1,294 research outputs found

    Differential evolution technique on weighted voting stacking ensemble method for credit card fraud detection

    Get PDF
    Differential Evolution is an optimization technique of stochastic search for a population-based vector, which is powerful and efficient over a continuous space for solving differentiable and non-linear optimization problems. Weighted voting stacking ensemble method is an important technique that combines various classifier models. However, selecting the appropriate weights of classifier models for the correct classification of transactions is a problem. This research study is therefore aimed at exploring whether the Differential Evolution optimization method is a good approach for defining the weighting function. Manual and random selection of weights for voting credit card transactions has previously been carried out. However, a large number of fraudulent transactions were not detected by the classifier models. Which means that a technique to overcome the weaknesses of the classifier models is required. Thus, the problem of selecting the appropriate weights was viewed as the problem of weights optimization in this study. The dataset was downloaded from the Kaggle competition data repository. Various machine learning algorithms were used to weight vote a class of transaction. The differential evolution optimization techniques was used as a weighting function. In addition, the Synthetic Minority Oversampling Technique (SMOTE) and Safe Level Synthetic Minority Oversampling Technique (SL-SMOTE) oversampling algorithms were modified to preserve the definition of SMOTE while improving the performance. Result generated from this research study showed that the Differential Evolution Optimization method is a good weighting function, which can be adopted as a systematic weight function for weight voting stacking ensemble method of various classification methods.School of ComputingM. Sc. (Computing

    Prediction of severe thunderstorm events with ensemble deep learning and radar data

    Get PDF
    The problem of nowcasting extreme weather events can be addressed by applying either numerical methods for the solution of dynamic model equations or data-driven artificial intelligence algorithms. Within this latter framework, the most used techniques rely on video prediction deep learning methods which take in input time series of radar reflectivity images to predict the next future sequence of reflectivity images, from which the predicted rainfall quantities are extrapolated. Differently from the previous works, the present paper proposes a deep learning method, exploiting videos of radar reflectivity frames as input and lightning data to realize a warning machine able to sound timely alarms of possible severe thunderstorm events. The problem is recast in a classification one in which the extreme events to be predicted are characterized by a an high level of precipitation and lightning density. From a technical viewpoint, the computational core of this approach is an ensemble learning method based on the recently introduced value-weighted skill scores for both transforming the probabilistic outcomes of the neural network into binary predictions and assessing the forecasting performance. Such value-weighted skill scores are particularly suitable for binary predictions performed over time since they take into account the time evolution of events and predictions paying attention to the value of the prediction for the forecaster. The result of this study is a warning machine validated against weather radar data recorded in the Liguria region, in Italy

    SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

    Get PDF
    The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered \de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to di erent type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several di erent domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also signi cantly contributed to new supervised learning paradigms, including multilabel classi cation, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of di erent software packages | from open source to commercial. In this paper, marking the fteen year anniversary of SMOTE, we re ect on the SMOTE journey, discuss the current state of a airs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN2014-57251-P, TIN2015-68454-R and TIN2017-89517-P; the Project 887 BigDaP-TOOLS - Ayudas Fundaci on BBVA a Equipos de Investigaci on Cient ca 2016; and the National Science Foundation (NSF) Grant IIS-1447795

    Analyze the Performance of Software by Machine Learning Methods for Fault Prediction Techniques

    Get PDF
    Trend of using the software in daily life is increasing day by day. Software system development is growing more difficult as these technologies are integrated into daily life. Therefore, creating highly effective software is a significant difficulty. The quality of any software system continues to be the most important element among all the required characteristics. Nearly one-third of the total cost of software development goes toward testing. Therefore, it is always advantageous to find a software bug early in the software development process because if it is not found early, it will drive up the cost of the software development. This type of issue is intended to be resolved via software fault prediction. There is always a need for a better and enhanced prediction model in order to forecast the fault before the real testing and so reduce the flaws in the time and expense of software projects. The various machine learning techniques for classifying software bugs are discussed in this paper

    DATA-DRIVEN TECHNIQUES FOR DIAGNOSING BEARING DEFECTS IN INDUCTION MOTORS

    Get PDF
    Induction motors are frequently used in many automated systems as a major driving force, and thus, their reliable performances are of predominant concerns. Induction motors are subject to different types of faults and an early detection of faults can reduce maintenance costs and prevent unscheduled downtime. Motor faults are generally related to three components: the stator, the rotor and/or the bearings. This study focuses on the fault diagnosis of the bearings, which is the major reason for failures in induction motors. Data-driven fault diagnosis systems usually include a classification model which is supported by an efficient pre-processing unit. Various classifiers, which aim to diagnose multiple bearing defects (i.e., ball, inner race and outer race defects of different diameters), require well-processed data. The pre-processing tasks plays a vital role for extracting informative features from the vibration signal, reducing the dimensionality of the features and selecting the best features from the feature pool. Once the vibration signal is perfectly analyzed and a proper feature subset is created, then fault classifiers can be trained. However, classification task can be difficult if the training dataset is not balanced. Induction motors usually operate under healthy condition (than faulty situation), thus the monitored vibration samples relate to the normal state of the system expected to be more than the samples of the faulty state. Here, in this work, this challenge is also considered so that the classification model needs to deal with class imbalance problem
    corecore