1,132 research outputs found

    Entropy-based feature extraction for electromagnetic discharges classification in high-voltage power generation

    Get PDF
    This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI

    Rough set theory applied to pattern recognition of partial discharge in noise affected cable data

    Get PDF
    This paper presents an effective, Rough Set (RS) based, pattern recognition method for rejecting interference signals and recognising Partial Discharge (PD) signals from different sources. Firstly, RS theory is presented in terms of Information System, Lower and Upper Approximation, Signal Discretisation, Attribute Reduction and a flowchart of the RS based pattern recognition method. Secondly, PD testing of five types of artificial defect in ethylene-propylene rubber (EPR) cable is carried out and data pre-processing and feature extraction are employed to separate PD and interference signals. Thirdly, the RS based PD signal recognition method is applied to 4000 samples and is proven to have 99% accuracy. Fourthly, the RS based PD recognition method is applied to signals from five different sources and an accuracy of more than 93% is attained when a combination of signal discretisation and attribute reduction methods are applied. Finally, Back-propagation Neural Network (BPNN) and Support Vector Machine (SVM) methods are studied and compared with the developed method. The proposed RS method is proven to have higher accuracy than SVM and BPNN and can be applied for on-line PD monitoring of cable systems after training with valid sample data

    Classification of EMI discharge sources using time–frequency features and multi-class support vector machine

    Get PDF
    This paper introduces the first application of feature extraction and machine learning to Electromagnetic Interference (EMI) signals for discharge sources classification in high voltage power generating plants. This work presents an investigation on signals that represent different discharge sources, which are measured using EMI techniques from operating electrical machines within power plant. The analysis involves Time-Frequency image calculation of EMI signals using General Linear Chirplet Analysis (GLCT) which reveals both time and frequency varying characteristics. Histograms of uniform Local Binary Patterns (LBP) are implemented as a feature reduction and extraction technique for the classification of discharge sources using Multi-Class Support Vector Machine (MCSVM). The novelty that this paper introduces is the combination of GLCT and LBP applications to develop a new feature extraction algorithm applied to EMI signals classification. The proposed algorithm is demonstrated to be successful with excellent classification accuracy being achieved. For the first time, this work transfers expert's knowledge on EMI faults to an intelligent system which could potentially be exploited to develop an automatic condition monitoring system

    A Review on the Classification of Partial Discharges in Medium-Voltage Cables : Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques

    Get PDF
    Medium-voltage (MV) cables often experience a shortened lifespan attributed to insulation breakdown resulting from accelerated aging and anomalous operational and environmental stresses. While partial discharge (PD) measurements serve as valuable tools for assessing the insulation state, complexity arises from the presence of diverse discharge sources, making the evaluation of PD data challenging. The reliability of diagnostics for MV cables hinges on the precise interpretation of PD activity. To streamline the repair and maintenance of cables, it becomes crucial to discern and categorize PD types accurately. This paper presents a comprehensive review encompassing the realms of detection, feature extraction, artificial intelligence, and optimization techniques employed in the classification of PD signals/sources. Its exploration encompasses a variety of sensors utilized for PD detection, data processing methodologies for efficient feature extraction, optimization techniques dedicated to selecting optimal features, and artificial intelligence-based approaches for the classification of PD sources. This synthesized review not only serves as a valuable reference for researchers engaged in the application of methods for PD signal classification but also sheds light on potential avenues for future developments of techniques within the context of MV cables.© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Partial discharge classification using deep learning methods—survey of recent progress

    Get PDF
    This paper examines the recent advances made in the field of Deep Learning (DL) methods for the automated identification of Partial Discharges (PD). PD activity is an indication of the state and operational conditions of electrical equipment systems. There are several techniques for on-line PD measurements, but the typical classification and recognition method is made off-line and involves an expert manually extracting appropriate features from raw data and then using these to diagnose PD type and severity. Many methods have been developed over the years, so that the appropriate features expertly extracted are used as input for Machine Learning (ML) algorithms. More recently, with the developments in computation and data storage, DL methods have been used for automated features extraction and classification. Several contributions have demonstrated that Deep Neural Networks (DNN) have better accuracy than the typical ML methods providing more efficient automated identification techniques. However, improvements could be made regarding the general applicability of the method, the data acquisition, and the optimal DNN structur

    1D-CNN based real-time fault detection system for power asset diagnostics

    Get PDF

    A Study of the Detection of Defects in Ceramic Insulators Based on Radio Frequency Signatures.

    Get PDF
    The presence of defects in outdoor insulators ultimately results in the initiation of partial discharge (PD) activity. Because insulation failure and the consequent breakdown of power equipment can occur due to the cumulative adverse effects of partial discharges, it is important to detect PD activity in its early stages. Current techniques used in PD off-line analyses are not suitable for detecting defective insulators in the field. The work presented in this thesis involved the investigation of a number of cases of insulator defects, with the goal of developing an online RF-based PD technique for monitoring ceramic disc insulators that exhibit a variety of defects. The first three classes examined were an intentionally cracked ceramic insulator disc; a disc with a hole through the cap, which creates internal discharges; and a completely broken insulator disc. The fourth class involved an external corona noise using a point-to-plane setup. The defective discs were considered individually and were also incorporated into strings of 2, 3, and 4 insulators as a means of capturing the radiated RF signatures under external high voltage AC power. The captured RF pulses were processed in order to extract statistical, spectral, and wavelet packet based features. Feature reduction and selection is carried out and classification results pertaining to each feature-set type were obtained. To classify the discharges arising from different types of defects, an artificial neural network (ANN) algorithm was applied to the extracted features, and recognition rates of more than 90% were reported for each class. In addition, the position of the defective insulator within the string was varied and high defect classification results exceeding 90% were reported regardless of the position

    Wavelet Transform Analysis to Applications in Electric Power Systems

    Get PDF
    The wavelet transform has received great importance in the last years on the power system analysis because the multi-resolution analysis presents proprieties good for the transient signal analysis. This chapter presents a review on main application of wavelet transform in electric power systems. The study areas have been classified as power system protection, power quality disturbances, power system transient, partial discharge, load forecasting, faults detection, and power system measurement. The areas in which more works have been developed are the power quality and protections field, where both cover 51% of the articles analyzed

    Partial Discharge Identification in MV switchgear using Scalogram representations and Convolutional AutoEncoder

    Get PDF
    This work proposes a methodology to automate the recognition of Partial Discharges (PD) sources in Electrical Distribution Networks using a Deep Neural Network (DNN) model called Convolutional Autoencoder (CAE), which is able to automatically extract features from data to classify different sources. The database used to train the model is constructed with real defects commonly found in MV switchgear in service, and it also includes noise and interference signals that are present in these installations. PD sources consist of defective mountings, such as the loss of sealing cap of cable terminations, or an earth cable in contact with cable termination insulation. Four sources were replicated in a Smart Grid Laboratory and on-line measurement techniques were used to obtain the PD signal data. The Continuous Wavelet Transform (CWT) was applied to post-process the PD signal into a time-frequency image representation. The trained model predicts with high accuracy new data, demonstrating the effectiveness of the methodology to automate the recognition of different partial discharges and to differentiate them from noise and other interference sources

    Interpretable Detection of Partial Discharge in Power Lines with Deep Learning

    Full text link
    Partial discharge (PD) is a common indication of faults in power systems, such as generators, and cables. These PD can eventually result in costly repairs and substantial power outages. PD detection traditionally relies on hand-crafted features and domain expertise to identify very specific pulses in the electrical current, and the performance declines in the presence of noise or of superposed pulses. In this paper, we propose a novel end-to-end framework based on convolutional neural networks. The framework has two contributions. First, it does not require any feature extraction and enables robust PD detection. Second, we devise the pulse activation map. It provides interpretability of the results for the domain experts with the identification of the pulses that led to the detection of the PDs. The performance is evaluated on a public dataset for the detection of damaged power lines. An ablation study demonstrates the benefits of each part of the proposed framework.Comment: 13 pages, 4 figures, 2 table
    • …
    corecore