116 research outputs found

    Mathematical Models of Abstract Systems: Knowing abstract geometric forms

    Get PDF
    Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely homotopy theory. I argue that mathematicians introduce genuine models and I offer a rough classification of these models

    Topos and Stacks of Deep Neural Networks

    Full text link
    Every known artificial deep neural network (DNN) corresponds to an object in a canonical Grothendieck's topos; its learning dynamic corresponds to a flow of morphisms in this topos. Invariance structures in the layers (like CNNs or LSTMs) correspond to Giraud's stacks. This invariance is supposed to be responsible of the generalization property, that is extrapolation from learning data under constraints. The fibers represent pre-semantic categories (Culioli, Thom), over which artificial languages are defined, with internal logics, intuitionist, classical or linear (Girard). Semantic functioning of a network is its ability to express theories in such a language for answering questions in output about input data. Quantities and spaces of semantic information are defined by analogy with the homological interpretation of Shannon's entropy (P.Baudot and D.B. 2015). They generalize the measures found by Carnap and Bar-Hillel (1952). Amazingly, the above semantical structures are classified by geometric fibrant objects in a closed model category of Quillen, then they give rise to homotopical invariants of DNNs and of their semantic functioning. Intentional type theories (Martin-Loef) organize these objects and fibrations between them. Information contents and exchanges are analyzed by Grothendieck's derivators

    Axiomatic Architecture of Scientific Theories

    Get PDF
    The received concepts of axiomatic theory and axiomatic method, which stem from David Hilbert, need a systematic revision in view of more recent mathematical and scientific axiomatic practices, which do not fully follow in Hilbert’s steps and re-establish some older historical patterns of axiomatic thinking in unexpected new forms. In this work I motivate, formulate and justify such a revised concept of axiomatic theory, which for a variety of reasons I call constructive, and then argue that it can better serve as a formal representational tool in mathematics and science than the received concept

    Prospects for Declarative Mathematical Modeling of Complex Biological Systems

    Full text link
    Declarative modeling uses symbolic expressions to represent models. With such expressions one can formalize high-level mathematical computations on models that would be difficult or impossible to perform directly on a lower-level simulation program, in a general-purpose programming language. Examples of such computations on models include model analysis, relatively general-purpose model-reduction maps, and the initial phases of model implementation, all of which should preserve or approximate the mathematical semantics of a complex biological model. The potential advantages are particularly relevant in the case of developmental modeling, wherein complex spatial structures exhibit dynamics at molecular, cellular, and organogenic levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit from both the expressive power of declarative modeling languages and the application of model reduction methods to link models across scale. Based on previous work, here we define declarative modeling of complex biological systems by defining the operator algebra semantics of an increasingly powerful series of declarative modeling languages including reaction-like dynamics of parameterized and extended objects; we define semantics-preserving implementation and semantics-approximating model reduction transformations; and we outline a "meta-hierarchy" for organizing declarative models and the mathematical methods that can fruitfully manipulate them

    Algebraic Topology for Data Scientists

    Full text link
    This book gives a thorough introduction to topological data analysis (TDA), the application of algebraic topology to data science. Algebraic topology is traditionally a very specialized field of math, and most mathematicians have never been exposed to it, let alone data scientists, computer scientists, and analysts. I have three goals in writing this book. The first is to bring people up to speed who are missing a lot of the necessary background. I will describe the topics in point-set topology, abstract algebra, and homology theory needed for a good understanding of TDA. The second is to explain TDA and some current applications and techniques. Finally, I would like to answer some questions about more advanced topics such as cohomology, homotopy, obstruction theory, and Steenrod squares, and what they can tell us about data. It is hoped that readers will acquire the tools to start to think about these topics and where they might fit in.Comment: 322 pages, 69 figures, 5 table

    Constructive topology of bishop spaces

    Get PDF
    The theory of Bishop spaces (TBS) is so far the least developed approach to constructive topology with points. Bishop introduced function spaces, here called Bishop spaces, in 1967, without really exploring them, and in 2012 Bridges revived the subject. In this Thesis we develop TBS. Instead of having a common space-structure on a set X and R, where R denotes the set of constructive reals, that determines a posteriori which functions of type X -> R are continuous with respect to it, within TBS we start from a given class of "continuous" functions of type X -> R that determines a posteriori a space-structure on X. A Bishop space is a pair (X, F), where X is an inhabited set and F, a Bishop topology, or simply a topology, is a subset of all functions of type X -> R that includes the constant maps and it is closed under addition, uniform limits and composition with the Bishop continuous functions of type R -> R. The main motivation behind the introduction of Bishop spaces is that function-based concepts are more suitable to constructive study than set-based ones. Although a Bishop topology of functions F on X is a set of functions, the set-theoretic character of TBS is not that central as it seems. The reason for this is Bishop's inductive concept of the least topology generated by a given subbase. The definitional clauses of a Bishop space, seen as inductive rules, induce the corresponding induction principle. Hence, starting with a constructively acceptable subbase the generated topology is a constructively graspable set of functions exactly because of the corresponding principle. The function-theoretic character of TBS is also evident in the characterization of morphisms between Bishop spaces. The development of constructive point-function topology in this Thesis takes two directions. The first is a purely topological one. We introduce and study, among other notions, the quotient, the pointwise exponential, the dual, the Hausdorff, the completely regular, the 2-compact, the pair-compact and the 2-connected Bishop spaces. We prove, among other results, a Stone-Cech theorem, the Embedding lemma, a generalized version of the Tychonoff embedding theorem for completely regular Bishop spaces, the Gelfand-Kolmogoroff theorem for fixed and completely regular Bishop spaces, a Stone-Weierstrass theorem for pseudo-compact Bishop spaces and a Stone-Weierstrass theorem for pair-compact Bishop spaces. Of special importance is the notion of 2-compactness, a constructive function-theoretic notion of compactness for which we show that it generalizes the notion of a compact metric space. In the last chapter we initiate the basic homotopy theory of Bishop spaces. The other direction in the development of TBS is related to the analogy between a Bishop topology F, which is a ring and a lattice, and the ring of real-valued continuous functions C(X) on a topological space X. This analogy permits a direct "communication" between TBS and the theory of rings of continuous functions, although due to the classical set-theoretic character of C(X) this does not mean a direct translation of the latter to the former. We study the zero sets of a Bishop space and we prove the Urysohn lemma for them. We also develop the basic theory of embeddings of Bishop spaces in parallel to the basic classical theory of embeddings of rings of continuous functions and we show constructively the Urysohn extension theorem for Bishop spaces. The constructive development of topology in this Thesis is within Bishop's informal system of constructive mathematics BISH, inductive definitions with rules of countably many premises included

    Axiomatic Method and Category Theory

    Full text link
    • …
    corecore