ by removing staircases from two of its corners, we define three
more weighted tiling enumerators for R as follows. Consider the tile
positions that fit in the indentations of the zig-zag cut that removed a
staircase of lozenges (the possible such positions are marked by ellipses in
Fig. 3(c)). By weighting these tile positions by 1

2; one creates a new, weighted
count of the tilings of R: each tiling T gets weight 1

2k
; where k is the number

of lozenges of T occupying positions weighted by 1
2
; and the sum of weights



(a)

(c)

(e) (f)

(b)

(d)

FIG. 3. (a) Hdð8; 3; 5Þ; (b) Hdð8; 5; 3Þ; (c) Hdð5; 3; 8Þ; (d) Hdð5; 8; 3Þ; (e) Hdð3; 5; 8Þ;
(f) Hdð3; 8; 5Þ:
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of all tilings T of R gives the weighted tiling enumeration3. Clearly, one can
choose to weight by 1

2
only the tile positions along the cut that removed the

northwestern corner of Hða; b; cÞ; or, furthermore, to weight by 1
2 only the

tile positions along the cut that removed the eastern corner. These three
possibilities define our three weighted enumerators. We denote them by Ln

n
;

3The motivation to consider such weightings comes from the fact that weightings of that kind

arise whenever the Factorization Theorem from [3] is applied to a (symmetric) region on the

triangular lattice. See [3, sect. 6; 4–7, 10, 12] and the proof of Theorem 1.4 in Section 2 for

examples.
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Ln; and Ln; where a superscript (respectively, subscript) indicates weighting
along the cut from the northwestern (respectively, eastern) corner.

If b5c5a (see Fig. 3(a))}or, by mirror reflection, c5b5a (see Fig.
3(b))}neither LðHdða; b; cÞÞ; nor the weighted enumerators LnðHdða; b; cÞÞ;
LnðHdða; b; cÞÞ; and Ln

n
ðHdða; b; cÞÞ seem to be given by simple product

formulas. The other two cases lead to the following results.

Theorem 1.1. If b4a4c (see Fig. 3(c) for an example), we have

LðHdða; b; cÞÞ ¼ ð�1Þbðbþ1Þ=2Pbða� 2b� 1; bþ cþ 1Þ; ð1:2Þ

where Pnðx; yÞ denotes the product on the right-hand side of (1.8).

Note. All the factors in Pbða� 2b� 1; bþ cþ 1Þ are positive except for
the factors in the shifted factorial ða� 3b� cþ 2j � 1Þj; which are all
negative since for the largest factor in this product we have

a� 3b� cþ 3j � 24a� c� 24� 2

as a4c in the case addressed by Theorem 1.1. Therefore, for a; b and c as in
Theorem 1.1, the sign of Pbða� 2b� 1; bþ cþ 1Þ is ð�1Þbðbþ1Þ=2; which
checks that the right-hand side of (1.2) is non-negative.

Still keeping the relative order b4a4c of the parameters, the weighted
enumerators LnðHdða; b; cÞÞ and LnðHdða; b; cÞÞ do not seem to be given by
simple product formulas. But there is one for Ln

n
ðHdða; b; cÞÞ:

Theorem 1.2. If b4a4c (see Fig. 3(c) for an example), we have

Ln

n
ðHdða; b; cÞÞ ¼ 2�a�b

Yb
j¼1

ðj � 1Þ!ðaþ c� bþ 2j � 1Þ!ðc� aþ 3j � 1Þb�jðaþ 2cþ 3j � 1Þb�jþ1

ðbþ cþ j � 1Þ!ða� bþ 2j � 1Þ! ;

ð1:3Þ

where the shifted factorial ðaÞk is defined by ðaÞk :¼ aðaþ 1Þ � � � ðaþ k� 1Þ;
k51; and ðaÞ0 :¼ 1:

For a4b4c; plain enumeration of the tilings of Hdða; b; cÞ does not seem
to be given by a simple product formula. There is, however, a simple
formula for LnðHdða; b; cÞÞ: As we are going to show in Section 2, the
following result follows easily from a determinant evaluation of the second
author [20, (5.3)].



CIUCU AND KRATTENTHALER206
Proposition 1.3. If a4b4c (see Fig. 3(e) for an example), we have

LnðHdða; b; cÞÞ ¼
1

2a

Ya
j¼1

ðj � 1Þ!ðbþ 2c� 3aþ 3jÞðbþ c� 2aþ jÞ!
ðc� aþ 2j � 1Þ!

�
ðbþ 2c� 3aþ 2j þ 1Þj�1ð2bþ c� 3aþ 2j þ 1Þj�1

ðb� aþ 2j � 1Þ! :

Note. The special cases when c ¼ a� 1 or when b ¼ a� 1 form the
subject of [7, Proposition 2.2].

The weighted enumerator Ln clearly makes sense also for the region
H1ða; b; cÞ obtained from Hða; b; cÞ by cutting off just the northwestern
corner. We have the following counterpart of Proctor’s formula (1.1). (This
result was also independently discovered by Owczarek et al. [26, Eq. (4.45)]
in an equivalent form.4 Our proof is however completely different.)

Theorem 1.4. For a4b; we have

LnðH1ða; b; cÞÞ ¼
1

2a

Ya
i¼1

Yb�a

j¼1

cþ i þ j � 1

i þ j � 1

Yb
j¼b�aþi

2cþ i þ j � 1

i þ j � 1

" #
: ð1:4Þ

What if we require that the projection of p on all three coordinate planes
be contained in the corresponding staircases? An example illustrating this,
using the same plane partition as in Figs. 1 and 2, is shown in Fig. 4. Clearly,
by the bijection between plane partitions and lozenge tilings, plane
partitions satisfying these conditions are identified with tilings of the region
H3ða; b; cÞ obtained from Hða; b; cÞ by removing maximal staircases from
three alternating vertices. No matter what the relative ordering of the side
lengths a; b and c is, there are always two staircases that ‘‘interfere’’}i.e.,
there is no portion of an edge of the hexagon Hða; b; cÞ separating them.
Data suggests that there are no simple product formulas in general. (Note
that, among the cases with two removed staircases, the relative orders of
a; b; c not covered by Theorems 1.1, 1.2 and Proposition 1.3 are precisely
those in which the staircases interfere.)
4The combinatorial objects that are studied in [26] are ‘‘watermelon configurations’’ above a

surface, or, equivalently, non-intersecting lattice paths confined to one side of a given diagonal

line. There is a standard bijection between such families of non-intersecting lattice paths and

tilings, which we explain in Section 2, see Figs. 13, 14, 15(a). Under this bijection, the weight for

lozenge tilings used in our definition of Ln becomes the contact weight for watermelon

configurations of [26], up to a multiplicative constant.
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However, the special case a ¼ b ¼ c presents significant factorization.
Indeed, letting Ta stand for the triangular region H3ða; a; aÞ (the case
a ¼ 5 is shown in Fig. 5), the number of tilings of Ta factors as follows for
a47:

LðT1Þ ¼ 2;

LðT2Þ ¼ 32;

LðT3Þ ¼ 23 � 13;
LðT4Þ ¼ 22 � 52 � 31;
LðT5Þ ¼ 2 � 32 � 192 � 37;
LðT6Þ ¼ 2 � 73 � 13 � 43 � 127;
LðT7Þ ¼ 27 � 35 � 53 � 7 � 13 � 73:



FIG. 6. Hað3; 8; 5Þ:
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The amount of factorization is remarkable (also for larger a; we have
computed and factored LðTaÞ up to a ¼ 30) and comparable, say, to that of
the numbers enumerating domino tilings of squares (see [17]). Based on this,
we pose the following problem.

Problem 1.5. Find a formula for the number of lozenge tilings of Ta; that

explains the large amount of prime factorization of these numbers.

Let us now go back to the case of plane partitions with the property that
their projection on two coordinate planes is contained in the corresponding
staircases. As we saw, in terms of tilings this amounts to counting the tilings
of a hexagon with maximal staircases removed from two non-adjacent and
non-opposite vertices. What if we remove them from adjacent vertices? This
leads to the region Haða; b; cÞ (illustrated in Fig. 6; evidently, the subscript
stands for ‘‘adjacent’’), obtained from Hða; b; cÞ by removing maximal
staircases from the top two corners (we assume that these two staircases do
not interfere}otherwise the leftover region has no lozenge tilings; non-
interference amounts to b5aþ c� 1).

The Haða; b; cÞ’s form a family of regions that resemble the case b4a4c
of the Hdða; b; cÞ’s (cf. Figs. 6 and 3(c)). Even though they are different, it
turns out that the enumeration of tilings of both families of regions reduces
to the evaluation of the same determinant, the one in Theorem 1.10. We
have the following result.

Theorem 1.6. For b5aþ c� 1; we have

LðHaða; b; cÞÞ ¼ Paðb� a; cÞ;

where Pnðx; yÞ is the product on the right-hand side of (1.8).

Also here, let us consider weighted enumerators. As before, let us denote
by Ln

n
; Ln; and Ln the weighted tiling enumerators where a superscript
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(respectively, subscript) indicates that the tiles along the northwestern zig-
zag line (respectively, northeastern) are weighted by 1

2
: While LnðHaða; b; cÞÞ

and LnðHaða; b; cÞÞ do not seem to be given by simple product formulas, this
is the case for Ln

n
ðHaða; b; cÞÞ:

Theorem 1.7. For b5aþ c� 1; we have

Ln

n
ðHaða; b; cÞÞ ¼ 2�c�a ðbþ 2c� aþ 2Þa

ðaþ b� cþ 2Þa

�
Ya
j¼1

ðj � 1Þ!ðbþc�aþ2j�1Þ!ðb�a�cþ2jþ2Þjðbþ2c�aþ 3j þ 2Þa�j

ðbþ 2j � 1Þ!ðcþ a� jÞ! :

In view of the previously made observation that in the case that b5aþ
c� 1 the maximal staircases interfere and their removal results in a region
which is not tilable, it may seem absurd to insist on having ‘‘analogues’’ of
Theorems 1.6 and 1.7 for b5aþ c� 1: But why, instead of removing
maximal staircases, not remove partial staircases? To be precise, if aþ bþ
c � 0 mod 2; then let us remove the partial staircase ða� 1; a� 2; . . . ; ða�
bþ cÞ=2Þ from the top-left vertex of the hexagon, and the partial staircase
ðc� 1; c� 2; . . . ; ðc� bþ aÞ=2Þ from the top-right vertex. (See Fig. 7(a), in
which the removed staircases are indicated by the white regions. The shades
should be ignored at this point.) We obtain a region that looks like a
pentagon with an ‘‘artificial’’ peak glued on top. Any lozenge tiling of this
region is uniquely determined in the rhombus that is composed out of the
triangular peak and its upside-down mirror image. (In Fig. 7(a) this
rhombus is shaded, and the unique way to tile this rhombus is shown.)
Hence, we may equally well remove this rhombus. The leftover region now
has the form of a pentagon with a notch (see Fig. 7(b); at this point the
c a c a

bb

(a + b _ c)/2 (c + b _ a)/2

(a) (b)

FIG. 7. (a) Removing partial staircases, (b) Hnð6; 5; 7Þ:



FIG. 8. Hoð4; 6; 4Þ:
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ellipses are without relevance). Let us denote this region by Hnða; b; cÞ:
Remarkably, extensive computer calculations suggest that the number of
lozenge tilings of Hnða; b; cÞ is given by a ‘‘simple’’ product formula. We
state it as Conjecture A.1 in the appendix. The fact that the result, even
though given in terms of a completely explicit product, is unusually
complex5 may indicate that proving the conjecture may be a formidable
task.

Moreover, it seems that the region Hnða; b; cÞ also allows a weighted
enumeration which is given by a simple product formula. Let us, as before,
denote by Ln

n
; Ln; and Ln the weighted tiling enumerators where a

superscript (respectively, subscript) indicates that the tiles along the
northwestern zig-zag line (respectively, northeastern) are weighted by 1

2
:

(In Fig. 7(b) these tiles are marked by ellipses.) While LnðHnða; b; cÞÞ and
LnðHnða; b; cÞÞ do not seem to be given by simple product formulas, this
seems to be the case for Ln

n
ðHnða; b; cÞÞ: We state it as Conjecture A.2 in the

appendix. Again, the result is unusually complex, which may indicate that a
proof may be a considerable undertaking.

There is one more possibility for choosing two corners of the hexagon
from which to remove maximal staircases}two opposite corners. Data
suggests that, in general, this does not lead to simple product formulas.
There is one exception, when the sides supporting the removed staircases are
equal (see Fig. 8 for an example), but this is a ‘‘semi-frozen’’ situation}each
tiling decomposes in tilings of parallel strips of width two (see the proof of
Proposition 1.8 in Section 2).

Let Hoða; b; cÞ be the region obtained from Hða; b; cÞ by removing
maximal staircases from the western and eastern corners. (Not unexpect-
edly, here, the subscript stands for ‘‘opposite.’’)
5No non-trivial simplifications seem to be possible. We are not aware of any other ‘‘nice’’

result which is similarly involved.
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Proposition 1.8. LðHoða; b; aÞÞ ¼ ðbþ 1Þa:

A different viewpoint that can naturally lead one to consider the regions
introduced above (hexagons with corners cut off) is based on symmetry
classes of plane partitions. (It was in fact this viewpoint that provided the
original motivation to study these regions.) Consider the regular hexagon
H2n :¼ Hð2n; 2n; 2nÞ: The 10 symmetry classes of plane partitions contained
in a cube of side 2n (see [30] for their definition) are identified with the 10
symmetry classes of tilings of H2n (see [23]). Define a ray of tiles to be a
sequence of n tiles extending from the center of H2n to the nearest point of
one of its edges. The six rays of tiles of H2n are shown, for n ¼ 3; in Fig. 9. It
is easy to see that the tilings ofH2n that have CSTC symmetry (i.e., cyclically
symmetric, transposed complementary tilings) contain the tiles of all six
rays, and the restriction of such a tiling to one of the six congruent regions
left by removing the rays determines the whole tiling uniquely (see Fig. 9).
The regions Hdða; b; cÞ; b4a4c; form a two parameter generalization of
this (cf. Figs. 9 and 3(c)).

Similarly, TC (i.e., transposed complementary) symmetry forces inclusion
of two opposite rays in the tiling, and reduces to enumerating tilings of one
of the two pieces left over after removing the two opposite rays of tiles (see
Fig. 10). The regions corresponding to the plane partitions considered by
Proctor (hexagons with one corner cut off) form a one parameter
generalization of this (cf. Figs. 10 and 1).

We are thus naturally led to consider the regions generated by removing
three alternating rays, as shown in Fig. 11. This region does not correspond
to a symmetry class of plane partitions, but it is nevertheless quite
compelling to consider in this context. The regions Haða; b; cÞ form a two
FIGURE 9



FIGURE 10

FIGURE 11
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parameter generalization of it (cf. Figs. 11 and 6). The two parameters were
essential in conjecturing a formula for the number of tilings of these regions,
based on data: polynomials fully factored into linear factors contain much
more information than just integers factored into small primes.

To finish this analysis, we mention that removing one ray (see Fig. 12)
leads to a region whose number of tilings has a simple product expression, as
it easily follows from the Factorization Theorem of [3] and the results of [5].

To rephrase the above statements, if one regards the regions formed by
removing rays as being built up of 608 sectors, the tilings of the regions
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consisting of 1, 2, 3 or 6 sectors are enumerated by simple product formulas.
Data suggests that this is not the case for 4 or 5 sectors.

We prove our results in Section 2 by employing a standard bijection
between lozenge tilings and non-intersecting lattice paths, thus, due to the
Lindstr .oom–Gessel–Viennot theorem [14, 24], obtaining a determinant for
the number (respectively, weighted count) of tilings that we are interested in,
and, finally, by evaluating the resulting determinants. In most of the cases,
we obtain special cases of the two determinant evaluations that we state in
Theorems 1.9 and 1.10. Theorem 1.9 is due to the second author [20, (5.3)]
(see [1] for a simple proof, which is reproduced in [7]). The determinant
evaluation in Theorem 1.10 does not seem to have appeared previously in
the literature. Paper [8] contains our original proof, which is rather involved,
but has its own appeal as it contains a non-automatic (!) application of
Gosper’s algorithm [15] (see also [16, Sect. 5.7], [27, Sect. II.5]). Later we
discovered that, in fact, there is a combinatorial argument which transforms
the determinant in Theorem 1.10 into an instance of the determinant in
Theorem 1.9, so that these two determinant evaluations are actually
equivalent. It is this argument that we give in Section 2.

Theorem 1.9. Let x; y and n be non-negative integers with xþ y > 0: Let

Knðx; yÞ be the matrix

Knðx; yÞ :¼ ðxþ yþ i þ j � 1Þ!
ðxþ 2i � jÞ!ðyþ 2j � iÞ!

� �
14i; j4n

¼ 1

xþ 2i � j

xþ yþ i þ j � 1

yþ 2j � i

 ! !
14i; j4n

: ð1:5Þ
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Then

detðKnðx; yÞÞ

¼
Yn
j¼1

ðj � 1Þ!ðxþ yþ jÞ!ð2xþ yþ 2j þ 1Þj�1ðxþ 2yþ 2j þ 1Þj�1

ðxþ 2j � 1Þ!ðyþ 2j � 1Þ! ; ð1:6Þ

where, as before, the shifted factorial ðaÞk is defined by ðaÞk :¼ aðaþ
1Þ � � � ðaþ k� 1Þ; k51; and ðaÞ0 :¼ 1:

Theorem 1.10. Let n be a positive integer, and let x and y be non-negative

integers. Let Anðx; yÞ be the matrix

Anðx; yÞ :¼
xþ yþ j

x� i þ 2j

 !
�

xþ yþ j

xþ i þ 2j

 ! !
14i; j4n

: ð1:7Þ

Then

detAnðx; yÞ

¼
Yn
j¼1

ðj � 1Þ!ðxþ yþ 2jÞ!ðx� yþ 2j þ 1Þjðxþ 2yþ 3j þ 1Þn�j

ðxþ nþ 2jÞ!ðyþ n� jÞ! : ð1:8Þ

Note. Theorems 1.9 and 1.10 are only formulated for non-negative
integral x and y: But in fact, with a generalized definition of factorials and
binomials (cf. [16, Sect. 5.5, (5.96), (5.100)], both theorems would also make
sense and be true for complex x and y:

Remark 1.11. (1) The approach we use for the regions Hd can be used
also to enumerate tilings of the regions with just one corner cut off, which
correspond to the result of Proctor mentioned earlier in the Introduction.
This has been worked out in [22, Proof of Theorem 6].

(2) A further question that one is immediately tempted to ask is the
question of whether or not there exist q-analog of our results. For example,
are there plane partition style q-analogs of our results, i.e., closed formulas
for the generating function

P
P qjPj; where the sum is over all plane

partitions in one of the sets of plane partitions that we consider in our paper,
with jPj denoting the number of boxes of the plane partition P? However,
this particular q-weight does not lead to ‘‘nice’’ formulas (i.e., simple
product formulas), already in the case of Proctor’s problem. For, if we just
consider the case a ¼ b; c ¼ 1 in Proctor’s problem (see Fig. 1), then what

we are asking for is a nice expression for qð
aþ1
2

ÞCaþ1ðq�1Þ; where CnðqÞ is the
q-Catalan number introduced by Carlitz and Riordan [2], for which it is
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known that no closed product formula exists (only nice generating function
expansions, see e.g. [13]). A similar statement can be made for the general
case.

On the other hand, Proctor does, in fact, give a q-analog of his result (in
unpublished work; cf. [18, Theorems 8 and 9]6). In this result, the q-weight is
given in terms of certain alternating trace weights for the plane partitions
under consideration. However, analysis of small cases suggests that this
weight, or variations thereof, does not lead to nice q-analogs of our
enumeration formulas for lozenge tilings of other regions.

We also note that for the determinant evaluation of Theorem 1.9, which is
at the heart of most of our results, there exists in fact a q-analog [19,
Theorem 1]. However, again, we were not able to use it to obtain q-analogs
of our enumeration results.

2. PROOFS OF THE RESULTS

As already mentioned at the end of the Introduction, we employ in our
proofs a standard bijection that maps each lozenge tiling T of a region R on
the triangular lattice to a family of non-intersecting lattice paths taking steps
east or north on the grid lattice Z2: This bijection works as follows. Choose
a lattice line direction d}without loss of generality, the horizontal
direction}, and mark with a dot the unit segments parallel to d on the
boundary of R (see Fig. 13). Each marked segment is either on top or at the
bottom of the region R: Label from right to left the ones at the bottom of R
by u1; u2; . . . ; um and the ones on top of R by v1; v2; . . . ; vn:

Consider now the tile t1 of T resting on ui; for some fixed 14i4m (see
Fig. 14 for an example of a tiling T of the region from Fig. 13). Let t2 be the
other tile of T containing the side of t1 opposite ui: Continue the sequence of
selected tiles by choosing t3 to be the tile of T sharing with t2 the side of t2
opposite the one common to t2 and t1: This procedure leads to a path of
rhombic tiles growing upward, which clearly must end on one of the vj’s.
This path of rhombi can be identified with a (linear) path that starts at the
midpoint of ui and ends at the midpoint of vj; see Fig. 14. (There, the
resulting linear paths are indicated by dotted segments.) After normalizing
the oblique coordinate system and rotating it in standard position, we
6These theorems are, in fact, about generating functions for shifted plane partitions of a

trapezoidal shape with a fixed first entry in each row. If one chooses these first entries to be all

equal to c; say, then in any such shifted plane partition all the entries in the left-hand triangle

must be equal to c: Therefore, we may simply disregard that triangle. If we remove it then what

is left is ordinary plane partitions of shape ðb; b� 1; b� 2; . . . ; b� aþ 1Þ; for some a and b; with

entries bounded by c: These are exactly the plane partitions which correspond to the lozenge

tilings of H1ða; b; cÞ; see Fig. 1.
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obtain a lattice path on Z2 that starts at the midpoint of ui (actually, its
image after these normalizations), ends at the midpoint of vj (again, actually
its image after these normalizations) and takes unit steps east or north. (See



FIGURE 15
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Fig. 15(a) for the resulting lattice paths in our example.) One obtains this
way a family P of m lattice paths, one for each 14i4m; and they cannot
touch each other since the corresponding paths of tiles are disjoint. We
obtain in particular that m4n; and hence by symmetry m ¼ n: It is easy to
see that the correspondence T/P is a bijection between the set of tilings T
of R and the families P of non-intersecting lattice paths starting at the
midpoints of u1; u2; . . . ; un; ending at the midpoints of v1; v2; . . . ; vn and
contained within R:

Lemma 2.1. For b4a4c; we have LðHdða; b; cÞÞ ¼ ð�1Þbðbþ1Þ=2 detAb

ða� 2b� 1; bþ cþ 1Þ; where AxðXj yÞ is given by (1.7).

Proof. Label the horizontal unit segments on the boundary ofHdða; b; cÞ
as described above. Choose an oblique coordinate system with the origin at
the midpoint of u1 and coordinate axes parallel to the non-horizontal lattice
lines of the triangular lattice (see Fig. 13). Applying the procedure described
above to Hdða; b; cÞ one obtains that LðHdða; b; cÞÞ is equal to the number of
families of non-intersecting lattice paths with starting points ui ¼ ð�i þ
1; i � 1Þ; i ¼ 1; 2; . . . ; b; ending points vj ¼ ða� 2j þ 2; cþ j � 1Þ; j ¼ 1;
2; . . . ; b; and with the additional requirement that they do not touch the
line y ¼ x� 2: (This requirement ensures that the corresponding paths of
rhombi stay within our region Hdða; b; cÞ; see Fig. 15(a). Note that by abuse
of notation we denote the midpoints of the ui’s and vj ’s by the same symbols
we use for the segments.)

By the Lindstr .oom–Gessel–Viennot theorem [24, Lemma 1], [14], [31,
Theorem 1.2], the number of such families of non-intersecting lattice paths is
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given by the determinant of the b� b matrix whose ði; jÞ-entry is the number
of lattice paths from ui to vj that are strictly above the line y ¼ x� 2: By
Andr!ee’s Reflection Principle [11], this number is

aþ c� j þ 1

a� 2j þ i þ 1

 !
�

aþ c� j þ 1

a� 2j � i þ 1

 !
:

Therefore, the Lindstr .oom–Gessel–Viennot theorem implies that

LðHdða; b; cÞÞ ¼ det
aþ c� j þ 1

a� 2j þ i þ 1

 !
�

aþ c� j þ 1

a� 2j � i þ 1

 ! !
14i; j4b

: ð2:1Þ

Reversing columns (i.e., replacing j by bþ 1� j) in (2.1) the right-hand side
becomes

ð�1Þbðb�1Þ=2 det
aþ cþ j � b

aþ 2j þ i � 2b� 1

 !
�

aþ cþ j � b

aþ 2j � i � 2b� 1

 ! !
14i; j4b

:

ð2:2Þ

The entries of the matrix in (2.2) are readily seen to be precisely the
negatives of the entries of Abða� 2b� 1; bþ cþ 1Þ: This implies the
statement of the lemma. ]

Proof of Theorem 1.10. The preceding proof of Lemma 2.1 shows
(by renumbering the lattice paths from left to right) that ð�1Þnðnþ1Þ=2Anðx; yÞ
counts the number of families P of n non-intersecting lattice paths, with
starting points ð�nþ i; n� iÞ; i ¼ 1; 2; . . . ; n; and end points ðxþ 2j þ 1;
y� j � 1Þ; j ¼ 1; 2; . . . ; n; with the additional requirement that they do not
touch the line y ¼ x� 2 (see Fig. 15(a) for an example). Now, for each such
family, we prepend ð2n� 2i þ 1Þ vertical steps to the ith path. Thus, we
obtain families P0 of n non-intersecting lattice paths, with starting points
ð�nþ i;�nþ i � 1Þ; i ¼ 1; 2; . . . ; n; and end points ðxþ 2j þ 1; y� j � 1Þ;
j ¼ 1; 2; . . . ; n; with the additional requirement that they do not touch the
line y ¼ x� 2: (See Fig. 15(b) for the resulting path family in our example.)
In fact, this is a bijection between the former and latter path families,
because the prepended path portions are in fact forced by the boundary
y ¼ x� 2: Therefore ð�1Þnðnþ1Þ=2Anðx; yÞ is also equal to the number of the
latter path families.

Again we may apply the Lindstr .oom–Gessel–Viennot theorem. Since the
Reflection Principle yields that the number of paths from ð�nþ i;�nþ
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i � 1Þ to ðxþ 2j þ 1; y� j � 1Þ which do not touch the line y ¼ x� 2
is given by

xþ yþ j þ 2n� 2i þ 1

xþ 2j þ n� i þ 1

 !
�

xþ yþ j þ 2n� 2i þ 1

xþ 2j þ n� i

 !

¼ ðy� x� 3jÞðxþ yþ j þ 2n� 2i þ 1Þ!
ðxþ 2j þ n� i þ 1Þ!ðyþ n� j � i þ 1Þ!;

we infer that ð�1Þnðnþ1Þ=2Anðx; yÞ is equal to

det
ðy� x� 3jÞðxþ yþ j þ 2n� 2i þ 1Þ!
ðxþ 2j þ n� i þ 1Þ!ðyþ n� j � i þ 1Þ!

� �
14i; j4n

¼
Yn
j¼1

ðy�x�3jÞ det 1

yþn� j� iþ1

xþyþ jþ2n�2iþ1

xþ2jþn� iþ1

 ! !
14i; j4n

¼
Yn
j¼1

ðy�x�3jÞ det ð�1Þxþ2jþn�iþ1

yþ n� j � i þ 1

�y� nþ j þ i � 1

xþ 2j þ n� i þ 1

 ! !
14i; j4n

¼
Yn
j¼1

ðð�1Þxþn�jðy� x� 3jÞÞ

� det
1

�y� x� 2nþ 2i � j � 2

�y� nþ j þ i � 2

xþ 2j þ n� i þ 1

 ! !
14i; j4n

:

(At the second to last equality we used that ðn
k
Þ ¼ ð�1Þkð�nþk�1

k
Þ:) This latter

determinant is the determinant detKnð�y� x� 2n� 2; xþ nþ 1Þ; with Kn

ðx; yÞ defined in (1.5). In view of Theorem 1.9, this proves (1.8), after some
manipulation. ]

Proof of Theorem 1.1. This follows directly from Lemma 2.1 and
Theorem 1.10. ]

Proof of Theorem 1.2. As in the proof of Lemma 2.1, we map the tilings
to families P of non-intersecting lattice paths, with starting points ui ¼
ð�i þ 1; i � 1Þ; i ¼ 1; 2; . . . ; b; ending points vj ¼ ða� 2j þ 2; cþ j � 1Þ;
j ¼ 1; 2; . . . ; b; and with the additional requirement that they do not touch
the line y ¼ x� 2 (see Fig. 15(a)). Following the proof of Theorem 1.10, we
prepend 2i � 1 vertical steps to the ith path (because here we kept the
numbering of the paths from right to left), so that we obtain families P0 of
non-intersecting lattice paths, with starting points ui ¼ ð�i þ 1;�iÞ; i ¼
1; 2; . . . ; b; ending points vj ¼ ða� 2j þ 2; cþ j � 1Þ; j ¼ 1; 2; . . . ; b; and with
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the additional requirement that they do not touch the line y ¼ x� 2 (see
Fig. 15(b)). However, unlike in the proofs of Lemma 2.1 and Theorem 1.10,
here each family has a certain weight, given by the ‘th power of 1

2; where ‘ is
the number of lozenges that are weighted by 1

2
in the corresponding tiling

(cf. Figs. 3(c), 13 and 15(b)).
To realize this weight, we give each horizontal step from ða� 2kþ 1; cþ

k� 1Þ to ða� 2kþ 2; cþ k� 1Þ; for some k; the weight 1
2
: This takes

care of the fact that the lozenges along the northwestern zig-zag line are
weighted by 1

2
: To also take into account that the lozenges along the

eastern zig-zag line are weighted by 1
2
; we assign a weight of 2 (sic!) to

each horizontal step from ðk; kÞ to ðkþ 1; kÞ; for some k (i.e., to each
horizontal step which terminates directly at the line y ¼ x� 1 the paths
are not allowed to cross). This generates our weight, up to a multipli-
cative constant of 2a: Indeed, for each marked lozenge position along
the eastern boundary, a tiling T has a lozenge in that position if and only if
the corresponding unit segment weighted by 2 is not a step on some
lattice path of the family corresponding to T ; thereby giving rise to a
missing weight of 1

2
in comparison to path families where some path does

contain that step. To give an explicit example, the tiling in Fig. 14 contains
two tiles weighted by 1

2
along the eastern boundary, the third and the

fifth from the bottom. These are the ones which are completely white, as
there is no lattice path running through them. Hence, in the corresponding
path family shown in Fig. 15(b), the step from ð2; 2Þ to ð3; 2Þ and the step
from ð4; 4Þ to ð5; 4Þ (both weighted by 2) are not contained in any of
the paths.

Now we want to write down the Lindstr .oom–Gessel–Viennot determinant
for our weighted count (as defined just above). In order to do so, we need
the weighted count of paths from ð�i þ 1;�iÞ to ða� 2j þ 2; cþ j � 1Þ
which do not touch y ¼ x� 2: We claim that the weighted count of these
latter paths is the same as the weighted count of all paths from ð�i þ 1;�iÞ
to ða� 2j þ 2; cþ j � 1Þ; in which the last step of the path has weight 1

2
if it is

a horizontal step. (It should be noted that in this weighted count there are
no steps with weight 2 anymore.) This is seen as follows: suppose we are
given a path from ð�i þ 1;�iÞ to ða� 2j þ 2; cþ j � 1Þ which does not
touch the line y ¼ x� 2; and which has exactly ‘ touching points on the line
y ¼ x� 1: These ‘ touching points on y ¼ x� 1 must be reached by
horizontal steps from ðk; kÞ to ðkþ 1; kÞ; each of which contribute a weight
of 2: Thus, in total, this gives contribution of 2‘ to the weight. Now we map
such a path to 2‘ paths from ð�i þ 1;�iÞ to ða� 2j þ 2; cþ j � 1Þ (without
restriction), by focussing on the path portions between two consecutive
touching points, including the portion between ð�i þ 1;�iÞ and the first
touching point, and keeping any of them either fixed or reflecting it in the
line y ¼ x� 1: This proves the assertion.
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By distinguishing between the cases where the last step of a path is
vertical, respectively, horizontal, the new weighted count of the paths from
ð�i þ 1;�iÞ to ða� 2j þ 2; cþ j � 1Þ then is seen to be

aþ cþ 2i � j � 1

a� 2j þ i þ 1

 !
þ 1

2

aþ cþ 2i � j � 1

a� 2j þ i

 !

¼ 1

2

ðaþ 2cþ 3i � 1Þðaþ cþ 2i � j � 1Þ!
ða� 2j þ i þ 1Þ!ðcþ i þ j � 1Þ! :

Therefore the Lindstr .oom–Gessel–Viennot determinant is seen, by
manipulations similar to those in the proof of Theorem 1.10, to be

det
1

2

ðaþ 2cþ 3i � 1Þðaþ cþ 2i � j � 1Þ!
ða� 2j þ i þ 1Þ!ðcþ i þ j � 1Þ!

� �
14i; j4b

¼ 2�b
Yb
i¼1

ðð�1Þaþiðaþ 2cþ 3i � 1ÞÞ

� det
1

�a� cþ j � 2i

�c� i � j

a� 2j þ i þ 1

 ! !
14i; j4b

:

After reversing the order of rows and columns (i.e., after replacing i by
bþ 1� i and j by bþ 1� j), it is seen that this determinant is the
determinant detKbð�a� c� b� 1; a� bÞ: Application of Theorem 1.9,
division of the resulting expression by 2a; and some rearrangement finish the
proof of the theorem. ]

Proof of Proposition 1.3. Consider the region Hdða; b; cÞ and choose the
direction d in the bijection between tilings and lattice paths to be the
direction of the lattice lines going from southwest to northeast (see Fig. 16).
Consider the unit segments parallel to d on the boundary, and label the
midpoints of those on the eastern boundary, from top to bottom, by u1; u2
; . . . ; ua; and the midpoints of those on the northwestern boundary by v1;
v2; . . . ; va: Choose an oblique coordinate system centered

ffiffiffi
3

p
units above u1

(see Fig. 16) and with axes along the northwestern and western lattice line
directions.

By the bijection between tilings and lattice paths, each tiling T of Hd

ða; b; cÞ is identified with a family P of non-intersecting lattice paths with
starting points ð�2i; iÞ; i ¼ 1; 2; . . . ; a; and ending points ðc� a� j; b� aþ
2jÞ; j ¼ 1; 2; . . . ; a: (Unlike in the proof of Lemma 2.1, no additional
requirements on the paths are needed.)
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The weighted enumerator Ln assumes that the northwesternmost a tile
positions are weighted by 1

2
(these positions are marked in Fig. 16).

Correspondingly, the paths of P whose last step is a vertical step have
weight 1

2
(as before, the weight of a lattice path is the product of the weights

of its steps). The weight of the family P is the product of the weights of its
members, and by construction it matches the weight of the tiling T : By the
Lindstr .oom–Gessel–Viennot theorem, the total weight of those families P
that are non-intersecting}and hence LnðHdða; b; cÞÞ}is given by the
determinant of the a� a matrix whose ði; jÞ-entry equals the total weight
of the paths from ui to vj: Splitting the latter family into two according to
the type of the last step, one obtains that its total weight is

bþ c� 2aþ i þ j � 1

c� aþ 2i � j � 1

 !
þ 1

2

bþ c� 2aþ i þ j � 1

c� aþ 2i � j

 !

¼ bþ 2c� 3aþ 3i

2

ðbþ c� 2aþ i þ j � 1Þ!
ðc� aþ 2i � jÞ!ðb� aþ 2j � iÞ!:

When computing the determinant of the above matrix, the j-free factors
can be factored out along rows, and the leftover matrix is precisely the
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one in (1.5) with n ¼ a; x ¼ c� a; and y ¼ b� a: Using (1.6) and
substituting the values of x and y one obtains the formula in the statement
of Proposition 1.3. ]

Now we turn our attention to the proof of Theorem 1.4. We deduce (1.4)
from a well-known determinant evaluation (see the proof of Lemma 2.2)
and Proctor’s formula (1.1), using the Factorization Theorem for perfect
matchings of [3].

Let m and n be non-negative integers, and let l ¼ ðl1; l2; . . . ; lnÞ; 04l14m;
l1 > � � � > ln be a list of integers (some of which may be negative). We define
the regions Rðn;m; lÞ as follows. Consider an oblique coordinate system on
the triangular lattice, centered at the midpoint of a lattice segment facing
northeast and having the x-axis horizontal and the y-axis parallel to the
lattice lines going from southwest to northeast (see Fig. 17). Consider, on
the one hand, the points ð�i þ 1; i � 1Þ; i ¼ 1; 2; . . . ; n; and on the other
hand the points ðlj ;m� ljÞ; j ¼ 1; 2; . . . ; n: We construct Rðn;m; lÞ so that its
tilings are in bijection with the families of non-intersecting lattice paths with
these starting and ending points. It is easy to see that this determines
Rðn;m; lÞ to be the hexagon with side lengths n; l1;m� l1; l1 � ln þ 1; ln þ
n� 1;m� ln � nþ 1 (in anticlockwise order, starting with the southwestern
side), and having triangular dents along the northeastern side at the lattice
segments with midpoints not among ðlj ;m� ljÞ; j ¼ 1; 2; . . . ; n: ðRð5; 10;
ð7; 6; 4; 2;�1ÞÞ is shown in Fig. 17.)
y

x
O

FIG. 17. Rð5; 10; ð7; 6; 4; 2;�1ÞÞ:



CIUCU AND KRATTENTHALER224
Lemma 2.2.

LðRðn;m; lÞÞ ¼
Q

14i5j4n ðli � ljÞ
Qn

i¼1 ðmþ i � 1Þ!Qn
i¼1 ðli þ n� 1Þ!

Qn
i¼1 ðm� liÞ!

:

Proof. By construction and by the Lindstr .oom–Gessel–Viennot theorem,
we have that

LðRðn;m; lÞÞ ¼ det
m

lj þ i � 1

 ! !
14i; j4n

: ð2:3Þ

This determinant can be evaluated, e.g., by means of [21, (3.12)] with A ¼
m� 1 and Li ¼ li � 1; i ¼ 1; 2; . . . ; n; and one obtains the formula in the
statement of the lemma. ]

Proof of Theorem 1.4. Consider the region H1ða; b; cÞ and weight by 1
2

the a tile positions required to be weighted so by Ln (these are marked in
Fig. 18). Draw a line l through the centers of the marked lozenges, and
reflect H1ða; b; cÞ across l: The union U of H1ða; b; cÞ with its mirror image is
precisely the region Rð2c; a; lÞ; where l ¼ ðb; b� 1; . . . ; b� cþ 1; a� c; a�
c� 1; . . . ; a� 2cþ 1Þ: Applying Lemma 2.2 one obtains, after some
manipulations, that

LðUÞ ¼
Ya
i¼1

Yb�a

j¼1

cþ i þ j � 1

i þ j � 1

� �2 Yb
j¼b�aþ1

2cþ i þ j � 1

i þ j � 1

" #
: ð2:4Þ
H1(a, b, c)

H1(a, b − 1, c)

FIGURE 18
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The region U is symmetric about l; so we can apply to it the Factorization
Theorem of [3] (see [6] for a phrasing of it in terms of lozenge tilings).
Following the prescriptions in the statement of this theorem, cut U along the
zig-zag line following lattice segments just above l (this is shown as a thick
line in Fig. 18), and denote the pieces above and below the cut by Uþ and
U�; respectively. In U�; weight the tile positions just below the cut by 1

2
:

Since l cuts through 2a unit triangles, the Factorization Theorem yields

LðUÞ ¼ 2aLðUþÞLnðU�Þ: ð2:5Þ

However, U� is by construction just H1ða; b; cÞ: Moreover, in Uþ there is a
row of forced tiles (shaded in Fig. 18), and the region left upon their removal
is congruent to H1ða; b� 1; cÞ: Solving for LnðU�Þ in (2.5) and using
formulas (2.4) and (1.1), one obtains for LnðH1ða; b; cÞÞ the product
expression (1.4). ]

Even though the region Haða; b; cÞ looks different from the case b4a4c
of Hdða; b; cÞ; it turns out that their tiling enumerations amount to
evaluating the same determinant.

Lemma 2.3. For b5aþ c� 1 we have LðHaða; b; cÞÞ ¼ detAaðb� a; cÞ:
y

x

FIGURE 19
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Proof. Rotate the region Haða; b; cÞ clockwise by 608; so that it is
positioned as in Fig. 19. By the bijection between tilings and lattice paths,
each tiling is identified with a family of non-intersecting lattice paths with
starting points ð�i þ 1; i � 1Þ; ending points ðc� j þ 1; b� aþ 2j � 1Þ; i; j ¼
1; 2; . . . ; a; and such that all lattice paths stay strictly above the line y ¼
x� 2: Just as in the proof of Theorem 1.1, the Lindstr .oom–Gessel–Viennot
theorem implies that

LðHaða; b; cÞÞ ¼ det
bþ c� aþ j

b� aþ 2j � i

 !
�

bþ c� aþ j

b� aþ 2j þ i

 ! !
14i; j4a

:

The above determinant is readily recognized as Aaðb� a; cÞ: ]

Proof of Theorem 1.6. This follows directly from Lemma 2.3 and
Theorem 1.10. ]

Proof of Theorem 1.7. We use the bijection between tilings and families
of non-intersecting lattice paths from the proof of Lemma 2.3. In addition,
we prepend ð2i � 1Þ vertical steps to the ith path. Thus we obtain families
P0 of non-intersecting lattice paths, with starting points ð�i þ 1;�iÞ; i ¼
1; 2; . . . ; a; ending points ðc� j þ 1; b� aþ 2j � 1Þ; j ¼ 1; 2; . . . ; a; and such
that all lattice paths stay strictly above the line y ¼ x� 2: For the rest of the
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proof one follows the arguments in the proof of Theorem 1.2, which have to
be adjusted only insignificantly. ]

Proof of Proposition 1.8. Let T be a tiling of Hoða; b; aÞ: Consider the b
tiles containing the lattice segments on the bottom part of its boundary.
Because of forcing, there is precisely one dent in the upper boundary of the
union of these tiles (see Fig. 20). This dent has to be covered by some other
tile t (shaded dark in Fig. 20), which in turn forces b more tiles in
place. Thus, a subregion congruent to Hð1; b; 1Þ at the bottom of Hoða; b; aÞ
ends up being tiled by the restriction of the tiling T : Since there are bþ 1
tilings of Hð1; b; 1Þ (corresponding to the bþ 1 possible positions of t), this
implies

LðHoða; b; aÞÞ ¼ ðbþ 1Þ LðHoða� 1; b; a� 1ÞÞ:

Repeated application of this gives the statement of the proposition. ]

APPENDIX

Conjecture A.1. The number of lozenge tilings of the region Hn

ðx;mþ y; xþm� yÞ (see Fig. 7(b) for an example) is equal to

Ym
i¼1

ðxþ iÞ!
ðx� iþmþyþ1Þ!ð2i�1Þ!

Ymþy

i¼mþ1

ðxþ2m� iþ1Þ!
ð2mþ2y�2iþ1Þ!ðmþx�yþ i � 1Þ!

2
m
2ð Þþ y

2ð Þ
Ym�1

i¼1

i!
Yy�1

i¼1

i!
Y
i50

xþ i þ 3
2

� �
m�2i�1

Y
i50

x� yþ 5
2
þ 3i

� �
b3y=2�9i=2c�2

�
Y
i50

xþ 3m
2
�yþ 3i

2

 �
þ 3

2

� �
3dy=2e�d9i=2e�2

Y
i50

xþ 3m
2
�yþ 3i

2

� �
þ2

� �
3by=2c�b9i=2c�1

�
Y
i50

xþm� y
2

� �
þ i þ 1

� �
2by=2c�m�2i

Y
i50

xþ y
2

� �
þ i þ 2

� �
m�2by=2c�2i�2

�
Qy

i¼0 ðx� yþ 3i þ 1Þmþ2y�4i

Qdy=2e�1
i¼0 ðxþm� yþ i þ 1Þ3y�m�4iQ

i50 ðxþ m
2 �

y
2 þ i þ 1Þy�2iðxþ m

2 �
y
2 þ i þ 3

2Þy�2i�1

�
Qy

i¼0 ðxþ i þ 2Þ2m�2i�1

ðxþ yþ 2Þm�y�1ðmþ x� yþ 1Þmþy

: ðA:1Þ
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Here, shifted factorials occur with positive as well as with negative indices.
The convention with respect to which these have to be interpreted is

ðaÞk :¼
aðaþ 1Þ � � � ðaþ k� 1Þ if k > 0;

1 if k ¼ 0;

1=ða� 1Þða� 2Þ � � � ðaþ kÞ if k50:

8><
>:

All products
Q

i50 ðf ðiÞÞgðiÞ in (A.1) have to interpreted as the products over
all i50 for which gðiÞ50:

For a proof one could try to proceed as follows: first, we introduce non-
intersecting lattice paths, with starting points along the bottom, and end
points along the northeastern and northwestern zig-zag lines. On introdu-
cing a suitable coordinate system, the starting points can be represented as
Ai ¼ ð�i; iÞ; i ¼ 1; 2; . . . ;mþ y; and the end points as Ei ¼ ðx� i; 2iÞ; i ¼
1; 2; . . . ;m; Ei ¼ ðmþ y� 2i þ 1;mþ x� yþ iÞ; i ¼ mþ 1;mþ 2; . . . ;mþ
y: The corresponding Lindstr .oom–Gessel–Viennot determinant is

det
14i; j4mþy

xþ i

x� i þ j

 !
i ¼ 1; . . . ;m;

xþ 2m� i þ 1

mþ y� 2i þ j þ 1

 !
i ¼ mþ 1; . . . ;mþ y:

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

0
BBBBB@

1
CCCCCA: ðA:2Þ

The task is to evaluate this determinant. In principle, after having taken
suitable factors out of the determinant (so that the new determinant is a
polynomial in x), the ‘‘identification of factors’’ method, as described in
Section 2.4 of [21], should be capable of accomplishing the determinant
evaluation.

Conjecture A.2. The weighted count of lozenge tilings of the region Hn

ðx;mþ y; xþm� yÞ; where the lozenges along the two zig-zag lines are
weighted by 1

2
(see Fig. 7(b) for an example; the lozenges that are weighted

by 1
2
are marked by ellipses), is equal to

Ym
i¼1

ðxþ i � 1Þ!
ðx� iþmþyþ1Þ!ð2i�1Þ!

Ymþy

i¼mþ1

ðxþ2m� iÞ!
ð2mþ2y�2iþ1Þ!ðmþ x� yþ i � 1Þ!

2
m
2ð Þþ y

2ð Þ
Ym�1

i¼1

i!
Yy�1

i¼1

i!
Y
i50

xþ i þ 3
2

� �
m�2i�1

Y
i50

x� yþ 3i þ 7
2

� �
d3y=2�9i=2e�4
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�
Y
i50

xþ 3m
2
�yþ 3i

2

� �
þ 3

2

� �
3dy=2e�b9i=2c�1

Y
i50

xþ 3m
2
�yþ 3i

2

 �
þ 1

� �
3by=2c�d9i=2eþ1

�
Y
i50

xþm� y
2

� �
þ i þ 1

� �
2by=2c�m�2i

Y
i50

xþ y

2

j k
þ i þ 2

 !
m�2by=2c�2i�2

�
ðx� yþ 1

2
Þbm=2cþ2yðxþm� yÞyþ1

Qy
i¼0 ðxþ i þ 1Þ2m�2i

ðxþ m
2
� y

2
þ 1

2
Þb3y=2cðxþ 3m

2
� y

2
þ 1Þyþ1ðxþ m

2
þ y

2
þ 1Þdðy�2Þ=2e

�
Qy

i¼0 ðx� yþ 3i þ 1Þmþ2y�4i

Qdy=2e�1
i¼0 ðxþm� yþ i þ 1Þ3y�m�4i

ðmþ x� yÞmþyþ1ðxþ yþ dm
2
eÞbm=2c�yþ1

Qdy=2e�1
i¼0 ðx� yþ 1þ 3iÞ

� 1Q
i50 ðxþ m

2
� y

2
þ i þ 1Þy�2iðxþ m

2
� y

2
þ i þ 3

2
Þy�2i�1

; (A.3)

with the same conventions as in the previous conjecture.

For a proof, one could again introduce non-intersecting lattice paths, with
starting points and end points as before. The corresponding Lindstr .oom–
Gessel–Viennot determinant is

det
14i; j4mþy

ðxþ i � 1Þ!ðxþ j=2Þ
ðx� i þ jÞ!ð2i � jÞ! i ¼ 1; . . . ;m;

ðxþ 2m� iÞ!ð3m=2þ x� y=2� j=2þ 1=2Þ
ðmþ y� 2i þ j þ 1Þ!ðmþ x� yþ i � jÞ! i ¼ mþ 1; . . . ;mþ y:

8>><
>>:

9>>=
>>;

0
BB@

1
CCA:

ðA:4Þ

The remarks after (A.2) also apply here.
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