25,370 research outputs found

    Towards interoperability through inter-enterprise collaboration architectures

    Full text link
    Most enterprise architectures published so far are capable of generating reasonably good descriptive models for individual enterprises to enable integration, organization and synchronization of enterprise elements: organizational structure, business processes, information systems and technology infrastructure, among others. However, research in this field applied to the extended enterprise or inter-enterprise architectures that takes into account the growing trend towards complex collaborative environments is very scarce. In this sense, this article seeks to analyze, link and synthesize the researches that has addressed the disciplines of enterprise architecture and business collaboration, in order to identify possible future research needs from the conceptualization made.Vargas, A.; Boza Garcia, A.; Cuenca, L. (2011). Towards interoperability through inter-enterprise collaboration architectures. En On the Move to Meaningful Internet Systems: OTM 2011 Workshops. Springer Verlag (Germany). 7046:102-111. doi:10.1007/978-3-642-25126-9_18S1021117046Adam, O., Hofer, A., Zang, S., Hammer, C., Jerrentrup, M., Leinenbach, S.: A Collaboration Framework for Cross-enterprise Business Process Management. In: First International Conference on Interoperability of Enterprise Software and Application, Geneva (2005)Chalmeta, R., Grangel, R.: ARDIN extension for virtual enterprise integration. The Journal of Systems and Software 67, 141–152 (2003)Choi, Y., Kang, D., Chae, H., Kim, K.: An enterprise architecture framework for collaboration of virtual enterprise chains. The International Journal of Advanced Manufacturing Technology 35, 1065–1078 (2008)Schekkerman, J.: Extended Enterprise Architecture Framework Essentials Guide. Institute For Enterprise Architecture Developments, IFEAD (2006), http://www.enterprise-architecture.info/index.htmISO 15704. Industrial automation systems - Requirements for enterprise-reference architectures and methodologies.: International Organization for Standardization (2000)Kosanke, K., Vernadat, F., Zelm, M.: CIMOSA: Enterprise engineering and integration. Computers in Industry 40, 83–97 (1999)Cuenca, L.: Marco arquitectónico para la propuesta IE-GIP. Extensión de la arquitectura CIMOSA. Aplicación a una empresa del sector cerámico. PhD thesis. Universidad Politécnica de ValenciaMolina, A., Panetto, H., Chen, D., Whitman, L.: Enterprise Integration and Networking: challenges and trends. Studies in Informatics and Control 16(4), 353–368 (2007)Ortiz, A., Lario, F., Ros, L.: Enterprise Integration—Business Processes Integrated Management: a proposal for a methodology to develop Enterprise Integration Programs. Computers in Industry 40, 155–171 (1999)Chalmeta, R., Campos, C., Grangel, R.: References architectures for enterprise integration. The Journal of Systems and Software 57, 175–191 (2001)Vernadat, F.: Enterprise modeling and integration (EMI): Current status and research perspectives. Annual Reviews in Control 26, 15–25 (2002)Williams, T., Li, H.: PERA and GERAM enterprise reference architectures in enterprise integration. Information Infrastructure Systems for Manufacturing, 1–27 (1998)Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and Analysis. Springer, Heidelberg (2009)Arango, M., Londoño, J., Zapata, J.: Arquitectura empresarial- Una visión general. Revista Ingenierías Universidad de Medellín 9(16), 101–111 (2010)Bernard, S.: An introduction to enterprise architecture. AuthorHouse, Bloomington (2005)Cuenca, L., Ortiz, A., Boza, A.: Arquitectura de Empresa. Visión General. In: IX Congreso de Ingeniería de Organización, Gijón (2005)Maya, E.: Arquitectura empresarial: un nuevo reto para las empresas de hoy. Centro de Investigación de las Telecomunicaciones. INTERACTIC: Interacción con la información (2010), http://www.interactic.org.co/THE OPEN GROUP.: ARCHIMATE, The Power of Enterprise Architecture (2009), http://www.archimate.org/en/home/Stelzer, D.: Enterprise Architecture Principles: Literature Review and Research Directions. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 12–21. Springer, Heidelberg (2010)Schekkerman, J.: Enterprise architecture validation. Achieving business-aligned and validated enterprise architectures. Institute For Enterprise Architecture Developments, IFEAD (2004), http://www.enterprise-architecture.info/index.htmKosanke, K.: CIMOSA Primer on key concepts, purpose and business value (1996), http://cimosa.cnt.pl/Chen, D., Vallespir, B., Doumeingts, G.: GRAI integrated methodology and its mapping onto generic enterprise reference architecture and methodology. Computers in Industry 33, 387–394 (1997)Rathwell, G.: PERA Enterprise Integration Web Site (2005), http://www.pera.net/Williams, T., Rathwell, G., Li, H.: A handbook on master planning and implementation for enterprise integration programs. PERA Enterprise Integration Web Site (2001), http://www.pera.net/IFIP.: GERAM: Generalised Enterprise Reference Architecture and Methodology. International Federation for Information Processing (1999), http://dl.ifip.org/index.php/index/indexOrtiz, A.: Propuesta para el Desarrollo de Programas de Integración Empresarial en Empresas Industriales. Aplicación a una Empresa del Sector Cerámico. Universidad Politécnica de Valencia (1998)Cuenca, L., Boza, A., Ortiz, A.: Architecting business and IS/IT strategic alignment for extend enterprises. Studies in Informatics and Control 20(1), 7–18 (2011)The Open Group (2011), https://www.opengroup.org/index.htmGrangel, R.: Propuesta para el Modelado del Conocimiento Empresarial. PhD thesis Universidad Jaume I de Castello (2007)Scheer, A., Schneider, K.: ARIS – Architecture of Integrated Information. Handbook on Architectures of Information Systems. International Handbooks on Information Systems 3, 605–623 (2006)ISO/CEN 19439. Enterprise integration - Framework for enterprise modelling.: International Organization for Standardization (2006)Stadtler, H., Kilger, C.: Supply Chain Management and advance planning. Concepts, Models, Sofware and Cases Studies. Springer, Heidelberg (2002)Alarcón, F., Ortiz, A., Alemany, M., Lario, F.: Planificación Colaborativa en un contexto de varias Cadenas de Suministro: ventajas y desventajas. In: VIII Congreso de Ingeniería de Organización, Leganés, pp. 857–866 (2004)Alarcón, F.: Desarrollo de una Arquitectura para la definición del proceso de Comprometer Pedidos en contextos de Redes de Suministro Colaborativas. Aplicación a una Red compuesta por Cadenas de Suministro en los Sectores Cerámico y del Mueble. PhD thesis Universidad Politécnica de Valencia (2005)Petersen, K., Ragatz, G., Monczka, R.: An Examination of Collaborative Planning Effectiveness and Supply Chain Performance. The Journal of Supply Chain Management 41(2), 14–25 (2005)Ribas, I., Companys, R.: Estado del arte de la planificación colaborativa en la cadena de suministro: Contexto determinista e incierto. Intangible Capital, 91–121 (2007)Ribas, I., Lario, F., Companys, R.: Modelos para la planificación colaborativa en la cadena de suministro: contexto determinista e incierto. In: Congreso de ingeniería de organización, Valencia, pp. 1–10 (2006)Dudek, G.: Collaborative Planning in Supply Chains. Supply Chain Management and Collaborative Planning. Springer, Heidelberg (2009)Stadtler, H.: A framework for collaborative planning and state-of-the-art. OR Spectrum 31, 5–30 (2009)Kilger, C., Reuter, B., Stadtler, H.: Collaborative Planning. In: Stadtler, H., Kilger, C. (eds.) Supply Chain Management and Advanced Planning-—Concepts, Models Software and Case Studies, pp. 263–284. Springer, Heidelberg (2008)Audy, J., Lehoux, N., D’Amours, S.: A framework for an efficient implementation of logistics collaborations. International Transactions in Operational Research, 1–25 (2010)Zachman, J.: A Framework for Information Systems Architecture. IBM Systems Journal 26(3), 454–470 (1987

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    Modelling electronic service systems using UML

    Get PDF
    This paper presents a profile for modelling systems of electronic services using UML. Electronic services encapsulate business services, an organisational unit focused on delivering benefit to a consumer, to enhance communication, coordination and information management. Our profile is based on a formal, workflow-oriented description of electronic services that is abstracted from particular implementation technologies. Resulting models provide the basis for a formal analysis to verify behavioural properties of services. The models can also relate services to management components, including workflow managers and Electronic Service Management Systems (ESMSs), a novel concept drawn from experience of HP Service Composer and DySCo (Dynamic Service Composer), providing the starting point for integration and implementation tasks. Their UML basis and platform-independent nature is consistent with a Model-Driven Architecture (MDA) development strategy, appropriate to the challenge of developing electronic service systems using heterogeneous technology, and incorporating legacy systems

    Tele-education Process Modelling supported by the ODP Enterprise Viewpoint Language

    Get PDF
    This paper reports on applying the ODP enterprise viewpoint in the domain of tele-education. The work is conducted as part of a research activity that aims at designing a tele-education system to support planning, execution and evaluation of dynamic distributed educational processes. We explore the ODP enterprise viewpoint as a basis for communication and co-operation between educational scientists and ODP systems designers involved in the design process. Our application of the enterprise viewpoint involves four main steps. First, an educational language is proposed to describe educational processes in generic terms. Second, a set of appropriate enterprise language concepts is selected. Third, a relationship is established between the educational language and enterprise language concepts. Fourth, an educational process is modelled in terms of an entity-oriented model and a behaviour-oriented model. It is hoped that the experience gained in this exercise will provide useful feedback to both the educational and ODP communitie

    Towards the development of the framework for inter sensing enterprise architecture

    Full text link
    [EN] Inter-enterprise architecture (IEA) is a new concept that seeks to apply the tools and methodologies of enterprise architecture (EA) in a collaborative context, in order to model collaborative organizations in an inclusive manner. According to the main enterprise architectures proposed to this point, an EA should be conformed at least for a framework, a methodology and a modelling language. Sensing enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the Internet. These fields have come into focus recently, and there is not evidence of the use of IEA for modelling a SE, while finding an interesting gap to work on. Thus, this paper proposes an initial framework for inter sensing enterprise architecture (FISEA), which seeks to classify, organize, store and communicate, at the conceptual level, all the elements for inter-sensing enterprise architectures and their relationships, ensuring their consistency and integrity. This FISEA provides a clear idea about the elements and views that create collaborative network and their inter-relationships, based on the support of Future Internet.This work was supported by the European Commission FP7 UNITE Project, through its Secondment Programme and the Universitat Politecnica de Valencia ADENPRO-PJP project (ref. SP20120703).Vargas, A.; Cuenca, L.; Boza, A.; Sacala, I.; Moisescu, M. (2016). Towards the development of the framework for inter sensing enterprise architecture. Journal of Intelligent Manufacturing. 27(1):55-72. https://doi.org/10.1007/s10845-014-0901-zS5572271Adaba, G., Rusu, L., & Mekawy, M. (2010). Business-IT alignment in trade facilitation: A case study. In organizational, business, and technological aspects of the knowledge society. Communications in Computer and Information. Science, 44(112), 146–154.Afsarmanesh, H., & Msanjila, S. (2008). Inter-organizational trust in VBEs. In L. Camarinha-Matos, H. Afsarmanesh, & M. Ollus (Eds.), Methods and tools for collaborative networked organizations (pp. 91–118). New York: Springer.Afsarmanesh, H., Camarinha-Matos, L., & Ermilova, E. (2008). VBE reference framework. In L. Camarinha-Matos, H. Afsarmanesh, & M. Ollus (Eds.), Methods and tools for collaborative networked organizations (pp. 35–68). New York: Springer.Arango, M., Londoño, J., & Zapata, J. (2010). Arquitectura empresarial- Una visión general. Revista Ingenierías Universidad de Medellín, 9(16), 101–111.Audy, J., Lehoux, N., & D’Amours, S. (2012). A framework for an efficient implementation of logistics collaborations. International Transactions in Operational Research, 19(5), 633–657.Boza, A., Cuenca, L., Poler, R., Michaelides, Z., & Systems, Enterprise Information. (2014). The interoperability force in the ERP field. Enterprise Information Systems,. doi: 10.1080/17517575.2013.866697Camarinha-Matos, L., & Afsarmanesh, H. (2005). Collaborative networks: A new scientific discipline. Journal of Intelligent Manufacturing, 16(4–5), 439–452.Camarinha-Matos, L., & Afsarmanesh, H. (2008). Collaborative networks: Reference modeling. New York: Springer.Camarinha-Matos, L., Afsarmanesh, H., & Ollus, M. (2008). ECOLEAD and CNO base concepts. In L. M. Camarinha-Matos, H. Afsarmanesh, & M. Ollus (Eds.), Methods and tools for collaborative networked organizations (pp. 35–68). New York: Springer.Chalmeta, R., & Grangel, R. (2003). ARDIN extension for virtual enterprise integration. The Journal of Systems and Software, 67(3), 141–152.Chen, D., Vallespir, B., & Doumeingts, G. (1997). GRAI integrated methodology and its mapping onto generic enterprise reference architecture and methodology. Computers in Industry, 33(2), 387–394.Choi, Y., Kang, D., Chae, H., & Kim, K. (2008). An enterprise architecture framework for collaboration of virtual enterprise chains. The International Journal of Advanced Manufacturing Technology, 35(11–12), 1065–1078.CIMOSA Asociation. (1996). CIMOSA Primer on key concepts, purpose and business value.Council of Supply Chain Management Professionals CSCMP. (2010). CSCMP. Glosary of terms. from http://cscmp.org/resources-research/glossary-terms . Accessed 9 February 2013Coutinho, C., Cretan, A., Ferreira, C., Ghodous, P., & Jardim-Goncalves, R. (2014). Service-based negotiation for advanced collaboration in enterprise networks. Journal of Intelligent Manufacturing,. doi: 10.1007/s10845-013-0857-4Cuenca, L. (2009). Marco arquitectónico para la propuesta IE-GIP. Extensión de la arquitectura CIMOSA. Aplicación a una empresa del sector cerámico. Tesis Doctoral Universidad Politecnica de Valencia.Cuenca, L., Boza, A., & Ortiz, A. (2011). An enterprise engineering approach for the alignment of business and information technology strategy. International Journal of Computer Integrated Manufacturing, 24(11), 974–992.Cuenca, L., Ortiz, A., & Boza, A. (2005). Arquitectura de Empresa. Visión General. Gijón: IX Congreso de Ingeniería de Organización.Dong, X., Liu, Q., & Yin, D. (2008). Business performance, business strategy, and information system strategic alignment: An empirical study on Chinese firms. Tsinghua Science and Technology, 13(3), 348–354.Ermilova, E., & Afsarmanesh, H. (2007). Modeling and management of profiles and competencies in VBEs. Journal of Intelligent Manufacturing, 18(5), 561–586.Estimali, H., Gardesh, H., & Sikari, S. (2010). Validating ITIL maturity to strategic business-IT alignment. In 2nd International conference on computer technology and development (ICCTD 2010).European Commission European Society and Media. (2007). Dygital Business Ecosystems. In F. Nachira, P. Dini, A. Nicolai, M. Le Louarn, & L. Rivera (Eds.). http://www.digital-ecosystems.org/book/ . Luxembourg: Office for Official Publications of the European Communities. Accessed 15 October 2012Executive Branch of the U.S. Federal Government. (2012). A Common Approach to Federal Enterprise Architecture. The White House. http://www.whitehouse.gov/sites/default/files/omb/assets/egov_docs/common_approach_to_federal_ea.pdf . Accessed 13 August 2013Franco, R., Gomez, P., Ortiz, A., & Navarro, R. (2012). Integrated approach for interoperability in collaborative networs and service-based ecosystems. In R. Poler, G. Doumeingts, B. Katzy, & R. Chalmeta (Eds.), Enterpise interoperability V (pp. 329–339). London: Springer.Force, I. F. I. P.-I. F. A. C. Task. (1998). GERAM: Generalised enterprise reference architecture and methodology. International Federation for Information Processing, 1(2), 30.Future Internet Enterprise Systems (FInES) Cluster. (2012). FInES Research Roadmap 2025. From http://cordis.europa.eu/fp7/ict/enet/documents/fines-research-roadmap-v30_en.pdf . Accessed 13 October 2013Henderson, J., & Venkatraman, N. (1993). Strategic alignment: Leveraging information technology for transforming organizations. IBM Systems Journal, 32(1), 472–484.Hu, Q., & Huang, D. (2006). Using the balanced scorecard to achieve sustained IT-business alignment: A case study. Communications of the Association for Information Systems, 17, 181–204.ISO 15704. (2000). Industrial automation systems–Requirements for enterprise-reference architectures and methodologies.ISO/CEN 19439. (2006). Enterprise integration–Framework for enterprise modelling.Kilger, C., Reuter, B., & Stadtler, H. (2008). Collaborative planning. In H. Stadtler & C. Kilger (Eds.), Supply chain management and advanced planning-concepts, models software and case studies (pp. 263–284). Berlin, Heidelberg: Springer.Kosanke, K., Vernadat, F., & Zelm, M. (1999). CIMOSA: Enterprise engineering and integration. Computers in Industry, 40(2), 83– 97.Lankhorst, M. (2009). Enterprise architecture at work: Modelling, communication and analysis. New York: Springer.Luftman, J. (2004). Assessing business-IT alignment maturity. Communications of the Association for Information Systems, 4, 99.Maes, R. (1999). Reconsidering information management through a generic framework. Amsterdam: Universiteit van Amsterdam, Department of Accountancy & Information Management.Mehandjiev, N., & Grefen, P. (2010). Dynamic business process formation for instant virtual enterprises. London.Mekawy, M., Rusu, L., & Ahmed, N. (2009). Business and IT alignment: An evaluation of strategic alignment models. In best practices for the knowledge society. Knowledge, Learning, Development and Technology for All, 49, 447–455.Moisescu, M., Sacala, I., Stanescu, A., & Serbanescu, C. (2012). Towards integration of knowledge extraction form process interoperability in future internet enterprise systems. Information Control Problems in Manufacturing, 14(1), 1458–1463.Ortiz, A. (1998). Propuesta para el Desarrollo de Programas de Integración Empresarial en Empresas Industriales. Aplicación a una Empresa del Sector Cerámico: Tesis Doctoral Universidad Politécnica de Valencia.Palmer, C., Harding, J., Swarnkar, R., Das, B., & Young, R. (2013). Generating rules from data mining for collaboration moderator services. Journal of Intelligent Manufacturing, 24, 313–330.Pijpers, V., Gordijn, J., & Akkermans, H. (2009). Aligning information system design and business strategy–A starting internet company. In the practice of enterprise modeling. Lecture Notes in Business Information Processing, 15, 47–61.Plaza, J., Burgos, J., & Carmona, E. (2010). Measuring stakeholder integration: Knowledge, interaction and adaptational behavior dimensions. Journal of Business Ethics, 93, 419–442.Romero, D., Galeano, N., & Molina, A. (2010). Virtual organisation breeding environments value system and its elements. Journal of Intelligent Manufacturing, 21(3), 267–286.Sacala, I., Moisescu, M., & Repta, D. (2013). Towards the development of the future internet based enterprise in the context of cyber-physical systems. In 2013 19th International conference on control systems and computer science (CSCS), (pp. 405–412).Santana, R., Daneva, M., van Eck, P., & Wieringa, R. (2008). Towards a business-IT aligned maturity model for collaborative networked organizations. In 12th International conference on advanced information systems engineering.Schekkerman, J. (2004). Enterprise architecture validation. Achieving business-aligned and validated entreprise architectures. Institute For Enterprise Architecture Developments (IFEAD). http://enterprise-architecture.info/Images/Extended%20Enterprise/Extended%20Enterprise%20Architecture2.htm . Accessed 10 October 2011Schekkerman, J. (2006). Extended enterprise architecture framework essentials guide. Retrieved 2012 from Institute For Enterprise Architecture Developments (IFEAD). http://enterprise-architecture.info/Images/E2AF/Extended%20Enterprise%20Architecture%20Framework%20Essentials%20Guide%20v1.5.pdf . Accessed 23 September 2012Stadtler, H. (2009). A framework for collaborative planning and state-of-the-art. OR Spectrum, 31, 5–30.Stelzer, D. (2010). Enterprise architecture principles: Literature review and research directions. Service-Oriented Computing. Lecture Notes in Computer Science, pp. 12–21.Swarnkar, R., Choudhary, A., Harding, J., Das, B., & Young, R. (2012). A framework for collaboration moderator services to support knowledge based collaboration. Journal of Intelligent Manufacturing, 23, 2003–2023.The, OPEN GROUP. (2011). TOGAF. http://www.opengroup.org/togaf/ . Accessed 18 November 2011U.S. Department of the Treasury. (2000). Treasury enterprise architecture framework. http://www.treasury.gov/Pages/default.aspx . Accessed 23 November 2011United States Department of Defense. (2010). Department of defense architecture framework. http://dodcio.defense.gov/dodaf20/dodaf20_capability.aspx . Accessed 28 November 2011Vargas, A., Boza, A., & Cuenca, L. (2011). Towards interoperability through Inter-enterprise collaboration architectures. In R. Meersman, T. Dillon, & P. Herrero (Eds.), On the move to meaningful internet systems: OTM 2011 workshops. Lecture Notes in Computer Science, Vol. 7046, pp. 102–111.Vargas, A., Boza, A., Cuenca, L., & Sacala, I. (2013a). Inter-enterprise architecture and internet of the future. Technological Innovation for the Internet of Things, 394, 25–32.Vargas, A., Boza, A., Cuenca, A., & Ortiz, A. (2013b). Towards a framework for inter-enterprise architecture to boost collaborative networks. In On the move to meaningful internet systems: OTM 2013 workshops. Lecture Notes in Computer Science, 8186, 179–188.Vargas, A., Boza, A., Cuenca, L., & Ortiz, A. (2014). The importance of strategic alignment in enterprise collaboration. In J. C. Prado-Prado & J. García-Arca (Eds.), Annals of industrial engineering 2012 (pp. 71–78). London: Springer.Vernadat, F. (2003). Enterprise modelling and integration: From fact modelling to enterprise interoperability. Enterprise inter- and intra-organizational integration: Building international consensus. Series: IFIP Advances in Information and Communication Technology, 108.Vesterager, J., Tølle, M., & Bernus, P. (2002). VERA: Virtual enterprise reference. GLOBEMEN final plenary: In GMNBook.Wang, X., Zhou, X., & Jiang, L. (2008). A method of business and IT alignment based on enterprise architecture. In IEEE international conference on service operations and logistics, and informatics, pp. 740–745.Zachman, J. (1997). Enterprise architecture: The issue of the century. Database Programming and Design, 1–13

    Integration of blockchains with management information systems

    Get PDF
    In the era of the fourth industrial revolution (Industry 4.0), many Management Information Systems (MIS) integrate real-time data collection and use technologies such as big data, machine learning, and cloud computing, to foster a wide range of creative innovations, business improvements, and new business models and processes. However, the integration of blockchain with MIS offers the blockchain trilemma of security, decentralisation and scalability. MIS are usually Web 2.0 clientserver applications that include the front end web systems and back end databases; while blockchain systems are Web 3.0 decentralised applications. MIS are usually private systems that a single party controls and manages; while blockchain systems are usually public, and any party can join and participate. This paper clarifies the key concepts and illustrates with figures, the implementation of public, private and consortium blockchains on the Ethereum platform. Ultimately, the paper presents a framework for building a private blockchain system on the public Ethereum blockchain. Then,integrating the Web 2.0 client-server applications that are commonly used in MIS with Web 3.0 decentralised blockchain applications

    Information Systems in University Learning

    Get PDF
    The authors of this article are going to bring into light the significance, the place and the role of information systems in the university education process. At the same time they define the objectives and the target group of the subject named Economic Information Systems and state the competence gained by students by studying this subject. Special attention is given to the curriculum to be taught to students and to a suggestive enumeration of a series of economic applications that can be themes for laboratory practice and for students’ dissertation (graduation thesis).Information System, Academic Partnership, Curriculum, General Competence, Specific Competence, Open Systems

    Investigating the Feasibility of Open Development of Operations Support Solutions

    No full text
    The telecommunications Operations Support Systems supply chain must address many stakeholders: R&D, Product and Requirements Management, Purchasing, Systems Integration, Systems Administration and Users. While the management of next generation networks and services poses significant technical challenges, the present supply chain, market configuration, and business practices of the OSS community are an obstacle to rapid innovation. Forums for open development could potentially provide a medium to shorten this supply chain for the deployment of workable systems. This paper discusses the potential benefits and barriers to the open development of OSS for the telecommunications industry. It proposes the use of action research to execute a feasibility study into the open development of OSS software solutions within an industry wide Open OSS project
    corecore