48 research outputs found

    Towards self-organizing logistics in transportation:a literature review and typology

    Get PDF
    Deploying self-organizing systems is a way to cope with the logistics sector's complex, dynamic, and stochastic nature. In such systems, automated decision-making and decentralized or distributed control structures are combined. Such control structures reduce the complexity of decision-making, require less computational effort, and are therefore faster, reducing the risk that changes during decision-making render the solution invalid. These benefits of self-organizing systems are of interest to many practitioners involved in solving real-world problems in the logistics sector. This study, therefore, identifies and classifies research related to self-organizing logistics (SOL) with a focus on transportation. SOL is an interdisciplinary study across many domains and relates to other concepts, such as agent-based systems, autonomous control, and decentral systems. Yet, few papers directly identify this as self-organization. Hence, we add to the existing literature by conducting a systematic literature review that provides insight into the field of SOL. The main contribution of this paper is two-fold: (i) based on the findings from the literature review, we identify and synthesize 15 characteristics of SOL in a typology, and (ii) we present a two-dimensional SOL framework alongside the axes of autonomy and cooperativity to position and contrast the broad range of literature, thereby creating order in the field of SOL and revealing promising research directions.</p

    Investigating business process elements: a journey from the field of Business Process Management to ontological analysis, and back

    Get PDF
    Business process modelling languages (BPMLs) typically enable the representation of business processes via the creation of process models, which are constructed using the elements and graphical symbols of the BPML itself. Despite the wide literature on business process modelling languages, on the comparison between graphical components of different languages, on the development and enrichment of new and existing notations, and the numerous definitions of what a business process is, the BPM community still lacks a robust (ontological) characterisation of the elements involved in business process models and, even more importantly, of the very notion of business process. While some efforts have been done towards this direction, the majority of works in this area focuses on the analysis of the behavioural (control flow) aspects of process models only, thus neglecting other central modelling elements, such as those denoting process participants (e.g., data objects, actors), relationships among activities, goals, values, and so on. The overall purpose of this PhD thesis is to provide a systematic study of the elements that constitute a business process, based on ontological analysis, and to apply these results back to the Business Process Management field. The major contributions that were achieved in pursuing our overall purpose are: (i) a first comprehensive and systematic investigation of what constitutes a business process meta-model in literature, and a definition of what we call a literature-based business process meta-model starting from the different business process meta-models proposed in the literature; (ii) the ontological analysis of four business process elements (event, participant, relationship among activities, and goal), which were identified as missing or problematic in the literature and in the literature-based meta-model; (iii) the revision of the literature-based business process meta-model that incorporates the analysis of the four investigated business process elements - event, participant, relationship among activities and goal; and (iv) the definition and evaluation of a notation that enriches the relationships between activities by including the notions of occurrence dependences and rationales

    Alternative Communications: A much needed transformation

    Get PDF

    A Knowledge Graph Based Integration Approach for Industry 4.0

    Get PDF
    The fourth industrial revolution, Industry 4.0 (I40) aims at creating smart factories employing among others Cyber-Physical Systems (CPS), Internet of Things (IoT) and Artificial Intelligence (AI). Realizing smart factories according to the I40 vision requires intelligent human-to-machine and machine-to-machine communication. To achieve this communication, CPS along with their data need to be described and interoperability conflicts arising from various representations need to be resolved. For establishing interoperability, industry communities have created standards and standardization frameworks. Standards describe main properties of entities, systems, and processes, as well as interactions among them. Standardization frameworks classify, align, and integrate industrial standards according to their purposes and features. Despite being published by official international organizations, different standards may contain divergent definitions for similar entities. Further, when utilizing the same standard for the design of a CPS, different views can generate interoperability conflicts. Albeit expressive, standardization frameworks may represent divergent categorizations of the same standard to some extent, interoperability conflicts need to be resolved to support effective and efficient communication in smart factories. To achieve interoperability, data need to be semantically integrated and existing conflicts conciliated. This problem has been extensively studied in the literature. Obtained results can be applied to general integration problems. However, current approaches fail to consider specific interoperability conflicts that occur between entities in I40 scenarios. In this thesis, we tackle the problem of semantic data integration in I40 scenarios. A knowledge graphbased approach allowing for the integration of entities in I40 while considering their semantics is presented. To achieve this integration, there are challenges to be addressed on different conceptual levels. Firstly, defining mappings between standards and standardization frameworks; secondly, representing knowledge of entities in I40 scenarios described by standards; thirdly, integrating perspectives of CPS design while solving semantic heterogeneity issues; and finally, determining real industry applications for the presented approach. We first devise a knowledge-driven approach allowing for the integration of standards and standardization frameworks into an Industry 4.0 knowledge graph (I40KG). The standards ontology is used for representing the main properties of standards and standardization frameworks, as well as relationships among them. The I40KG permits to integrate standards and standardization frameworks while solving specific semantic heterogeneity conflicts in the domain. Further, we semantically describe standards in knowledge graphs. To this end, standards of core importance for I40 scenarios are considered, i.e., the Reference Architectural Model for I40 (RAMI4.0), AutomationML, and the Supply Chain Operation Reference Model (SCOR). In addition, different perspectives of entities describing CPS are integrated into the knowledge graphs. To evaluate the proposed methods, we rely on empirical evaluations as well as on the development of concrete use cases. The attained results provide evidence that a knowledge graph approach enables the effective data integration of entities in I40 scenarios while solving semantic interoperability conflicts, thus empowering the communication in smart factories

    Pattern-based refactoring in model-driven engineering

    Full text link
    L’ingĂ©nierie dirigĂ©e par les modĂšles (IDM) est un paradigme du gĂ©nie logiciel qui utilise les modĂšles comme concepts de premier ordre Ă  partir desquels la validation, le code, les tests et la documentation sont dĂ©rivĂ©s. Ce paradigme met en jeu divers artefacts tels que les modĂšles, les mĂ©ta-modĂšles ou les programmes de transformation des modĂšles. Dans un contexte industriel, ces artefacts sont de plus en plus complexes. En particulier, leur maintenance demande beaucoup de temps et de ressources. Afin de rĂ©duire la complexitĂ© des artefacts et le coĂ»t de leur maintenance, de nombreux chercheurs se sont intĂ©ressĂ©s au refactoring de ces artefacts pour amĂ©liorer leur qualitĂ©. Dans cette thĂšse, nous proposons d’étudier le refactoring dans l’IDM dans sa globalitĂ©, par son application Ă  ces diffĂ©rents artefacts. Dans un premier temps, nous utilisons des patrons de conception spĂ©cifiques, comme une connaissance a priori, appliquĂ©s aux transformations de modĂšles comme un vĂ©hicule pour le refactoring. Nous procĂ©dons d’abord par une phase de dĂ©tection des patrons de conception avec diffĂ©rentes formes et diffĂ©rents niveaux de complĂ©tude. Les occurrences dĂ©tectĂ©es forment ainsi des opportunitĂ©s de refactoring qui seront exploitĂ©es pour aboutir Ă  des formes plus souhaitables et/ou plus complĂštes de ces patrons de conceptions. Dans le cas d’absence de connaissance a priori, comme les patrons de conception, nous proposons une approche basĂ©e sur la programmation gĂ©nĂ©tique, pour apprendre des rĂšgles de transformations, capables de dĂ©tecter des opportunitĂ©s de refactoring et de les corriger. Comme alternative Ă  la connaissance disponible a priori, l’approche utilise des exemples de paires d’artefacts d’avant et d’aprĂšs le refactoring, pour ainsi apprendre les rĂšgles de refactoring. Nous illustrons cette approche sur le refactoring de modĂšles.Model-Driven Engineering (MDE) is a software engineering paradigm that uses models as first-class concepts from which validation, code, testing, and documentation are derived. This paradigm involves various artifacts such as models, meta-models, or model transformation programs. In an industrial context, these artifacts are increasingly complex. In particular, their maintenance is time and resources consuming. In order to reduce the complexity of artifacts and the cost of their maintenance, many researchers have been interested in refactoring these artifacts to improve their quality. In this thesis, we propose to study refactoring in MDE holistically, by its application to these different artifacts. First, we use specific design patterns, as an example of prior knowledge, applied to model transformations to enable refactoring. We first proceed with a detecting phase of design patterns, with different forms and levels of completeness. The detected occurrences thus form refactoring opportunities that will be exploited to implement more desirable and/or more complete forms of these design patterns. In the absence of prior knowledge, such as design patterns, we propose an approach based on genetic programming, to learn transformation rules, capable of detecting refactoring opportunities and correcting them. As an alternative to prior knowledge, our approach uses examples of pairs of artifacts before and after refactoring, in order to learn refactoring rules. We illustrate this approach on model refactoring
    corecore