7 research outputs found

    Seasonality and nutrient-uptake capacity of Sargassum spp. in Western Australia

    Get PDF
    The eight-band high resolution multispectral WorldView-2 satellite imagery demonstrated potential for mapping and monitoring Sargassum spp. beds and other associated coastal marine habitats around Rottnest Island and Point Peron. Sargassum spp. in Western Australian coast showed seasonal changes in canopy cover and mean thallus length which are also significantly influenced by the nutrient concentrations. This study documented the life cycle of Sargassum spinuligerum and successfully cultivated the species for the first time in Western Australia

    Taxonomy and Ecology of Marine Algae

    Get PDF
    The term “algae” refers to a large diversity of unrelated phylogenetic entities, ranging from picoplanktonic cells to macroalgal kelps. Marine algae are an important primary producer in the marine food chain, responsible for the high primary production of coastal areas, providing food resources in situ for many grazing species of gastropods, peracarid crustaceans, sea urchins or fish. Recent findings indicate that marine environments have rapidly changed due to global warming over the past several decades. This change has led to significant variations in marine algal ecology. For example, a long-term increase in ocean temperatures due to global warming has facilitated the intensification of harmful algal blooms, which adversely impact public health, aquatic organisms, and aquaculture industries. Thus, extensive studies have been conducted, but there is still a gap in our understanding of the variation in their ecology in accordance with future marine environmental changes. To fill this gap, studies on the taxonomy and ecology of marine algae are highly necessary. We have invited algologists to submit research articles that enable us to advance our understanding of the taxonomy and ecology of marine algae. Fourteen papers have been collected so far, which cover different aspects of the taxonomy and ecology of marine algae, including understudied species, interspecific comparisons, and new techniques

    A Geospatial Habitat Suitability Model to Determine the Spatial and Temporal Variability of \u3ci\u3eUlva\u3c/i\u3e Blooms in Jamaica Bay, New York

    Full text link
    The main objective of this study involves the development of a habitat suitability model for the Ulva genus in Jamaica Bay, New York. This incorporates several steps that were initiated by the selection of the most suitable water quality parameters that facilitate the successful growth of Ulva. These water quality parameters include dissolved oxygen, pH, temperature, salinity, nitrate + nitrite, ammonium, phosphates, dissolved organic nitrogen, dissolved organic carbon, depth and Secchi depth. This water quality data was generated by the Department of Environmental Protection. The Secchi depth and Jamaica Bay bathymetry data were necessary for the calculation of the % light to bottom that has been vital to the development of this model. For model development, inverse distance weighted interpolation was used to generate water quality surfaces. Because Jamaica Bay possesses islands, a modelling challenge is presented. In order to take into account the presence of these islands, polyline data was included in the creation of the IDW surfaces so that hard lines can delineate the water column from the islands. This allowed better water quality analyses to be carried out. After the development of the IDW surfaces, scored ranges and weights were applied so that the more influential and important parameters for Ulva growth such as light, temperature and nutrients were highlighted and given higher weights than the other parameters. After the assignment of the scored ranges and weights using the reclassify and weighted sum tool in ArcGIS, these surfaces were summed to create habitat suitability models. These models were then validated using Ulva biomass data and subsequently, composite bands and iso cluster analysis using ArcGIS Pro. Ulva biomass data were collected in 2012, 2015 and 2017. The 2017 sampling sites that were used in both biomass and satellite imagery analyses were Marine Park, Plumb beach, Big Egg, Cross bay bridge and Norton basin. In the iso cluster and composite band analyses, several band combinations were applied to visualize the algal/phytoplankton content of the bay. The most effective visualizations were obtained from 12-8-3, 12-11-4 and 4-8-11 based on the combined comparisons for both random and non-random analyses for biomass, composite bands and iso clusters. Additionally, for the biomass-model prediction comparisons, there was a 40.6% match rate. However, when biomass data comparisons were combined with that of the iso clusters and the composite bands, the model assessment was increased to 73.4% for 12-8-3 and 70.3% for several other combinations that includes 11-8-2, 12-8-4, 8-3-2, 12-11-4 and 4-8-11. However, for the random point model assessment, there was a 62.4% overall model accuracy for band combination 12-11-4. Overall, the model assessment has shown acceptability based on Holmes et al. (2008): 67-84%, Renken and Mumby (2009): 55-100%, and Zavalas et al. (2014): \u3e70% acceptability scales

    11th International Coral Reef Symposium Proceedings

    Get PDF
    A defining theme of the 11th International Coral Reef Symposium was that the news for coral reef ecosystems are far from encouraging. Climate change happens now much faster than in an ice-age transition, and coral reefs continue to suffer fever-high temperatures as well as sour ocean conditions. Corals may be falling behind, and there appears to be no special silver bullet remedy. Nevertheless, there are hopeful signs that we should not despair. Reef ecosystems respond vigorously to protective measures and alleviation of stress. For concerned scientists, managers, conservationists, stakeholders, students, and citizens, there is a great role to play in continuing to report on the extreme threat that climate change represents to earth’s natural systems. Urgent action is needed to reduce CO2 emissions. In the interim, we can and must buy time for coral reefs through increased protection from sewage, sediment, pollutants, overfishing, development, and other stressors, all of which we know can damage coral health. The time to act is now. The canary in the coral-coal mine is dead, but we still have time to save the miners. We need effective management rooted in solid interdisciplinary science and coupled with stakeholder buy in, working at local, regional, and international scales alongside global efforts to give reefs a chance.https://nsuworks.nova.edu/occ_icrs/1000/thumbnail.jp

    Antioxidant Properties of Natural Products: A Themed Issue in Honor of Professor Isabel C.F.R. Ferreira

    Get PDF
    It would be almost impossible to discuss natural products without mentioning the extensive knowledge that Professor Isabel C.F.R. Ferreira has contributed to this field. She has been an instrumental scientist in the development and dissemination of information about these products; throughout her career as a researcher, she explored more than 300 food matrices, including plants and mushrooms, as possible sources of these natural compounds. In her studies, the determination of the bioactive properties of the developed extracts and identified molecules from natural matrices stand out.Antioxidant properties are essential to break the oxidation chain that can occur in an organism, for example, in the human body, or on a substrate, such as in food. In organisms, the oxidative process may be responsible for the generation of free radicals that attack cells, which leads to the development of serious diseases, such as cardiovascular and neurological disorders. The intake of compounds with antioxidant capacities can provide beneficial health effects. In food, oxidation can lead to the loss of product quality due to the deterioration of chemical, physical, and sensory characteristics. Natural products with antioxidant activity can add value to food products due to their functional properties and health benefits.Given the importance of minimizing oxidative processes, several authors have been looking for new compounds with antioxidant activity. In this context, plants, mushrooms, and marine and bee products, among others, may have several classes of compounds in their chemical composition that exert this bioactivity, such as vitamins, polyphenols, organic acids, and pigments. In this Special Issue, Antioxidants Properties of Natural Products: A Themed Issue in Honor of Professor Isabel C.F.R. Ferreira, 23 selected studies explore different food matrices as sources of bioactive molecules with potential use as natural products with several functionalities, including antioxidants properties

    11th International Coral Reef Symposium Abstracts

    Get PDF
    https://nsuworks.nova.edu/occ_icrs/1001/thumbnail.jp
    corecore