4 research outputs found

    Representation Learning for Words and Entities

    Get PDF
    This thesis presents new methods for unsupervised learning of distributed representations of words and entities from text and knowledge bases. The first algorithm presented in the thesis is a multi-view algorithm for learning representations of words called Multiview Latent Semantic Analysis (MVLSA). By incorporating up to 46 different types of co-occurrence statistics for the same vocabulary of english words, I show that MVLSA outperforms other state-of-the-art word embedding models. Next, I focus on learning entity representations for search and recommendation and present the second method of this thesis, Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised learning method, but it is based on the Variational Autoencoder framework. Evaluations with human annotators show that NVSE can facilitate better search and recommendation of information gathered from noisy, automatic annotation of unstructured natural language corpora. Finally, I move from unstructured data and focus on structured knowledge graphs. I present novel approaches for learning embeddings of vertices and edges in a knowledge graph that obey logical constraints.Comment: phd thesis, Machine Learning, Natural Language Processing, Representation Learning, Knowledge Graphs, Entities, Word Embeddings, Entity Embedding

    Representation Learning for Words and Entities

    Get PDF
    This thesis presents new methods for unsupervised learning of distributed representations of words and entities from text and knowledge bases. The first algorithm presented in the thesis is a multi-view algorithm for learning representations of words called Multiview LSA (MVLSA). Through experiments on close to 50 different views, I show that MVLSA outperforms other state-of-the-art word embedding models. After that, I focus on learning entity representations for search and recommendation and present the second algorithm of this thesis called Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised learning method, but it is based on the Variational Autoencoder framework. Evaluations with human annotators show that NVSE can facilitate better search and recommendation of information gathered from noisy, automatic annotation of unstructured natural language corpora. Finally, I move from unstructured data and focus on structured knowledge graphs. Moreover, I present novel approaches for learning embeddings of vertices and edges in a knowledge graph that obey logical constraints

    Automatic Extraction and Assessment of Entities from the Web

    Get PDF
    The search for information about entities, such as people or movies, plays an increasingly important role on the Web. This information is still scattered across many Web pages, making it more time consuming for a user to find all relevant information about an entity. This thesis describes techniques to extract entities and information about these entities from the Web, such as facts, opinions, questions and answers, interactive multimedia objects, and events. The findings of this thesis are that it is possible to create a large knowledge base automatically using a manually-crafted ontology. The precision of the extracted information was found to be between 75–90 % (facts and entities respectively) after using assessment algorithms. The algorithms from this thesis can be used to create such a knowledge base, which can be used in various research fields, such as question answering, named entity recognition, and information retrieval
    corecore