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ABSTRACT 
This paper presents an effective, Rough Set (RS) based, pattern recognition method for 

rejecting interference signals and recognising Partial Discharge (PD) signals from 

different sources. Firstly, RS theory is presented in terms of Information System, 

Lower and Upper Approximation, Signal Discretisation, Attribute Reduction and a 

flowchart of the RS based pattern recognition method. Secondly, PD testing of five 

types of artificial defect in ethylene-propylene rubber (EPR) cable is carried out and 

data pre-processing and feature extraction are employed to separate PD and 

interference signals. Thirdly, the RS based PD signal recognition method is applied to 

4000 samples and is proven to have 99% accuracy. Fourthly, the RS based PD 

recognition method is applied to signals from five different sources and an accuracy of 

more than 93% is attained when a combination of signal discretisation and attribute 

reduction methods are applied. Finally, Back-propagation Neural Network (BPNN) and 

Support Vector Machine (SVM) methods are studied and compared with the developed 

method. The proposed RS method is proven to have higher accuracy than SVM and 

BPNN and can be applied for on-line PD monitoring of cable systems after training 

with valid sample data. 

   Index Terms — Partial Discharges, Pattern Recognition, Signal Processing, Rough 

Set, Knowledge Acquisition, Cables. 

 

1  INTRODUCTION 

AUTOMATIC interference signal recognition and PD 

recognition from different sources play important roles in PD 

based condition monitoring of cable systems [1-3]. A 

recommended flow chart for automatic PD and interference 

signal recognition for an on-line condition monitoring system, 

containing four working steps, is shown in Figure 1.  

Step 1 is named as Training Step. After data denoising, 

pulse extraction and signal identification, training data sets 

are divided into PD signals and interference signals. Then 

the data containing known signal types are fed into a pattern 

recognition algorithm, for example, RS [3,4], Neural 

Network [5] or SVM [6,7], to obtain the criteria, which are 

fed into step 2.  

Step 2 is named as Application Step. The criteria are 

transformed into programmable codes, which are applicable 

for autonomous classification of large volumes of 

application data.  

Step 3 is named as Validation Step. Validation is carried 

out according to signal visualisation criteria, e.g. parameter 

clustering analysis, to evaluate the decision rules and 

identify the errors of signal classification. These are fed into 
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Figure 1. Flowchart of automatic PD recognition of online condition monitoring systems
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step 4.  

Step 4 is named as Adjustment Step. Effective PD 

evaluation methods are applied for further identification 

and adjustment, e.g. Phase Resolved PD (PRPD) Pattern 

analysis [2], to create new criteria, which are added to the 

criteria in step 1 to improve system effectiveness. 

In Figure 1, methodology selection for pattern 

recognition in step 1 is significant for the success 

application of on-line pattern recognition of PD and 

interference signals. Generally speaking, there are two 

types of pattern recognition methodologies. In “Black Box” 

systems, e.g. SVM, BPNN, the assessment criteria are not 

available. In “White Box” systems, e.g. RS, Decision Tree, 

the criteria are available [8-10]. It is important to select a 

“White Box” method for on-line recognition of PD and 

interference signals for two major reasons. Firstly, it is easy 

to transform the criteria of “White Box” into IF THEN rules, 

which could be easily integrated into the on-line monitoring 

programs. Secondly, it is easy to modify the “White Box” 

criteria using the feedback from step 4, which will improve 

the accuracy of the pattern recognition through the 

application of on-line condition monitoring systems.  

In comparison with other pattern recognition methods, RS 

has two significant advantages. Firstly, RS is a “White Box” 

method, which could transfer information into decision rules 

being applied for further pattern recognition and signal 

classification. Secondly, RS is able to identify and remove 

redundant information and is able to identify the most effective 

parameters from the input data [8, 9].  

In this paper, RS based pattern recognition for interference 

rejection and PD recognition from different sources is studied, 

based on experimental data obtained in high voltage laboratory 

studies of PD from different cable fault types. 

2 ROUGH SET THEORY 

Rough Set (RS) is a mathematical tool that extracts 

information automatically from data by using matrix algebra 

and Set Theory to investigate correlations amongst data [4]. It 

has been used in many areas, including approximate 

classification, pattern recognition, process control, expert 

systems and data mining, e.g. [11-14]. Some background 

knowledge of RS is provided, including Information 

System, Lower and Upper Approximation, Signal 

Discretisation, Attribute Reduction, flowchart of RS based 

Pattern recognition, but fuller information can be gained 

from a paper presented at CIRED [4] on the application of 

RS Theory to PD assessment.  

2.1   INFORMATION SYSTEM 

An Information System (IS) can be defined as containing a 

finite set of objects with defined attributes, i.e. IS = (U, A), 

where U is a non-empty, finite sets of objects which require to 

be searched though to develop relationships and A is non-

empty, finite sets of attributes which can be assigned to the 

objects [15]. For every object Xn in the data set, there is a set of 

defined attributes, a∈A , where Va expresses the set of values 

a, called the domain of attribute a. One of the attributes which 

is assigned in the data pertaining to a particular object, Xn, is a 

decision as to the “condition” of the object, based on the other 

attributes.  

Table 1 presents a typical IS for data used to classify the 

flower Iris into 1 of the 3 types of iris genus, i.e. Setosa, 

Versicolor and Virginica, based on defined approximations of 

attributes [16]. The full data set contains 150 objects in the set 

U, i.e. types of iris to be classified. Each of the objects has 5 

attributes in set A, namely sepal length and width, petal length 

and width and the decision on classification. Thus, for this 



 

example, the data sets are defined as: U = {X1, X2, … X150},  A 

= {Sepal length, Sepal Width, Petal Length, Petal Width, 

Decision}. The decision state will assign each object to 1 of the 

3 types of iris genus based on defined approximations of the 4 

types of attributes. The approximation process is covered in 

section 2.2. 

Table 1. Information system of iris data. 

2.2   LOWER AND UPPER APPROXIMATION 

For objects in an Information System, for every subset of 

attributes B ⊆ A, an associated equivalence relation, called the 

B-indiscernibility relation, and denoted by IND (B), is defined 

as follows: 

𝐼𝑁𝐷(𝐵) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈: ∀𝑎 ∈ 𝐵, 𝑎(𝑥) = 𝑎(𝑦)} 

The equivalence classes of the indiscernibility relationship 

form upper and lower approximations to the values which can 

be used to define whether an object fits within a decision class, 

these are used in inductive learning to differentiate certain and 

uncertain knowledge [14]. As in section 2.1, X denotes a 

subset of elements in the finite sets of objects 𝑈(𝑋 ⊂ 𝑈) , 

which is the union of the training objects.  

The lower approximation of X in B space, denoted as BX, is 

defined as the elements that certainly belong to the elements of 

X. The upper approximation of X in B space, denoted as BX, is 

defined as the union of these elements which possibly belong 

to the set X.  

Similarly, all of the training data that can be potentially 

distinguished from others, conditioned on one or more 

extracted features (B) of all of the attributes (A), is denoted as 

the upper approximation of X in the space of these PD features 

(B ). The classified objects can be further confirmed as a 

member that is potentially related to a classification.  

The principle of set X, upper approximation, lower 

approximation, boundary and the demonstration of the 

application of RS theory to PD recognition are shown in 

Figure2.  

PD Type1

PD Type 3
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= Certain Rules

(a) (b)

Figure 2. (a) Schematic demonstration of the upper (blue solid line) and lower 

(yellow broken line) approximation of set  𝑋 , (b) the demonstration of the 

application of RS theory to PD recognition.  

2.3 SIGNAL DISCRETISATION 

Signal discretisation is used to transform continuous 

attributes into discrete ones. Taking PD rise time as an 

example, if the PD rise time for a given detection set-up ranges 

from 10 ns to 1000 ns, the continuous data can be converted 

into discrete values for use in RS analysis. If the objective is to 

identify the relationship between PD rise time and the PD 

sources, e.g. from cable insulation and cable termination, two 

types of attribute discretisation is required.  

First, decision attributes are labeled as: 

 PD from cable insulation is assigned a value 0;  

 PD from cable termination is assigned a value 1;  

 PD from cable joints is assigned a value of 2;  

 PD from switchgear box is assigned a value of 3;  

and so on.  

The second attribute to be assigned could relate to, for 

example, PD signal rise time (RT), e.g. assignments could be: 

 RT between 10 to 100 ns are assigned a value of 0;  

 RT between 100 to 200 ns are assigned a value of 1;  

 RT between 200 to 500 ns are assigned a value of 2; 

and  

 RT between 500 to 1000 ns are assigned a value of 3. 

Signal discretisation is one of the biggest challenges in 

application of RS theory, as RS cannot deal with continuous 

attributes data [13]. Unsupervised signal discretization and 

supervised signal discretization methodologies are applied in 

practical cases. Unsupervised signal discretisation includes 

Equal Interval Width, Equal Frequency Intervals, etc. [14,15]. 

Supervised signal discretisation includes One-Rule Discretizer 

(1RD), Recursive Minimal Entropy Partition (RMEP), Naive 

Scaler, Semi-Naive Scaler, etc. [14,15]. In this paper Equal 

Frequency Intervals, Naive Scaler, Semi-Naive Scaler and 

Recursive Minimal Entropy Partition are competitively 

employed for signal discretisation. More information of the 

methods can be found in references [14] and [15]. 

2.4 ATTRIBUTES REDUCTION 

If the set of attributes which is being examined contains 

inter-related information then it should be possible to reduce 

the number of factors that are considered in the analysis. A 

knowledge representation system containing the condition 

attributes A and the decision attributes d is called a decision 

table. In the decision table, if a set of attributes ai is superfluous 

in A, i.e. if it exerts no influence on the lower approximation of 

one or more focused objects. This can be expressed as 

IND(B) = IND(B − ai) indicating that the attribute ai can be 

removed from the decision table. In this case, the attribute set 

is reduced. If removal of the attribute set decreases the ability 

of the system to correctly relate data to a decision then the 

attribute ai is indispensable. There are several kinds of method 

for attribute reduction, e.g. Genetic Algorithm, Johnson’s 

Algorithm, Holte’s One Rule, etc. [11,14]. In this paper 

Genetic Algorithm and Johnson’s Algorithm are competitively 

applied for attribute reduction.  

U 
Sepal 

Length 

Sepal 

Width 

Petal 

Length 

Petal 

Width 
Decision 

x1 5.1 3.5 1.4 0.2 Setosa 

… … … … … … 

x51 7.0 3.2 4.7 1.4 Versicolor 

… … … … … … 

x101 6.3 3.3 6.0 2.5 Virginica 

… … … … … … 



 

Genetic Algorithm for attribute reduction was first 

introduced by Jakub Wroblewski in reference [17], which has 

support for both cost information and approximate solutions 

[14]. Johnson’s Algorithm is a simple greedy algorithm to 

compute a single reduct only [14]. The algorithm has a natural 

bias towards finding a single prime implicate of minimal 

length [14]. More information of the algorithms can be found 

in references [14] and [15]. 

2.5 FLOWCHART OF APPLICATION OF ROUGH SET 

THEORY FOR PATTERN RECOGNITION 

The flowchart of application of RS theory for development 

of PD pattern recognition is shown in Figure 3.  

Raw data should first be pre-processed, e.g. to remove noise 

and interference signals. Thereafter, feature extraction will be 

carried out on the PD pulses identified. The data from the 

features then has a discretisation procedure applied, changing 

the continuous information into discrete condition attributes. 

To allow the RS algorithm to be trained, data partition divides 

the data into training and testing data sets.  

Using the training data sets, procedures for attribute 

reduction and decision rules generation are applied in order to 

generate initial decision rules.  

Thereafter, the decision rules are reviewed to remove 

isolated rules with low support. Using test data sets, rules 

validation is applied to assess whether the decision rules 

generated by training data sets are sufficiently robust. If the 

accuracy is higher than threshold, the final set of decision rules 

is generated: if the outcome is not satisfactory then the 

procedure in the flowchart is repeated using other data pre-

processing and feature extraction. 
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Figure 3. Flowchart of RS based pattern recognition 

3 PD DATA GENERATION AND FEATURE 

EXTRACTION 

3.1 EPR CABLE AND ARTIFICIAL DEFECTS  

One type of 11kV EPR cable, which is from an in-service 

breakdown incident in a power generation, was applied for PD 

testing experiments. The cable has only one point of 

breakdown. Cable sections which were free of defects were 

taken to produce artificial defects and then for PD testing. 

  The dimensions and layers of the EPR cable sample are 

shown in Figure 4.  

Aluminium core

Inner semiconductor

EPR layer

Outer semiconductor

Sheath (Wound Cu tape)

Aluminium armour

PVC over sheath

21 23 30.5 32.5 34.5

 

Figure 4. The dimensions and layers of the EPR cable sample. Units: mm. 

Five types of artificial defect are created in the cable for PD 

testing: these are shown schematically in Figure 5 and Figure 6. 

The length of each EPR cable sample is 1.5 m to 2 m. All five 

defect types are found in in-service cable systems [18]. 

To generate defect type 1, void crossing PVC over sheath, 

aluminium armour, sheath, outer semiconductor, EPR 

insulation layer, a precision 0.4 mm diameter printed-circuit-

board drill was applied to the EPR cable sample to generate a 

hole. Then a copper tape is fixed over the hole to seal the 

defect, as shown in Figure 5a. 
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Figure 5. Defect type and dimension: (a) 1: void in insulation; 0.4mm 

diameter, 2mm depth. (b) 2: protrusion on outer conductor; 0.4mm 

diameter, 2mm depth. (c) 3: floating protrusion; 0.4mm diameter, 2mm 

depth. (d) 4: breech in outer conductor; 7mm*7mm. 

To generate defect type 2, protrusion on outer conductor 

[18], a printed-circuit-board drill is inserted into the cable, 

Figure 5b.  

To generate defect type 3, floating protrusion on outer 



 

conductor, a printed-circuit-board drill was inserted into the 

cable, as shown in Figure 5c. The difference between defect 

type 2 and 3 is: for type 2 the protrusion is in contact with the 

outer conductor; for type 3 the protrusion is not in contact with 

the outer conductor. 

To generate defect type 4, breech in outer conductor, a 7 

mm*7mm area was cut off from PVC over sheath, aluminium 

armour, sheath and outer semiconductor, as shown in Figure 

5d. 

To generate defect type 5, surface discharge around end 

termination, part of the outer copper sheath of the cable sample 

is exposed and connected to the earth, as shown in Figure 6.  

 
Figure 6. Defect type 5: Surface discharge around end termination. 

3.2 EXPERIMENTAL SETUP  

A standard IEC 60270 system was set up for PD testing, 

based on the artificial defects presented in section 3.1. A 

commercial High Frequency Current Transformer (HFCT), 

which is widely applied for on-line PD monitoring of cable 

systems [1, 2], was integrated into the IEC 60270 system. The 

bandwidth of the HFCT, as shown in Figure 7, is from 20 kHz 

to 20 MHz. A LeCroy 104Xi digital oscilloscope is used for 

data acquisition. A voltage probe connected to the EPR cable 

conductor gave the 50 Hz sinusoidal phase signal, the trigger 

signal for the data acquisition. Wide-band amplifiers and wide-

band attenuators are applied during testing to adjust the signals 

into the range of the oscilloscope (±10V). The PD testing and 

detection system schematic is given in Figure 8.  

 
Figure 7. HFCT frequency response. 

The sample rate of the data acquisition is 100 MS/s. The 

sample time length for each data acquisition is 20 ms, one 

power cycle. Signal from three channels, namely 50 Hz phase 

signal, signal from the HFCT and signal from the detection 

impendence Zm of the IEC 60270 system, are synchronously 

logged for further analysis.  

During PD testing of each artificial defect, the voltage was 

increased from 0 to PD Inception Voltage (PDIV), in steps of 1 

kV, to 11kV, 12 kV or 13 kV and data from three channels 

was logged for each voltage level. PD test voltage and the 

number of sets of 20 ms data for each defect type are shown in 

Table 2. Although the numbers of data sets for the five defect 

types are different, the number of PD pulses per defect is 

similar. More than 400 sets of PD pulses were extracted from 

each defect and data analysis and pattern recognition applied. 

LeCroy 104Xi, 1GHz

HFCT

 ~AC

Artificial 
defect

Voltage 
probe

Stress 
cone

Cable sample

+25 
dB

-30
dB

Wide-band 
amplifierWide-band 

attenuator

Earth strap

(b)  
Figure 8. PD detection system combining a commercial HFCT and an 

IEC60270 system. Data was measured relative to the 50 Hz AC supply. Ck 

represents the IEC coupling capacitor and Zm the measurement impedance.  

Table 2. PD test voltage and number of sets of 20 ms data for each defect. 

Defect 

Type 

5 

kV 

6 

kV 

7 

kV 

8 

kV 

9 

kV 

10 

kV 

11 

kV 

12 

kV 

13 

kV 

SUM 

Type 1 50 50 50 50 50 50 50 0 0 350 

Type 2 0 50 50 50 50 50 54 53 52 409 

Type 3 0 51 50 50 26 50 52 61 0 340 

Type 4 0 0 50 50 51 52 51 0 0 254 

Type 5 0 0 10 10 10 10 10 0 0 50 

 

3.3 DATA PRE-PROCESSING AND FEATURE 

EXTRACTION 

Data pre-processing and feature extraction are applied to 

the raw data to extract pure PD and interference signals for 

pattern recognition.  

As the Signal to Noise Ratio (SNR) of PD detected by IEC 

60270 system is high, the threshold is set to two times that of 

the white noise (recommended by IEC 60270) to rejected noise 

and interference signals [19]. The SNR of PD detected by 

HFCT is low, it is challenging for effective PD pulse 

extraction detected by HFCT. As in Figure 8, data acquisition 

of the IEC 60270 system and HFCT are fully synchronised 

with the AC signal, collected in Channel 1. Location 

information of PD pulses extracted in IEC 60270 system are 

applied to identify PD pulses detected by HFCT as the timing 

of PD pulses from the two channels are close (less than 500 ns). 

Details of PD identification by HFCT, previously named as 

Synchronous Detection and Multi-information Fusion (SDMF) 

based signal identification method, is presented in reference 

[20], and is not fully discussed here. After data pre-processing, 



 

PD and interference signals detected by HFCT are extracted 

from the raw data.  

PD feature extraction was then applied to describe PD 

activity from different faults in terms of different PD pulse 

shape and distribution parameters. The three sets of features 

that could be used for this investigation span different time-

bases, i.e. PD features of individual PD pulses (in the nano-

second scale), PD features of cumulative data over one power 

cycle (20 ms) and PD features of cumulative data (over an 

extended period of time). The relationships of the three kinds 

of PD features with respect to defect classification are shown 

in Figure 9.  
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Figure 9. Relationships of three kinds of PD features. 

Features of single pulses describe physical characteristics of 

individual PD pulses. Features for 20 ms data sets describe 

distribution of pulses in a power cycle and can be used based 

on phi-q-n identification: low numbers of pulses from certain 

fault types reduces the effectiveness of these measures. 

Features over a longer time describe the trend of PD activity 

and could provide asset managers with information on 

development of faults.  

In this paper, however, due to the limitation on the test 

duration in laboratory studies, only features for single pulses 

are applied for pattern recognition. The sample size and 

defined characteristics of the faults are sufficient for pattern 

recognition and evaluation. The other sets of features are also 

applicable for RS based pattern recognition and knowledge 

discovery but a longer study would need to be undertaken with 

known sample faults to allow the knowledge rules to be 

identified with any confidence. 

In the present investigation 17 features of transient pulses 

were adopted including pulse width [21], rise time [21], fall 

time [21], peak voltage of transient pulse, polarity of transient 

pulse, mean voltage of transient pulse, root mean square of 

transient pulse, standard deviation of transient pulse, skewness 

of transient pulse, kurtosis of transient pulse, crest factor of 

transient pulse (maximum magnitude over root mean square), 

form factor of transient pulse (root mean square over average 

value), main frequency of transient pulse, phase angle, 

equivalent time length (T) [22, 23], equivalent bandwidth (W) 

[22, 23], discharge magnitude in picoCoulomb. The details, 

including units and example of the features data from a PD 

pulse, are shown in Table 3.   

2000 interference signals and 2000 PD signals from five 

types of artificial defects in 11kV EPR cables, detected by 

HFCT, are processed and selected using the system outlined 

above. The 17 parameters of the 4000 samples, shown in Table 

2, are calculated and used as input for investigation of RS 

based pattern recognition. 

Table 3. PD features of individual pulses. 

4  ROUGH SET BASED INTERFERENCE SIGNAL 

REJECTION 

It is challenging to differentiate PD and interference pulses 

as the SNR of signals detected by HFCT is low. To consider 

parameters which can be used to separate the two signal types, 

an example of a PRPD from defect type 2, using maximum 

voltage, rise time, equivalent bandwidth [22] and equivalent 

time length [22] as discriminators, is shown in Figure 10. The 

visualisation of PD and interference signals shows that it is 

difficult to distinguish PD and interference signals through the 

features. 

RS based pattern recognition of PD and interference signals 

is carried out using the process in Figure 3. 1500 PD and 1500 

interference signals are applied to train the system: the other 

500 PD signals and 500 interference signals are applied to test 

the system. 4 signal discretisation methods, namely Naive, 

Semi-Naive, Entropy and Equal Frequency, are applied to the 

PD and interference samples. Genetic and Johnson attribute 

reduction methods are applied to the training data sets. To 

consider the impact of the different discretisation and reduction 

methods, a matrix of methods was undertaken, as outlined in 

Table 4. Once the knowledge rules are generated these are then 

evaluated by applying the test samples to the system. The 

results of knowledge rules evaluation for the combinations, 

which are also the results of signal classification, are shown in 

Table 4.  

In Table 4, of all combinations considered, combinations C1 

(Naive and Genetic) and C3 (Semi-Naïve and Genetic) have 

Index Name Unit Example 

Feature 1 peak voltage mV 3.65 

Feature 2 polarity -1 or +1 -1 

Feature 3 mean voltage mV 2.28 

Feature 4 root mean square mV 2.61 

Feature 5 standard deviation mV 1.31 

Feature 6 pulse width 10 ns 15 

Feature 7 rise time 10 ns 7 

Feature 8 fall time 10 ns 8 

Feature 9 skewness - 0.35 

Feature 10 kurtosis - 0.53 

Feature 11 crest factor - 1.39 

Feature 12 form factor - 1.14 

Feature 13 main frequency Hz 0 

Feature 14 phase angle degree 175.3 

Feature 15 T - 23.5 

Feature 16 W - 8.37 

Feature 17 discharge magnitude pC 72.9 



 

the highest signal evaluation accuracy, with a value of 99.9%. 

Processing time includes both training and testing times. Note 

that combination C1 has the longest processing time, 24.3 s, 

and C3 has a shorter time, 17.5 s. 

(a)

(b)

(c)

(d) Time (ms)

Time (ms)

Time (ms)

Time (ms)

 

 Interference signals  PD signals  
Figure 10. PRPD of four pulse signal parameters from defect type 2 (a) 

maximum magnitude, (b) rise time, (c) equivalent bandwidth, (d) 

equivalent time length. 

Table 4. Results of decision rules evaluation of PD and interference signals 

recognition. 

Assessment of the signal evaluation using combination C1 

is shown in Table 5. These indicate that only 1 PD pulse is not 

recognised, i.e. an accuracy of 99.8%, but the accuracy of 

interference signals identification is 100%. It can be seen that 

the signal classification accuracy is very robust. As presented 

in Figure 10, some interference signals have similar magnitude 

to PD pulses, but the RS based interference signal rejection has 

high accuracy despite SNR being low.  

Table 5. Results of decision rules evaluation of combination type C1. 

Ud* is for Undefined 

5  ROUGH SET BASED PD SIGNAL 

RECOGNITION FROM DIFFERENT SOURCES 

Now that confidence in the ability of the system to separate 

PD and noise has been established, it is necessary to explore 

the ability to differentiate different fault types. Figure 11 

overlays the PRPD from four PD parameters for five types of 

defects: defect type is discriminated by color as shown in the 

key. 

  PD Type 1 PD Type 2

  PD Type 3 PD Type 4

 PD  Type 5

(a) Time (ms)

(b) Time (ms)

(c) Time (ms)

(d) Time (ms)

 

Figure 11. PRPD of four parameters of five types of PD signals (a) PRPD of 

discharge magnitude of pC, (b) PRPD of rise time, (c) PRPD of equivalent 

band width, (d) PRPD of equivalent time length. 

RS based pattern recognition for PD from different sources 

is carried out according to the flowchart in Figure 3, based on 

the 2000 PD samples. 1500 samples PD signals from 5 defect 

types are randomly selected to train the system, 300 samples 

Signal 

Discretisation 

Algorithm 

Attribute 

Reduction 

Method 

Combination 

Type Results 

Processing 

Time(s) 

Naive 
Genetic C 1 99.9% 24.3 

Johnson C 2 95.6% 6.6 

Semi-Naive 

Genetic C 3 99.9% 17.5 

Johnson C 4 95.6% 7.7 

Entropy 

Genetic C 5 99% 14.6 

Johnson C 6 35.6% 5.7 

Equal 

Frequency 

Genetic C 7 67.9% 2.1 

Johnson C 8 67.9% 1.6 

 Predicted 

Actual 

 PD Interference Ud*   

PD 499 0 1 99.8% 

Interference 0 500 0 100% 

 100% 100% 0 99.9% 



 

for each fault type; the other 500 PD samples are applied for 

testing, 100 samples for each fault type. Signal discretisation 

methods and attribute reduction methods are the same that 

used for RS based interference signal rejection. The results of 

decision rules evaluation are shown in Table 6.  

Table 6. Results of decision rules evaluation of PD from different sources 

In Table 6, the combination C1 of Naive and Genetic has 

the highest signal evaluation accuracy, 93%, but combination 

C1 has the longest processing time, 26.4 s, this includes both 

training and testing times. The assessment of the signal 

evaluation for combination C1 is shown in Table 7. It is shown 

that the average signal classification accuracy is 93%: 1 

sample of PD Type 4 is misjudged as Type 1; 1 sample of PD 

Type 4 is misjudged as PD Type 3. 

Table 7. Results of decision rules evaluation of combination type C1. 

Ud* is for Undefined 

6  SVM AND BPNN BASED PD RECOGNITION 

FROM DIFFERENT SOURCES 

To further demonstrate the advantages of RS based PD 

pattern recognition, two popular PD pattern recognition 

methods, SVM and BPNN, are applied to PD from different 

sources and their determination compared with RS method. 

SVM was first proposed by Vapnik in 1995 [7]. The input 

vectors of SVM are mapped to a high-dimensional space by a 

non-linear mapping in order to identify an optimal hyperplane 

which makes the gaps between samples of different classes 

largest [6, 7]. There are four factors, signal normalisation, 

kernel function, penalty factor C and kernel function 

paramount γ, which significantly affect the accuracy of SVM 

based pattern recognition [6, 7]. In this work, normalisation is 

applied to fit the signals into 0 to +1 range; Radial Basis 

Function (RBF) is chosen as the kernel function, based on 

references [5], [6] and [7]; a recommended Grid-Search and 

Cross-Validation method, reference [22], is employed for 

optimisation of C and γ. C= 2-10, 2-9,…,29,210, γ=2-10, 2-

9,…,29,210 are applied for grid-search. The PD recognition 

accuracies of 1500 training samples under different C and γ are 

shown in Figure 12.  

 
Figure 12. The training accuracy of different C and γ combination. 

The values of 30 to 80 represent the Cross-Validation 

accuracy from 30% to 80%. The best training accuracy is 

86.5%, when C=256 and γ =0.0039063. The Grid-Search time 

is 331.58 s, which is the training time of SVM based PD 

recognition. Then the 500 testing samples are input to the 

trained SVM with C=256 and γ=0.0039063. The results of PD 

recognition from different sources are shown in Table 8.  

Table 8. Results of SVM based PD recognition. 

The average accuracy is 439/500=87.8%. The time for 

testing is 0.73 s. So the total time, including training and 

testing, for the SVM based PD recognition from different 

sources is 332.31 s. 

A three-layered BPNN, which is widely adopted for pattern 

recognition, is also applied for PD recognition from different 

sources. As the number of input parameter is 17, the number of 

nodes in the BPNN input layer is 17. Similarly, as the expected 

number of PD defects to be recognised is 5, the number of 

nodes in the BPNN output layer is 5. Although the number of 

nodes in the hidden layer plays an important role in the success 

of BPNN based pattern recognition, there is no available 

theory on how the number of nodes in the hidden layer should 

be chosen [24]. To compensate for this, several numbers of 

nodes in the hidden layer, namely 10, 15, 20, 25 and 30, are 

employed to achieve ideal signal classification accuracy. 

Signal normalisation is also applied to limit the signals into 0 

to +1 range before BPNN based signal classification. The 

learning rate of the BPNN is 0.01. The 2000 PD samples have 

the same division of 1500 training samples and 500 testing 

samples as used for both RS and SVM methods. 

The relationships of the numbers of hidden layers, the 

processing time and the signals classification accuracy are 

shown in Table 9. The best signal classification is 84.8% when 

the number of hidden layer is 10 and the training and testing 

Signal 

Discretisation 

Algorithm 

Attribute 

Reduction 

Method 

Combination 

Type Results 

Processing 

Time (s) 

Naive 
Genetic C 1 93% 26.4 

Johnson C 2 41% 22.7 

Semi-Naive 

Genetic C 3 89.2% 26.2 

Johnson C 4 41% 19.8 

Entropy 

Genetic C 5 32.2% 13.0 

Johnson C 6 1.2% 10.2 

Equal 

Frequency 

Genetic C 7 34.4% 1.5 

Johnson C 8 34% 1.1 

 Predicted PD Type 

Actual 

PD 

Type 

 T1 T2 T3 T4 T5 Ud*  

T1 95 0 0 0 0 5 95% 

T2 0 93 0 0 0 7 93% 

T3 0 0 91 0 0 9 91% 

T4 1 0 1 89 0 9 89% 

T5 0 0 0 0 97 3 97% 

Ud* 0 0 0 0 0 0 Ud 

 98.9% 100% 98.9% 100% 100% 0 93% 

 Predicted PD Type 

Actual 

PD 

Type 

 T1 T2 T3 T4 T5 Accuracy 

T1 100 0 0 0 0 100% 

T2 0 70 30 0 0 70% 

T3 4 17 79 0 0 79% 

T4 0 0 0 95 5 95% 

T5 0 0 0 5 95 95% 

      87.8% 



 

processing time is 3.4 second.  

Table 9. Results of BPNN based PD recognition. 

The comparison of the three PD pattern recognition 

methods is shown in Table 10. As the training and testing time 

evaluation of three methods, RS, SVM and BPNN, are under 

the same computer, the comparison of computational time is 

valid. 

Table 10. Comparison of three kinds of pattern recognition methods. 

In Table 10, RS shows the best signal classification 

accuracy among three methods, which proves the effectiveness 

of RS based PD recognition.  

A disadvantage of RS is that the method takes more 

processing time for training and testing than BPNN. The 

reason for this increasing time for RS is that as the number of 

sample increases the number of decision rules will also 

increase. As the testing samples are evaluated with all the 

decision rules, increasing the number of decision rules 

increases the time taken.  

Although both SVM and BP are capable of adaptive 

generation for large samples and have high signal classification 

accuracy, the biggest disadvantage of the methods is that they 

are “Black Box” and do not allow the user to understand the 

decision making process.  

7 CONCLUSIONS AND DISCUSSIONS 

RS based pattern recognition has been shown capable of 

interference signal rejection and, when compared with SVM 

and BPNN methods, higher accuracy for PD signal recognition 

from different sources. Conclusions can be drawn as following: 

 RS has high signal classification accuracy: 99.9% for 

interference signal rejection and 93% for PD 

recognition of different sources, when the Naive 

algorithm based signal discretisation and Genetic 

algorithm based attribute reduction is applied. 

 Signal discretisation and attribute reduction methods 

play important roles in RS based PD and interference 

signals pattern recognition.  

 Analysis has shown that, based on the experimental PD 

data, the Naive algorithm based signal discretisation is 

one of the most effective signal discretisation methods 

among 4 different methods. 

 Analysis has also shown that, based on experimental 

data, Genetic Algorithm based attribute reduction is an 

effective method for RS based pattern recognition. 

 RS is proven to provide higher signal classification 

accuracy than SVM and BPNN, based on 2000 PD 

samples from laboratory studies of 5 fault types. 

 RS is shown to require more processing time than 

BPNN, and less processing time than SVM, based on 

the 2000 PD samples. 
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