11 research outputs found

    Entropy-Functional-Based Online Adaptive Decision Fusion Framework with Application to Wildfire Detection in Video

    Get PDF
    Cataloged from PDF version of article.In this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented

    Deep Convolutional Generative Adversarial Networks Based Flame Detection in Video

    Full text link
    Real-time flame detection is crucial in video based surveillance systems. We propose a vision-based method to detect flames using Deep Convolutional Generative Adversarial Neural Networks (DCGANs). Many existing supervised learning approaches using convolutional neural networks do not take temporal information into account and require substantial amount of labeled data. In order to have a robust representation of sequences with and without flame, we propose a two-stage training of a DCGAN exploiting spatio-temporal flame evolution. Our training framework includes the regular training of a DCGAN with real spatio-temporal images, namely, temporal slice images, and noise vectors, and training the discriminator separately using the temporal flame images without the generator. Experimental results show that the proposed method effectively detects flame in video with negligible false positive rates in real-time

    Decreasing Harmonics via Three Phase Parallel Active Power Filter Using Online Adaptive Harmonic Injection Algorithm

    Get PDF
    Three-Phase Parallel Active Power Filter (PAPF) control mechanism via a novel Adaptive Harmonic Injection (AHI) algorithm is proposed in order to filter out harmonics generated by non-linear loads and carry out reactive power compensation. The presented PAPF mechanism is composed of two stages. Before is the extraction of reference current to determine currents with harmonics. Once the reference current is determined, according to the reference current, appropriate current harmonics are injected by triggering of the inverter switches. The proper amplitude and phase values of the harmonics that will be injected are estimated online at any instant by the AHI algorithm. In this study, the sine and the cosine of the phase angle for any harmonic order is weighted by the values estimated via the AHI algorithm, thus obtaining harmonic orders at the desired amplitude and phase. Simulations are performed using various non-linear loads in order to validate the proposed method

    Decision fusion in healthcare and medicine : a narrative review

    Get PDF
    Objective: To provide an overview of the decision fusion (DF) technique and describe the applications of the technique in healthcare and medicine at prevention, diagnosis, treatment and administrative levels. Background: The rapid development of technology over the past 20 years has led to an explosion in data growth in various industries, like healthcare. Big data analysis within the healthcare systems is essential for arriving to a value-based decision over a period of time. Diversity and uncertainty in big data analytics have made it impossible to analyze data by using conventional data mining techniques and thus alternative solutions are required. DF is a form of data fusion techniques that could increase the accuracy of diagnosis and facilitate interpretation, summarization and sharing of information. Methods: We conducted a review of articles published between January 1980 and December 2020 from various databases such as Google Scholar, IEEE, PubMed, Science Direct, Scopus and web of science using the keywords decision fusion (DF), information fusion, healthcare, medicine and big data. A total of 141 articles were included in this narrative review. Conclusions: Given the importance of big data analysis in reducing costs and improving the quality of healthcare; along with the potential role of DF in big data analysis, it is recommended to know the full potential of this technique including the advantages, challenges and applications of the technique before its use. Future studies should focus on describing the methodology and types of data used for its applications within the healthcare sector

    Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video

    No full text
    In this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented. © 1992-2012 IEEE

    Energieeffiziente und rechtzeitige Ereignismeldung mittels drahtloser Sensornetze

    Get PDF
    This thesis investigates the suitability of state-of-the-art protocols for large-scale and long-term environmental event monitoring using wireless sensor networks based on the application scenario of early forest fire detection. By suitable combination of energy-efficient protocol mechanisms a novel communication protocol, referred to as cross-layer message-merging protocol (XLMMP), is developed. Qualitative and quantitative protocol analyses are carried out to confirm that XLMMP is particularly suitable for this application area. The quantitative analysis is mainly based on finite-source retrial queues with multiple unreliable servers. While this queueing model is widely applicable in various research areas even beyond communication networks, this thesis is the first to determine the distribution of the response time in this model. The model evaluation is mainly carried out using Markovian analysis and the method of phases. The obtained quantitative results show that XLMMP is a feasible basis to design scalable wireless sensor networks that (1) may comprise hundreds of thousands of tiny sensor nodes with reduced node complexity, (2) are suitable to monitor an area of tens of square kilometers, (3) achieve a lifetime of several years. The deduced quantifiable relationships between key network parameters — e.g., node size, node density, size of the monitored area, aspired lifetime, and the maximum end-to-end communication delay — enable application-specific optimization of the protocol
    corecore