

DIFFERENTIAL EVOLUTION TECHNIQUE ON WEIGHTED VOTING

STACKING ENSEMBLE METHOD FOR CREDIT CARD FRAUD

DETECTION

by

KGAUGELO MOSES DOLO

submitted in accordance with the requirements for

the degree of

MASTER OF SCIENCE

In the subject of

COMPUTING

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: Prof Ernest Mnkandla

December 2019

SUMMARY

Differential Evolution is an optimization technique of stochastic search for a

population-based vector, which is powerful and efficient over a continuous space for

solving differentiable and non-linear optimization problems. Weighted voting stacking

ensemble method is an important technique that combines various classifier models.

However, selecting the appropriate weights of classifier models for the correct

classification of transactions is a problem. This research study is therefore aimed at

exploring whether the Differential Evolution optimization method is a good approach

for defining the weighting function.

Manual and random selection of weights for voting credit card transactions has

previously been carried out. However, a large number of fraudulent transactions were

not detected by the classifier models. Which means that a technique to overcome the

weaknesses of the classifier models is required. Thus, the problem of selecting the

appropriate weights was viewed as the problem of weights optimization in this study.

The dataset was downloaded from the Kaggle competition data repository. Various

machine learning algorithms were used to weight vote a class of transaction. The

differential evolution optimization techniques was used as a weighting function. In

addition, the Synthetic Minority Oversampling Technique (SMOTE) and Safe Level

Synthetic Minority Oversampling Technique (SL-SMOTE) oversampling algorithms

were modified to preserve the definition of SMOTE while improving the performance.

Result generated from this research study showed that the Differential Evolution

Optimization method is a good weighting function, which can be adopted as a

systematic weight function for weight voting stacking ensemble method of various

classification methods.

ii

DECLARATION

Name: Kgaugelo Moses Dolo

Student number: 58527141

Degree: Masters of Science (Computing)

Exact wording of the title of the dissertation as appearing on the copies submitted for

examination:

Differential Evolution Technique On Weighted Voting Stacking Ensemble

Method For Credit Card Fraud Detection.

I declare that the above dissertation is my own work and that all the sources that I

have used or quoted have been indicated and acknowledged by means of complete

references.

I further declare that I have not previously submitted this work, or part of it, for

examination at UNISA for another qualification or at any other higher education

institution.

________________________ _____23/ 12/ 2019_____

 SIGNATURE DATE

iii

KEYWORDS

Differential Evolution; Weighted Voting; Stacking Ensemble Method; Class

Distribution; Data Distribution; SMOTE; Safe-Level SMOTE; Machine Learning; Big

Data; Credit Card Fraud.

iv

Table of Contents
SUMMARY ... i

DECLARATION ... ii

KEYWORDS .. iii

TABLE OF FIGURES .. viiviii

TABLE OF TABLES ... viiiv

ACRONYMS ... x

CITATION MANAGEMENT AND REFERENCE METHOD .. xviii

1. Chapter 1: Introduction .. 1

1.1. Background ... 2

1.2. Problem Statement .. 6

1.3. Research Questions .. 8

1.4. Research Aim .. 9

1.5. Research Objectives ... 9

1.6. Limitation ... 10

1.7. Ethics Considerations .. 11

1.8. Significance of the Research .. 12

1.9. Layout of the Dissertation ... 12

2. Chapter 2: Literature Review .. 14

2.1. Background on Big Data .. 14

2.1.1. Volume .. 14

2.1.2. Velocity ... 15

2.1.3. Variety ... 15

2.1.4. Veracity ... 15

2.2. Credit Card Fraud Trends .. 16

2.2.1. Online Credit Card Fraud ... 16

2.2.2. Offline Credit Card Fraud ... 18

2.2.3. Credit Card Application Fraud .. 19

2.3. Information and Data Security .. 20

2.3.1. Data Protection ... 20

2.3.2. Access to Data .. 20

2.3.3. Consent and Disclosure of Sensitive Information .. 21

2.3.4. Cross Border Data Transfer .. 21

2.4. Machine Learning Historical Foundation... 22

2.4.1. Supervised Learning ... 22

2.5. Classification ... 22

v

2.6. Types of Data Analytics.. 23

2.6.1. Descriptive Analytics (What’s happening?) .. 23

2.6.2. Predictive Analytics (What is likely to happen?) ... 24

2.7. Stacking Algorithm .. 24

2.7.1. Weighted Voting Method .. 25

2.8. Differential Evolution Algorithm .. 25

2.8.1. Initial Population .. 26

2.8.2. Mutation .. 26

2.8.3. Recombination .. 26

2.8.4. Selection ... 27

2.9. Challenges Associated with Detection Techniques ... 27

2.9.1. Skewed Distribution .. 27

2.9.2. Noise .. 29

2.9.3. Overlapping Data.. 29

2.9.4. Choosing Parameters ... 29

2.9.5. Feature Selection ... 30

2.10. State-of-the-Art and Background Theory .. 31

2.10.1. Logistic Regression (LR) ... 32

2.10.2. Support Vector Machine (SVM) .. 33

2.10.3. Artificial Neural Networks (ANN) .. 34

2.10.4. K-Nearest Neighbour (KNN) .. 36

2.10.5. Decision Tree (DT) ... 37

2.10.6. Naïve Bayesian (NB) .. 38

2.11. Related Works in Fraud Prevention Technologies.. 39

2.12. Summary .. 42

3. Chapter 3: Research Methodology .. 43

3.2. Data Preparation ... 44

3.5. Feature Selection ... 46

3.6. Imbalanced data ... 46

3.7. Visualisation .. 47

3.8. Explanatory Data Analysis .. 48

3.9. Data Model Selection and Training ... 52

3.9.1. Artificial Neural Network (ANN) Method ... 52

3.9.2. Support Vector Machine (SVM) Method ... 53

3.9.3. Decision Tree (DT) Method .. 53

3.9.4. k-Nearest Neighbour (KNN) Method .. 54

vi

3.9.5. Naïve Bayesian (NB) Method .. 54

3.9.6. Stacking Model ... 55

3.10. Evaluation of Data Models ... 56

3.11. Tool Selection ... 58

3.12. The Final Model .. 58

3.13. Summary .. 59

4. Chapter 4: Algorithm Design .. 60

4.1. Balancing the Dataset ... 61

4.1.1. SMOTE vs Safe-Level-SMOTE .. 64

4.1.2. Modified SMOTE Algorithm ... 66

4.1.3. Modified Safe-Level-SMOTE Algorithm .. 67

4.2. Feature Selection Method .. 68

4.3. Weighted Stacking Ensemble Method of Classifiers ... 71

4.3.1. Artificial Neural Network (ANN) Method ... 71

4.3.2. Support Vector Machine (SVM) Method ... 73

4.3.3. k-Nearest Neighbours (KNN) Method ... 74

4.3.4. Naïve Bayesian (NB) Method .. 75

4.3.5. Decision Tree (DT) Method .. 77

4.4. Predictions Data Dictionary .. 78

4.5. Stacking Ensemble of Base Models .. 79

4.6. Probability Data Dictionary.. 81

4.7. Differential Evolution Optimization Method .. 82

4.8. Summary .. 84

5. Chapter 5: Data Analysis.. 85

5.1. SMOTE vs Safe-Level-SMOTE .. 85

5.1.1. SMOTE vs New SMOTE .. 86

5.1.2. SL-SMOTE vs New SL-SMOTE ... 87

5.2. Stacking Ensemble Base Models .. 90

5.2.1. Artificial Neural Network (ANN) Method ... 91

5.2.2. Support Vector Machine (SVM) Method ... 91

5.2.3. k-Nearest Neighbour (KNN) Method .. 92

5.2.4. Naïve Bayesian (NB) Method .. 92

5.2.5. Decision Tree (DT) Method .. 93

5.3. Performance of Base Models .. 93

5.3.1. Accuracy of Base Models .. 94

5.3.2. Confusion Matrix .. 94

vii

5.4. Optimized Stacking Ensemble Base Models .. 97

5.4.1. True Accuracy of Base Models .. 99

5.4.2. True Confusion Matrix .. 100

5.5. Stacking Ensemble Method ... 101

5.5.1. Stacking Ensemble Method Accuracy .. 102

5.5.2. Confusion Matrix of Stacking Ensemble. .. 102

5.5.3. Confusion Matrix Statistics of Stacking Ensemble....................................... 103

5.6. Differential Evolution Method ... 105

5.6.1. Differential Evolution Accuracy ... 106

5.6.2. Differential Evolution Confusion Matrix ... 106

5.6.3. Differential Evolution Confusion Matrix Statistics .. 108

5.7. Differential Evolution Method vs Stacking Ensemble Method 109

5.8. Summary .. 111

6. Chapter 6: Discussion and Conclusion ... 112

6.1. Discussion ... 112

6.2. Conclusions ... 117

7. References ... 120

8. Appendix .. 134

8.1. Ethical Clearance ... 134

8.2. Turnitin Report .. 136

8.3. Editorial Certificate .. 137

8.4. Python Source Codes ... 138

viii

TABLE OF FIGURES

Figure 2.1: Logistic Regression ... 32

Figure 2.2: Support Vector Machine .. 34

Figure 2.3: Artificial Neural Network .. 35

Figure 2.4: K-Nearest Neighbour ... 37

Figure 2.5: Decision Tree.. 37

Figure 2.6: Naïve Bayesian ... 38

Figure 3.1: Correlation between the transaction amount and Time 48

Figure 2.8: Heatmap of Feature Correlation. ... 49

Figure 2.9: Correlation between the transaction amount and V2. 50

Figure 2.10: Correlation between the V3 and Time. .. 50

Figure 2.11: Scatter plot correlations between Amount and all other features. 52

Figure 2.12: Credit card fraud model ... 59

Figure 2.13: Original Data Instances VS Original SMOTE Instances. 86

Figure 2.14: Original Data Instances VS New SMOTE Instances. 87

Figure 2.15: Original Data Instances VS Original Safe-Level SMOTE Instances. 88

Figure 2.16: Original Data Instances VS Original New Safe-Level SMOTE Instances. 889

Figure 2.17: Scores by SMOTE groups ... 90

Figure 2.18: True Positive/Negatives of Stacking Ensemble vs Differential Evolution

Methods. .. 109

Figure 8.19: False Positive/Negatives of Stacking Ensemble vs Differential Evolution

Methods. .. 110

Figure 8.20: False Negatives of Stacking Ensemble vs Differential Evolution Methods.

 ... 111

ix

TABLE OF TABLES

Table 5.1: Confusion Matrix ... 88

Table 5.2: Confusion Matrix Statistics ... 88

Table 5.3: True Confusion Matrix ... 88

Table 5.4: True Confusion Matrix Statistics .. 88

Table 5.5: Confusion Matrix of Stacking Ensemble .. 88

Table 5.6: Confusion Matrix Statistics of Stacking Ensemble 88

Table 5.7: Differential Evolution Confusion Matrix ... 88

Table 5.8: Differential Evolution Confusion Matrix Statistics .. 88

x

ACRONYMS

ANN Artificial Neural Network

CSV Comma-Separated Values

DE Differential Evolution

DT Decision Tree

EDA Explanatory Data Analysis

FN False Positive

FP False Negative

KNN k-Nearest Neighbour

ML Machine Learning

NB Naïve Bayesian

NIBSS Nigerian Inter-Bank Settlement System

NFL No Free Lunch

P Probability

PCA Principal Component Analysis

SA South Africa

SABRIC South African Banking Risk Information

SL SMOTE Safe Level Synthetic Minority Oversampling Technique

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

TN True Negative

TP True Positive

LII Legal Information Institute

xi

CITATION MANAGEMENT AND REFERENCE METHOD

References were managed electronically with the word document citation manager.

Word document sources manager offers approximately 12 citation styles. For

consistency, the University of Cape Town Harvard method (UCT Harvard) of

referencing was used throughout this dissertation (De Jager & Steele, 2015)

1. Chapter 1: Introduction

The need for big data analytics in the banking sector is directly related to the need for

complexity of analytical tasks for fraud detection. That is, as the need for big data

analytics in the banking sector is becoming more and more important for supporting

business operations and financial transactions (Altayar & Almoqren 2016, pp. 1 - 8),

the need for complex analytical tasks for fraud detection is also becoming crucial for

security of business operations and financial transactions. Banks normally derive data

for data analysis from sources such as, but not limited to, credit card activities, loan

repayments, loan applications and account transactions (Altayar & Almoqren 2016,

pp. 1 - 8). For this reason, this study is focused on the credit card activities in order to

determine fraudulent activities that negatively affect the banking sector.

The data derived from bank source systems are complex and cannot be processed by

traditional data application systems (Altayar & Almoqren, 2016, pp. 1 - 8). Big data is

a term that refers to a complex dataset that cannot be stored and processed using

traditional data processing application systems (Flood, et al. 2016, pp. 1 - 20). Banks

in South Africa are making huge investments in the adoption of big data and the move

from data analytics to data insights (TCI 2015). Data insights refers to the use of

advanced analytics methods that deal with complex analytical problems and are

capable of predicting future outcomes (i.e. predictive analytics). Predictive analytics

refers to many types of statistics and data mining methods that analyse current and

historical facts for the classification of unknown future events (Monk 2016, pp. 1 - 3).

The accurate and comprehensive methods used for filtering algorithms that perform

data analysis for a given dataset of historical credit card transactions of the customers

play a crucial role in determining the efficiency of algorithms that perform data mining

and predictive data analysis (Mitik, et al. 2016, pp. 552 – 559; Wang, et al. 2010, pp.

215 - 218). Identifying fraudulent factors associated with credit card transactions in the

banking sector is one of the important tasks to perform that enables the data mining

activity to uncover fraudulent patterns (Babu & Rajeshwari 2016, pp. 439 - 444). The

NO-FREE-LUNCH (NFL) theory suggests that no machine learning method can

perform well for all measures in every application (Macready & Wolpert 1996, pp. 67 -

82). Therefore, an evaluation of algorithms is essential for the quality of machine

2

learning methods for revealing predictive data insights to prevent fraudulent

transactions of credit cards in South Africa (SA).

Fraud data sourced from the South African Banking Risk Information (SABRIC)

suggest that almost 4.5 billion was lost in South Africa (SA) to credit and debit card

fraud since the year 2010. In analysing the 2010-2016 period, a 3.5% (44.5% in 2015

and 48.0% in 2016) was seen in credit card fraud loss in SA (Writer, 2015). Banking

fraud in the continent is not confined to SA. For example, data released by the Nigerian

Inter-Bank Settlement System (NIBSS) indicates that malicious transactions in the

banking sector peaked in 2016 (John, et al. 2016, pp. 1186 - 1191). Since SA has the

most advanced banking sector in the continent, it goes without saying that more

complex analytical tasks for fraudulent transactions detection are required to expose

fraudulent activities within the SA banking sector.

1.1. Background

According to the Legal Information Institute (LII), fraudulent credit card transactions

are a form of identity theft whereby unauthorized users take credit card information of

victims with the sole aim of removing funds from the accounts of the victor or to charge

purchases to the accounts of the victims. The credit card fraud level has escalated

from being performed by just the fraudsters to being performed by fraud rings that use

complex and advanced strategies that take over the control of accounts and to perform

frauds that are not noticeable (John, et al. 2016, pp. 1186 - 1191). In the world of

effortless expenditure, this leads to an accelerated increase in online transaction fraud.

More fraudulent transactions performed in a day in relation to more non-fraudulent

transactions result in less skewed data distribution, which implies that the chances of

frauds being noticeable are high. Thus, since fraudsters use advanced methods to

commit crime in a manner that is not noticeable (John, et al. 2016, pp. 1186 - 1191),

it implies that less fraudulent activities are performed than non-fraudulent activities,

and in the context of big data this would result in a highly skewed distribution. Thus,

more complex and efficient analytical tasks to handle highly skewed distribution are

required.

Credit card fraud has caused serious damage to both service providers and the credit

card users, and was predicted to get worse in future (Pushpa & Malini 2017, pp. 255 -

3

258). Thus, to handle the highly skewed big data for classification or prediction of

future credit card fraudulent transactions, more advanced machine learning

techniques to reduce variance and biasness in data are required in order to adequately

predict future values of credit card transactions. Given the large number of datasets

available, development of methods for the identification of fraudulent groups and

exploration of behavioural patterns of fraudulent groups have become very important

for purpose of data mining (Yu, et al. 2017, pp. 1 - 6).

Descriptive and predictive data analysis provides a complete solution for

understanding the nature and scope of the data of financial institutions sourced from

different systems. Descriptive data analysis is more focused on the question of “what

has happened?” (Patwardhan 2016). Knowing what has happened without knowing

what could happen, sets knowledge limitations and biasness of financial institutions to

make informed decisions. On those group, the need for predictive data analysis is

justified since it answers the question of “what could happen?” (Patwardhan 2016).

When building a classification data model to solve the problems of descriptive and

predictive data analysis with a dataset that is highly skewed, the best-fit line that

separates the classes of data would try to balance the dataset by drawing a line that

represents the average of the dataset of the class of the minority data observations

and the class of the majority data observations. However, given a lower number of

fraudulent transactions relative to non-fraudulent transactions, the average dataset

would be in favour of the non-fraudulent transaction class. Therefore, to control the

best-fit line to the right position that equally represent both classes, an oversampling

of minority class to generate new synthetic instances is required.

Synthetic Minority Oversampling Technique (SMOTE) is a sampling method that

oversamples the minority class by computing median features vectors between

nominal features sample and its potential nearest neighbours through Euclidean

distance of standard deviations (Chawla, et al. 2002, pp. 321 - 357). Duplicating

minority training samples to reduce biasness of data distribution introduces high

variance of data distribution. Therefore, SMOTE is an important over-sampling method

that reduces variance of data distribution. The synthetic instances generated influence

a decision-making model to create small and less specific decision regions.

4

With that said, positive influence can be learned far better in general regions than

positive instance subsumed around negative instance. This means that the SMOTE

method suffers from a problem of generalization whereby the region of a majority class

is blindly generalized without considering the minority class (Bunkhumpornpat, et al.

2009, pp. 475 - 482; Meidianingsih, et al. 2017, pp. 1167 - 1171). The generalization

challenge associated with the SMOTE method is normally visible in places of highly

skewed class distribution since the class of the minority data observations is thinly

scattered in relation to the class of the majority data observations. As a result, the

probability of class mixture is very high. To keep the SMOTE method efficient and

effective, an improvement of the algorithm is required.

Borderline-SMOTE is an oversampling technique designed to improve the

performance of SMOTE oversampling method (Bunkhumpornpat, et al. 2009, pp. 475

- 482; Gosain & Sardana 2017, pp. 79 - 85). The performance is improved by

separating the positive instances into three regions namely borderline (
1

2
𝐾 ≤ 𝑛𝑢𝑚 <

𝐾), noise (𝑛𝑢𝑚 = 𝐾), and safe (0 ≤ 𝑛𝑢𝑚 <
1

2
𝐾) (Bunkhumpornpat, et al. 2009, pp.

475 - 482; Gosain & Sardana 2017, pp. 79 - 85). The three regions are separated

while considering the instances that are negative in the k-Nearest Neighbours. The

borderline SMOTE uses the same oversampling method as SMOTE.

However, borderline SMOTE oversamples only the borderline data observations of the

minority class rather than oversampling the entire data observations of the minority

class. Logically, the two consecutive data observations are obviously not different are

instead separated into two regions (borderline and noise) whereby the first data

observation is selected for oversampling and the other data observation is declined

oversampling.

That being so, the Safe-Level-SMOTE method is the SMOTE method that creates

safe-level synthesis of minority class (Bunkhumpornpat, et al. 2009, p. 475 - 482;

Meidianingsih, et al. 2017, pp. 1167 - 1171; Gosain & Sardana 2017, pp. 79 - 85). The

synthetic instances are placed closer to the safe level; this means that the safe level

closer to K is nearly noise. The safe level is the number of positive data observations

within k-Nearest Neighbour but not equal to k-Nearest Neighbour (Bunkhumpornpat,

et al. 2009, pp. 475 - 482).

5

The Safe-Level SMOTE is a promising algorithm for achieving a positive impact. For

this reason, this algorithm will be used in this study to oversample the data

observations of the minority class of the dataset and thus control the best fit line to an

optimum place that equally represent malicious transactions and non-malicious

transactions. A dataset with equal representation of malicious transactions and non-

malicious transactions makes it easier for a classification model to learn data of the

two classes well.

Stacking is an ensemble method that uses different machine learning algorithms to

generate new dataset that is used in a combiner machine learning method (Smolyakov

2017). The combiner machine learning voting method is computed to predict the

output. Majority voting is when every model makes a prediction of a transaction and

the class value with more votes is produced as final output. Weighted voting is voting

that is undertaken by counting the predictions of better models to predict the output of

each transaction. In this study, it is suggested that weighting voting of the classification

models requires an optimization of weights to produce good results.

Differential Evolution algorithm is a subset of evolution programming designed for

continuous domain optimization problems (Brest, et al. 2006, pp. 646 - 657; Srinivas,

et al. 2018, pp. 216 - 217; Madathil, et al. 2017, pp. 1 - 5). Since it is normal for the

base models of the stacking ensemble method to have weak classifiers, Differential

Evolution is used in this study to learn the weak classifiers in each evolution stage and

correct the weights (Madathil, et al. 2017, pp. 1 - 5). Differential Evolution has an

advantage over genetic algorithms because it is fast, robust, easy to use, and simple

in structure (Brest, et al. 2006, pp. 646 - 657; Srinivas, et al. 2018, pp. 216 - 217;

Madathil, et al. 2017, pp. 1 - 5).

Genetic algorithms use selection mechanisms to produce a sequence of population,

and thereafter use mutation and crossover as search mechanism. Unlike Genetic

algorithms, the only search mechanism of Differential Evolution is mutation, and the

search is guided towards the prospective regions inside a feasible region through the

use of selection (Kalajac, et al. 2018, pp. 883 - 886). The main difference between

Differential Evolution and Genetic algorithms is that whereas Genetic algorithms are

more dependent on a mechanism of probabilistic, a crossover, and an exchange of

6

information in solutions to better locate solutions, Differential Evolution strategies are

dependent more on mutation as a mechanism for the primary search.

When features of customer’s data on historical credit card transactions that are

relevant for data mining are available, the explanatory data analysis plays a crucial

role when determining the efficiency of the dataset in the data mining and the

predictive data analysis (Todd & Harvey 2015, pp. 474 – 489; Liu & Dash 1997, pp.

131 – 156; Chezian & Devi. 2016, pp. 161 - 165). That being so, feature selection and

dimension reduction are important for minimizing the complexity of the predictive data

analysis models to improve the classification speed.

Fraud detection refers to the process of detecting fraudulent activities where no prior

tendency of fraud exists (John, et al. 2016, pp. 1186 - 1191). To improve the

performance of predictive data analysis methods, more advanced performance

optimization methods for boosting performance while retaining low variance and low

biasness of data are required for the detection of credit card fraudulent activities and

thus exposing of hidden fraudulent transactions. The performance optimization

methods that can adequately optimize parameters of predictive data analysis methods

in massive data are becoming more important than ever due to the amount of data

being produced in the current era.

The most challenging part of fraud detection involves uncovering fraudulent activities

in a complex dataset that has a high number of non-fraudulent transactions and a low

number of fraudulent transactions (Pushpa & Malini 2017, pp. 255 - 258). The dataset

complexity in an environment of rapidly growing data introduces inefficiency in fraud

detection systems, and the inefficiency acts as an agent that motivates and

accelerates the rate of increase of fraudulent transactions in the banking sector. Hence

the banking sector must make a huge investment in complex and efficient analytical

systems that detect fraud activities to prevent losses.

1.2. Problem Statement

According to the Trade Conferences International (TCI 2015), SA banks are making

huge investments in big data adoption and are intended on moving from data analytics

to data insights by 2020. Notwithstanding available data analytics models for the

detection of fraudulent transactions, the rate at which fraudsters continue to commit

7

fraud is growing continuously. This implies an existence of means that there is an

unknown gap between knowledge of customers and techniques that fraudsters take

advantage of when committing fraud.

Currently available systems of fraud detection are capable of uncovering fraudulent

activities after one, two or more fraudulent transactions have been performed (Wang,

et al. 2015, pp. 354 - 359). This suggests that the advanced analytics techniques

require strategies that overcome the weaknesses of classifier models. Stacking is an

ensemble method that uses a variety of base models to predict the output of each

transaction (Smolyakov 2017).

The stacking ensemble method is an important technique that combines various

classifier models such that a weak classifier model for a particular instance is assisted

by strong classifier models through weighted voting of a class value (Zirpe & Joglekar

2017, pp. 1 – 5; Verma & Mehta 2017, pp. 155 – 158; Cheng, et al. 2012, pp. 755 -

759). The weights for classifier models per transaction must be high for a class that

performs well, and low for a class that does not perform well. Reasoning from this fact,

the selecting of the appropriate weights of votes for each class per classifier is very

important. On this basis, the problem of selecting the appropriate weights for voting

the correct output class of each transaction is viewed as the problem of weights

optimization in this research study.

For detection systems, the standard machine learning algorithms that achieve high

accuracy tend to classify a higher percentage for the class with the majority of data

observations compared to a percentage of the class with the minority of data

observations (Mitik, et al. 2016, pp. 552 – 559; Dehghan, et al. 2017, pp. 124 - 134).

This means there are overlapping data points between the class with minority data

observations and the class with majority data observations. Oversampling the minority

class by duplicating the minority class data observations when there are overlapping

data observations may not solve the problem of high skewedness of class distribution.

Using SMOTE oversampling method to create the synthetic observations of the class

with minority data observations when there are overlapping data points of the class

with majority data observations result in synthetic instance generated from a fraudulent

transaction and non-fraudulent transaction. Therefore, a need exists for the

8

development of an oversampling method that generates synthetic instances at the

safe level of the minority class.

1.3. Research Questions

Since the South African banking sector is migrating from data analytics to data

insights, this research study intends to explore the following main research question:

Is the differential evolution optimization method a good approach for

defining the weighting function to predict the outcome of future credit

card fraudulent transactions?

The sub research questions that support the main research question of this research

study are as follows.

1. Does the Safe-Level-SMOTE oversampling method (on the minority

classes) when used in combination with an under-sampling method

eliminates duplicate data samples of the majority class have a positive

impact on reducing the high skewedness of the class distribution than the

SMOTE oversampling method (on the minority classes) when used in

combination with the under-sampling method (also eliminates duplicate data

samples on the majority class)?

2. Does Safe-Level-SMOTE oversampling method and the under-sampling

method (that eliminates duplicate data samples of the class with majority

data observations) reduce or eliminate the problem of overlapping data

samples between fraudulent and non-fraudulent classes?

3. Does manual stacking of feature selection methods that are diverse on the

Principal Component Analysis (PCA) transformed features to hide the actual

feature names, select enough good features to solve the problem than just

selecting a feature engineering technique?

4. Does the stacking of supervised base models have an impact on predictive

accuracy given the under-sampling technique to remove the duplicate data

9

observations on the majority class, and the Safe-Level-SMOTE

oversampling method?

5. Will the proposed data model for fraud detection efficiently detect credit card

fraudulent activities?

1.4. Research Aim

This study aims to develop and optimize a detection method for credit card fraudulent

transactions that is efficient and effective in the detection of malicious behaviours

within the minimum number of attempts or the first time the fraudster attempts to

commit fraud. The developed model is also expected to overcome the weaknesses of

the classifier models that fraudsters take advantage of when committing credit card

fraud.

The continuation of credit card fraud results in monetary losses for customers,

merchant stores, investors, the banking sector and various other parties. Therefore, it

is envisaged that the development of such a model will add value to the knowledge

economy of SA and the banking sector through successful implementation of data

insights. Furthermore, the development of an efficient and effective method for the

detection of credit card fraud will serve to discourage the continuation of activities

association with malicious credit card crime. In particular, this research study will have

an impact on the successful implementation of data insights.

1.5. Research Objectives

The main research objective is to obtain optimum data analytics algorithms that

perform data insights to reveal fraudulent data patterns in order to prevent future

fraudulent transactions. The sub objectives are:

1. To determine whether if Safe-Level SMOTE oversampling method when

used in combination with under-sampling method has a positive impact on

reducing the high skewedness of the class distribution than the SMOTE

oversampling method when used in combination with the under-sampling

method. This objective will be implemented by running a SMOTE algorithm

10

and a Safe-Level SMOTE algorithm on the class of minority data

observations, and a down-sampling algorithm on the class of majority data

observations.

2. To investigate whether the Safe-Level SMOTE oversampling technique and

the under-sampling technique reduce or eliminate the problem of

overlapping data observations of fraudulent and non-fraudulent classes.

This objective will be implemented by running a Safe-Level SMOTE on the

class of minority data observations and an under-sampling algorithm on the

class of majority data observations.

3. To determine whether manual stacking of diverse feature selection methods

on the PCA transformed features to solve the problem than feature selection

method. This objective will be implemented by running univariate selection

algorithm, recursive feature elimination algorithm, and feature importance

algorithm on the entire dataset.

4. To investigate how the stacking of supervised machine learning algorithms

have an impact on predictive accuracy, considering the down-sampling

technique that eliminate duplicate data samples on the class of majority data

observations, and the SMOTE oversampling method. This objective will be

implemented by running both the differential evolution optimization and

stacking algorithms on the classifier models.

5. To determine the efficiency of the proposed data model for fraud detection

in the detection of activities relating to credit card fraud. This objective will

be implemented by running both the differential evolution optimization and

the stacking algorithm on the classifier models.

1.6. Limitation

The limitation of this research study is the inability of the researcher to use a largely

sized data sample drawn from the population of credit card users in SA banks. The

inability of the researcher to use a dataset implies that large data cannot be applied in

11

this research study. For confidentiality and security reasons in the SA banking sector,

this research study is unable to get credit card dataset from any bank in the country

for experimental purposes. However, the study will use the credit card dataset

designed for experimental purposes, which is obtained from the Kaggle machine

learning data repository (kaggle 2018).

Due to field names having been transformed for hiding the actual field name of the

dataset, the data mining of new knowledge and for uncovering the unknowns becomes

challenging. Although correlation among different fields can be performed and the

findings can be interpreted, the findings cannot be understood for further data analysis

due to hidden field names. On that premise, the explanatory data analysis section

presented in this study, which is of interesting to this research study, is rudimentary

and cannot therefore be analysed further to derive meaningful interpretation of the

data. However, the dataset is stable enough to achieve the desired research

objectives.

Due to different cultures found in SA banks and the approach adopted by the

researcher for conducting the research, the applied techniques may produce different

results when experimenting with credit card dataset obtained from Kaggle machine

learning data repository. However, traditional data mining algorithms for uncovering

new knowledge and predictive data analytics algorithms for predicting future outcomes

are more likely to remain the same if they are used appropriately. Consequently, the

data model proposed in this research study must be edited appropriately to produce

the desired outcomes.

1.7. Ethics Considerations

Considering the pertinent banking sector rules, regulations, and norms that govern the

industry, the data mining and prediction data model in the banking sector may raise

ethical and legal questions. This research study is therefore focused on computational

analysis of credit card dataset designed for experimental purpose from the Kaggle

machine learning data repository, and would therefore not breach any research ethics

for the banking industry and its customers.

Although this research study does not involve experimentation using humans and

animal subjects, ethical approval for the undertaking of this research study was

12

nevertheless requested in writing from the Research Ethics Committee of the

University of South Africa (UNISA). To get the gist of the approach adopted by the

researcher for executing this research study, the reader is referred to sub-sections 1.4

and 5.1 relating to research aims and methodological approach and experimental

design respectively. The dataset used for this experiment is credit card data that was

anonymised by Principal Component Analysis (PCA) method for hiding the private and

confidential information of the bank users.

1.8. Significance of the Research

The findings of in this study contribute to the knowledge economy of South Africa and

the banking sector in general. Safe-Level SMOTE for the detection of malicious

activities relating to credit card fraud is significant in a case of overlapping class data

because oversampling of the minority class in a highly skewed distribution with

overlapping class data does not achieve 50:50 binary class distribution. That is to say,

one problem is being solved by introducing another problem.

A method for ensemble feature selection for unknown features that are transformed to

hide the original meaning is significant to guide conclusion in terms of features

selected, which are suggested by this study.

An ensemble data model with diverse base models that is based on weighted voting

method is significant since a weak base model cannot be given the same weighting

as a strong base model. The optimization of the weighted voting method of base model

is also significant since an improvement of predictive accuracy needs to be

undertaken. The optimization of the weighted voting method is performed by using the

differential evolution algorithm.

The biasness reduction of data distribution within a class and a class distribution plays

a significant role since duplicate data samples are eliminated while information about

the dataset is preserved as much as possible.

1.9. Layout of the Dissertation

The remainder of the dissertation presents a review of the relevant literature in Chapter

2. This is followed by Chapter 3, which discusses the research methodology adopted

for the execution of this research study. Therefore, Chapter 4 provides details of the

13

algorithm design for this research study. In Chapter 5 data is analysed ending with

Chapter 6, which presents the conclusion of the study. Following an analysis of the

relevant data, the dissertation ends with chapter 6, whereby the conclusion of the

study is presented.

14

2. Chapter 2: Literature Review

In this section, literature relevant to the research study is reviewed. The section starts

by giving background information on big data, and how big data is defined in the

current era. Thereafter, reference is made to different types of credit card fraud

experienced on a daily basis by the banking industry. In addition, the information and

personal data security as an enforcement in Section 14 of the Constitution of South

Africa (1996) is discussed. Finally, the state-of-the-art credit card fraud detection

techniques for preventing fraudulent transactions are also chronicled before

discussing the challenges associated with credit card fraud detection techniques.

2.1. Background on Big Data

Big data described as large amount of data depending on who is discussing it. The

type of data regarded by the likes of Google or Amazon as being huge may be totally

different from the huge data of a small or medium sized organization. The history of

big data does as far as 1663 when John Graunt dealt with huge amounts of data when

studying the bubonic plague (Keith 2017). To describe and understand big data in this

study, four V’s (namely Velocity, Volume, Variety and Veracity) are used.

2.1.1. Volume

The volume describes the size of dataset (Nyikes & Rajnai 2015, pp. 217 – 222;

Trelewicz 2017, pp. 1 - 3). For big data, volume describes the large sized data

collected for uncovering the unknown factors that will enable business questions to be

answered. In the world of effortless expenditures, the high number of credit card users

translates into a higher number of daily translations. As a result, the concomitant

reporting and data analysis of the daily data credit card transactions tallied over a

period of a month is also high.

Since banks in South Africa have been operating for years, the amount of credit card

data collected over the years is just too complex to be handled by traditional data

processing applications. Therefore, complex data analytical tools are required for the

processing of the processing of this type of data.

15

2.1.2. Velocity

The velocity is mostly associated with the rate at which data is generated, accumulated

or must be processed (Nyikes & Rajnai 2015, pp. 217 – 222; Trelewicz 2017, pp. 1 -

3). Given the high number of credit card users, it is realistic to think that a substantial

majority of these users have mobile phones. The high usage and advancement of

mobile banking applications to support the daily banking transactions has led to an

insanely high rate of generation of data motivated by effortless expenditure. This

suggests that complex analytical tasks are therefore needed for daily credit card data

analysis and reporting.

2.1.3. Variety

The variety is mostly associated with the format in which data is stored (Nyikes &

Rajnai 2015, pp. 217 – 222; Trelewicz 2017, pp. 1 - 3). Data can be stored in multiple

traditional formats such as excel, databases, and comma-separated values (csv),

among others. Data is not always stored in traditional formats; instead, it can also be

stored in other formats such as video, PDF, SMS, MMS, email and others. However,

in this research study, the same format is used for the credit card data that was

collected. This is because data in the same format is easy to rearrange. It should

however be noted that real-world data is not always in the same format. Complex

analytical tasks are required for the analysis of data stored in an unstructured format.

2.1.4. Veracity

The veracity is mostly associated with the trustworthiness of the data (Nyikes & Rajnai

2015, pp. 217 - 222). The quality and the usability of data is highly dependent on the

source system. Therefore, not all data is good for analysis. The accumulated data that

is mined to uncover the meanings and unknowns in the data must be meaningful to

the problem to be analysed.

In consideration of the four V’s, big data can be defined as a complex and fast-growing

data composed of different data formats that cannot be processed by traditional data

management applications to maintain the security and the integrity of data. In the

section that follows, credit card fraudulent activities that negatively affect the banking

industry are discussed.

16

2.2. Credit Card Fraud Trends

When credit card holders make online or offline payments, fraudsters use

sophisticated methods to capture credit card details of card holders that are ignorant

of suspicious activities. Fraudsters take advantage of the ignorance of the card holder

by making as many clean transactions as possible. Fraudsters can either commit

online or offline credit card fraud.

2.2.1. Online Credit Card Fraud

Online credit card fraud regarded as Card Not Present (CNP) fraud whereby credit

card details are stolen without stealing the physical credit card (Hsu & Chao 2007, pp.

1 – 4; Babu & Rajeshwari 2016, pp. 439 - 444). The information in the stolen credit

card such as card number, expiry date and card verification value (CVV) allows the

card to be used even when it is not physically present (e.g. in internet purchases).

Online credit card fraud such as CNP continues to grow globally due to advanced data

analytics strategies used by credit card fraudsters. In this study, it is argued that

fraudsters are innovative experts using sophisticated strategies that utilize

weaknesses of standard machine learning strategies. In a nutshell, fraudsters take

advantage of weak classifier models. To deploy a successful online credit card fraud

solution, a technique that overcomes the weaknesses of classifier models is required.

 The other types of online credit card frauds are as follows.

 Site Cloning

Site cloning arises when a legal and official website is cloned by fraudsters to

mislead clients into placing an order with them (Babu & Rajeshwari 2016, pp.

439 – 444; Rajak & Mathai 2015, pp. 1 - 4). The cloned website looks similar to

legal and official website, and unaware clients would normally enter their credit

card details on the cloned website to complete the online purchase. Upon

receipt of the credit card details of the client, the fraudsters can make

unauthorised fraudulent purchases until the customers and/or the bank

becomes aware of the fraudulent credit card activities.

17

 False Merchant Sites

This type of fraud is committed through websites that require customers to

confirm their personal information by using credit card information (Babu &

Rajeshwari 2016, pp. 439 – 444; Rajak & Mathai 2015, pp. 1 - 4). Such website

owners can commit credit card fraud by themselves or by selling information of

credit card-holders to fraudsters who will then commit the credit card fraud.

 Phishing

This is the fraud through which fraudsters send out misleading e-mails to users

in order to gain access to their personal information (Babu & Rajeshwari 2016,

pp. 439 - 444). Fraudsters use very intelligent and legitimate methods to

convince users into believing these e-mails. Example of such methods include

providing users with links to websites asking these users to enter their personal

information.

 Friendly Fraud

This is when the fraudster is the credit cardholder that uses the card for offline

purchases at actual stores or online purchases and later report the card as

stolen or lost in order to claim for reimbursement from the bank (Babu &

Rajeshwari 2016, pp. 439 - 444).

A successful implementation of the proposed model that overcomes the weaknesses

of weak classifier models will reduce the level of online credit card fraud is committed.

The stacking ensemble method, which combines two or more classification models, is

used to vote an output of each transaction. The vote of an output is based on weights

of classification model per transaction. This means that a classification model that

predicts an output of a transaction badly would have a vote with lesser weight for

predicting the final output of a transaction. Therefore, weak classifier models that

fraudsters take advantage of would not contribute much in the prediction of the final

output of a transaction. The next subsection provides a detailed discussion of offline

credit card fraud.

18

2.2.2. Offline Credit Card Fraud

Offline credit card fraud is the type of fraud through which a physical card is stolen to

make purchases at the actual physical stores (Babu & Rajeshwari 2016, pp. 439 –

444; Rajak & Mathai 2015, pp. 1 - 4). Offline credit card fraud is less common since

there is a higher possibility of failure, and fraudsters normally prefer clean moves

where stolen credit card is used to commit fraud without the fraudster being caught. In

a case of credit card being stolen and not reported, some banks hold credit

cardholders responsible for the losses suffered should illegal transactions occur.

An advanced solution for offline credit card fraud could be the usage of biometric

systems for authorizations of credit card transactions. However, the biometric

solutions are outside the scope of this study. In this study, the deployment of a

successful offline credit card fraud solution is directed towards addressing a need for

a technique that overcomes the weaknesses of classifier models. Classes of offline

credit card are as follows.

 Card Skimming

Fraudsters normally use special skimmer devices to capture credit card

information stored in the magnetic stripes of the physical credit card (Hsu &

Chao 2007, pp. 1 – 4; Babu & Rajeshwari 2016, pp. 439 - 444). Fraudsters can

use captured credit card information to make duplicate copies of physical credit

cards in order to make purchases either offline at the actual stores or online.

At the ATM machine, fraudsters can place skimmer devices and micro-cameras

to record the entered card pins when transaction are performed (Hoffman

2017). Card skimming can also be performed by corrupt employees that swipe

customers’ cards on skimmer devices during payments at merchant stores

(Writer 2015).

 Credit Card Generators

This is a type of fraud through which automated programs that use bank

algorithms to generate credit card numbers arbitrarily and apply try and error

techniques and other methods to research generated credit card numbers that

19

correspond to real credit card accounts from the actual banks (Rajak & Mathai

2015, pp. 1 - 4).

Since there is a high likelihood of failure for offline credit card fraud, a successful

implementation of the proposed model that overcomes the weaknesses of weak

classifier models will discourage fraudsters from attempting to perform offline credit

card fraud. Thus, the rate at which online credit card fraudulent activities are performed

will reduce. A stacking ensemble method that combines two or more classification

models to vote an output of each transaction. The vote of an output is based on

weights of classification model per transaction. On that premise, a classification model

that predicts an output of a transaction badly would have a vote with lesser weight to

predict the final output of a transaction. As a result, weak classifier models that

fraudsters take advantage of would not significantly contribute to the prediction of the

final output of a transaction. In the next sub-section, a detailed discussion on credit

card application fraud is presented.

2.2.3. Credit Card Application Fraud

Credit card application fraud refers to when false information is used by fraudsters to

apply for a credit card at the bank. The application fraud of credit card is associated

with identity theft and chain of trust fraud. This type of fraud occurs very rarely since

fraudulent behaviour can be detected during the application process when checking

or verifying personal information.

An advanced solution for credit card application fraud could be the use of biometric

systems to verify the personal information through genetic information such as finger

prints, voice pattern, and eyes pattern. However, biometric solutions are outside the

scope of this study. In this regards, data analytics methods for anomaly detection can

only be used to prevent the continuity of credit card application fraud. Below is the

discussion of offline credit card fraud, which can be eliminated by successful

implementation of data analytics methods for anomaly detection. An aspect of credit

card fraud that can be eliminated by successful implementation of data analytics for

anomaly detection is identity theft, which is defined as follows:

 Identity Theft

20

Identity theft involves fraudsters obtaining personal information such as, but not

limited to, identity number, gender, e-mails and address from other people in

order to open new accounts or to access existing accounts with the aim of

committing fraud (Babu & Rajeshwari 2016, pp. 439 - 444). This is the type of

fraud through which a fraudster commits credit card application fraud by using

an identity that is not real or by stealing other people’s identity with intensions

of committing secondary fraud (Hsu & Chao 2007, p. 1 – 4; Babu & Rajeshwari

2016, pp. 439 - 444).

A fraudster that uses false identity and manages to get the credit card from the bank

would normally use the credit card and later not pay the bill at a great loss to the bank.

In a case whereby a fraudster uses the identity details of a real person and thereafter

manages to get a credit card from the bank, the real person is liable for the payment

of the bill unless the real person is able to provide proof of identity theft to the bank.

Since application fraud behaviour can be detected during the application process

when checking or verifying personal information, the chances of failure are high. The

successful implementation of the stacking ensemble method will discourage

fraudsters from attempting to commit credit card application fraud.

2.3. Information and Data Security

2.3.1. Data Protection

Section 14 of the constitution of South Africa (1996) is designed to protect the privacy

of the citizens of South Africa through limited rights to privacy. The Protection of

Personal Information Act (POPI) Act was enacted to regulate access and use of

personal information. The eight POPI principles are defined to govern lawful use of

personal information (Government 2013).

2.3.2. Access to Data

Public sector agencies in South Africa normally have access to important and useful

information about citizens (Chase 2018). The personal data from trusted public sector

agencies can be used by South African banks to verify information of applicants for

loans. Section 14 of the constitution of South Africa and the POPI Act limits banks

21

from having complete access to individual’s personal data, which on the other hand

motivates a rapid growth of identity theft related fraud (Eurofinas & ACCIS 2011).

2.3.3. Consent and Disclosure of Sensitive Information

When an applicant applies for a credit card at the bank, an applicant’s provided

information must be verified by the bank. For verification of applicant’s information,

banks must define a clear and a transparent privacy policy for handling sensitive

information, and a consent in writing that shows the data subject that specify the

intended usage of the data. The collection of sensitive information from public or

private sectors (that of the same level of data protection as the bank under the privacy

rules) must be lawful, it must be collected for lawful purpose, and it must be collected

for only the intended purpose for which it has been collected for (Ahluwalia & Mahajan

2011).

When banks require sensitive information about credit card applicants, a lawful

contract that permits disclosure of sensitive information must be present before

disclosing of any sensitive information by private or public sector to any bank, unless

such disclosure is required by the law (Ahluwalia & Mahajan 2011).

2.3.4. Cross Border Data Transfer

Sensitive information of international applicants in South Africa can be verified by

South African banks. According to (Ahluwalia & Mahajan 2011), banks normally

transfer sensitive information across the border if the entity to receive the information

ensures the following:

 The same level of data protection as the bank under the privacy rules.

 The transfer is under a lawful contract between bank and the data subject.

 A person has signed a consent that gives an authority to transfer their sensitive

information across the border.

An advanced analytics strategy for complex data analysis and verification of

information of the credit card applicants in banks include machine learning, which is

discussed in the next section.

22

2.4. Machine Learning Historical Foundation

Previously, computers were primarily used for searching information in large

databases (Woodford 2017) while complex mathematical calculations were performed

using calculators (Ball & Flamm 1996). The computer storage and capabilities were

increased to accommodate an increase in the size of industrial data (Woodford 2017).

For decision making, the increase in data needed to be analysed to support industrial

processes.

The tools used for data analysis were used for regular tasks (Woodford 2017) and not

for automatic classification of information or other machine intelligence tasks. The

introduction of machine intelligence algorithms that can make decisions without

intervention of humans became important for the management of complex

computation. Hence, machine learning became a strategy for allowing machines to

learn and act from data without being explicitly programmed (Andrew 2017).

Knowledge discovery and classification and prediction are two fundamental areas of

machine intelligence (Zaza & Al-Emran 2015, pp. 275 - 279). A decision support

system caters for possible decisions based on the patterns that are found in data. To

this end, data mining is the machine intelligence that identifies the important patterns

for prediction. One of the types of learning for data models is supervised learning; and

it is discussed below.

2.4.1. Supervised Learning

This is the machine learning type in which the learning of models is guided by the class

values (Brownlee 2016). The class values are either 0 for legal transactions or 1 for

illegal transactions. A supervised machine learning data model must be supplied with

credit card historical data that it must learn from in order to be in a good position to

predict the outcomes of future transactions. The prediction labels of future transactions

are done through the classification process by using machine learning classification

algorithms. The classification is discussed in the next section.

2.5. Classification

This is one of the most widely used functionality category methods in machine

learning. The application of classification methods includes fraud detection analysis,

23

medical diagnosis analysis, spam detection analysis, and risk assessment analysis.

The main goal of classification methods is to classify an output (y) into a category

given some values of x (Peng, et al. 2017, pp. 1 – 7; Cui, et al. 2018, pp. 1 - 11). That

is to say, based on prediction of attributes for prediction, a classification method

assigns variable to the target category. For the prediction of attributes, the

classification method uses some statistical, mathematical and computational

algorithms such as, but not limited to, Artificial Neural Network, Regression, Nearest

Neighbour, Decision Trees, and Support Vector Machine (Cui, et al. 2018, pp. 1 – 11;

Liu, et al. 2018, pp. 1 - 13).

This research study involves classification, whereby data analytics algorithms are

trained to separate credit card fraudulent transactions from non-fraudulent

transactions. Fraudulent transactions are grouped together as one class by labelling

predicted output as 1, and non-fraudulent transaction are grouped together as another

class by labelling predicted output as 0. In the next sub-section, the types of data

analytics are discussed.

2.6. Types of Data Analytics

2.6.1. Descriptive Analytics (What’s happening?)

This is an analytic that provides insight into the data by describing the past (Gomes,

et al. 2016, pp. 1 – 5; Haneem, et al. 2017, pp. 1 - 6). The past in this case may refer

to an occurrence of an event that is one minute ago, a week ago, or a year ago.

Descriptive data analysis is important and useful for enabling people to understand

and learn from past behaviours in order to understand how future outcomes might be

influenced.

Mathematical and statistical methods such as, but not limited to, averages, sums, and

percentages are normally used for performing aggregations of filtered columns of data

to generate information such as year over year changes in an organization and total

stock, average money spent by each customer. Common examples of descriptive

analytics provide historical insight on the company’s data such as production,

operations, customers, sales, and financial figures.

24

2.6.2. Predictive Analytics (What is likely to happen?)

Predictive analytics are statistical and machine learning algorithms that dig into the

historical data obtained from systems such as customer relation management (CRM),

enterprise resource planning (ERP), human resource (HR), re-organise the data and

categorize the data to perform the forecasting of the insights about the future based

on the collected data (Queiroz, et al. 2016, pp. 1 – 6; Toporek, et al. 2011, pp. 1 – 4;

Li, et al. 2017, pp. 1 - 6). Predictive analytics provide the financial industry with

actionable insights based on collected data.

Predictive analytics can be used in the banking industry to forecast purchasing

patterns, customer behaviours, and to produce credit score. Predictive analytics is

based on probabilities to estimate the likelihood of future outcomes. Probability is the

subset of statistics; hence, statistical algorithms cannot predict the future outcomes

with 100% certainty. Predictive analytics is, therefore, an analytical method that

answers the question of what is likely to happen in the future. Challenges associated

with detection techniques are discussed in the next section.

2.7. Stacking Algorithm

There is no machine learning method that performs well for all measures in every given

application according to the NO FREE LUNCH (NFL) theory (Macready & Wolpert

1996, pp. 67 - 82). Stacking is an ensemble method that uses various machine

learning algorithms to construct a model that is used to generate new dataset that is

used in a combiner machine learning algorithm (Smolyakov 2017). In the context of

classification stacking models, different classifier models are trained with the dataset

and produce an output that is either 0 or 1.

The output column (dependent variable) of base classifier models are used as features

of the stacking model. The stacking ensemble technique is used to generate the output

value based on the voting method. For each data observation, the stacking model

uses either the majority voting method or the weighted voting method for the prediction

of the final output value. Majority voting refers to when all base models vote a

prediction class of each transaction. On the other hand, weighted voting involves the

voting carried out by counting the predictions of better models to predict the output of

25

each transaction. In this research, the weighted voting has been adopted for use in

the stacking ensemble model for the classification of the output of each transaction.

2.7.1. Weighted Voting Method

It is assumed 𝛿1, 𝛿2, 𝛿3, … , 𝛿𝑛 is be the weight of transaction, and β1, β2, β3, … , β𝑛 is the

output values of transactions, where β is the output of transaction, 𝛿 is the weight of

transaction, and 1,2,3, … , 𝑛 is the transaction number from 1 until transaction n. The

term “non-fraudulent” is the opposite of fraudulent. Mathematically, the term “opposite”

can be represented by the negation. If the fraudulent transaction is represented by 1,

the non-fraudulent transaction can therefore be represented by -1.

For weighted voting, the study replaces the output 0 of base models with -1 since

direction is important. If the output value of Weight_Voting is positive then the

transaction is fraudulent, and if the output value of Weight_Voting is negative then the

transaction is non-fraudulent. The formula for Weight_Voting is defined as follows:

Weight_Voting = β1𝛿1 + β2𝛿2 + β3𝛿3 + … + β𝑛𝛿𝑛

(2.1)

Furthermore, in this study, it is proposed that weighted voting for the classification

models require an optimization of weights to produce good results. Thus, differential

evolution algorithm is a stochastic method to be used for optimization of the weights

of transactions in this research study. Differential evolution method is discussed in the

next sub-section.

2.8. Differential Evolution Algorithm

This is an optimization technique of stochastic search for a population-based vector,

and it is powerful and efficient over a continuous space for solving differentiable and

non-linear problems. This algorithm was introduced in 1996 by Storn and Price. The

algorithm is an evolutionary method composed of five sequential stages, namely:

population initialization, mutation, recombination, selection, and termination criteria. If

the data observation does not meet the termination criteria, the data observation

evolves to the next generation where the weight is readjusted. If the data observation

meets the termination criteria, the data observation is an optimal solution.

26

Consider the optimization problem f(x) where X = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐷], and D is the number

of variables. For the population size N and a generation G, the population matrix is

defined as 𝑥𝑛,𝑖
𝐺 = 𝑥𝑛,1

𝐺 , 𝑥𝑛,2
𝐺 , 𝑥𝑛,3

𝐺 , … , 𝑥𝑛,𝐷
𝐺 .

The five sequential stages of the evolutionary method are discussed in the following

sub-sections.

2.8.1. Initial Population

The random generation of the initial population between lower bound and upper bound

is defined by the following equation:

𝑥𝑛,𝑖 = 𝑥𝑛,𝑖
𝐿 + 𝑟𝑎𝑛𝑑() ∗ (𝑥𝑛,𝑖

𝑈 − 𝑥𝑛,𝑖
𝐿), 𝑖 = 1,2,3, … , 𝐷 𝑎𝑛𝑑 𝑛 = 1,2,3, … , 𝑁

(2.2)

where 𝑥𝑖
𝐿 is the lower bound of the variable 𝑥𝑖, and 𝑥𝑖

𝑈 is the upper bound of the

variable 𝑥𝑖.

2.8.2. Mutation

For each parameter vector, three other vectors 𝑥𝑟1𝑛
𝐺 , 𝑥𝑟2𝑛

𝐺 𝑎𝑛𝑑 𝑥𝑟3𝑛
𝐺 are selected

randomly and the weighted difference of two of the vectors is added to the third

𝑥𝑛
𝐺+1 = 𝑥𝑟1𝑛

𝐺 + 𝐹(𝑥𝑟2𝑛
𝐺 − 𝑥𝑟3𝑛

𝐺) (2.3)

where n = 1,2,3, …, N. 𝑥𝑛
𝐺+1 is called a donor vector and F is a user supplied value

that is taken between 0 and 1.

2.8.3. Recombination

The trial vector 𝑈𝑛,𝑖
𝐺+1 is derived from the donor vector 𝑉𝑛,𝑖

𝐺+1 and the target vector 𝑥𝑛,𝑖
𝐺

in accordance with the following equation.

𝑈𝑛,𝑖
𝐺+1 = {

𝑈𝑛,𝑖
𝐺+1 𝑖𝑓 𝑟𝑎𝑛𝑑() ≤ 𝐶𝑝 𝑜𝑟 𝑖 = 𝐼𝑟𝑎𝑛𝑑

𝑥𝑛,𝑖
𝐺 𝑖𝑓 𝑟𝑎𝑛𝑑() > 𝐶𝑝 𝑎𝑛𝑑 𝑖 = 𝐼𝑟𝑎𝑛𝑑

(2.4)

𝑖 = 1,2,3, … , 𝐷 𝑎𝑛𝑑 𝑛 = 1,2,3, … , 𝑁

where 𝐼𝑟𝑎𝑛𝑑 is an integer random number between I and D, and Cp is the

recombination probability that is chosen randomly between the value of 0 and 1.

27

2.8.4. Selection

The trial vector 𝑈𝑛,𝑖
𝐺+1 in the equation 2.11 is compared with the target vector 𝑥𝑛,𝑖

𝐺 , and

the one with the lowest function value is selected for next generation.

𝑥𝑛
𝐺+1 = {

𝑈𝑛,𝑖
𝐺+1 𝑖𝑓 𝑓(𝑈𝑛

𝐺+1) > 𝑓(𝑥𝑛
𝐺)

𝑥𝑛
𝐺 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.5)

𝑛 = 1,2,3, … , 𝑁

The differential evolution method is a stochastic method that is used to optimize the

weights of voting the output of transactions. The next sub-section discusses

challenges associated with detection techniques.

2.9. Challenges Associated with Detection Techniques

2.9.1. Skewed Distribution

The skewed distribution is also known as the unbalanced class distribution (Godase

& Attar 2012, pp. 1 – 6; Somasundaram & Reddy 2017, pp. 1 – 6; Kho & Vea 2017,

pp. 1 - 5). Therefore, in the event of a need to build a classification supervised learning

model to classify new samples as to whether they belong to class A or class B, the

labelled training data observations is required. The skewed distribution is a result of

many labelled training samples in class B than in class A or vice-versa (Godase &

Attar 2012, pp. 1 – 6; Somasundaram & Reddy 2017, pp. 1 - 6).

In a skewed class distribution, the standard machine learning algorithms that achieve

high accuracy tend to classify all credit card transaction as the class with the majority

data observations which is always the non-fraudulent class (Zeager, et al. 2017, pp.

112 - 116). The classification of all transactions as non-fraudulent implies poor

predictive accuracy of fraudulent transactions. The skewed distribution causes the

model to know less about the class with less labelled training samples and to know

more about the class with many labelled training samples. The issue of skewed

distribution is common in the context of credit card fraud detection since the number

of legal observations are greater than the number of illegal observations (Pushpa &

Malini 2017, pp. 255 - 258). Therefore, fraud detection model developers have to

design ways to overcome the challenge when constructing a fraud detection system.

28

One possible solution to consider for balancing the class distribution is under-sampling

and SMOTE oversampling. From the issue of unbalanced data in credit card

transactions, it is realistic to assume that the many transactions from the class of the

majority data observations are redundant. Therefore, random elimination of the

redundant transactions would not change the structure of the dataset significantly.

However, random removal of redundant transactions has risks, since the removal of

redundant transactions is not done in an unsupervised manner.

In practice, sampling is the method of reducing the class of the majority data

observations using the subset of the class to represent the entire population of the

class. Several binary classifiers have shown better performance when they are trained

with balanced class distribution (Gosain & Sardana 2017, pp. 79 - 85). However, in

this research study it is not implied that the classifier models cannot learn and predict

output from unbalanced class distribution. Zeager, et al. (2017, pp. 112 - 116) have

shown that the use of sampling techniques for balancing the class distribution does

not improve performance of some of their classifiers. Thus, in order to establish if

sampling techniques enhance the performance of the classification models, some

simulations have to be run.

The simulations must also include different ratios of class distribution to establish the

optimum ratio. In a highly skewed class distribution, the SMOTE oversampling method

of the minority class to have a 50:50 ratio against the minority class improves the

intersection between the two classes. Having a model with high percentage of

accuracy does not necessarily mean the model is doing well to solve the problem.

In a case where there are 100 transactions, and 95 of those transactions are legal and

5 transactions are illegal, and the model accuracy is 95%. If the classification model

predicts all 100 transactions to be legitimate, the model has a higher accuracy

percentage yet the model is substandard. The model is regarded as being of poor

quality because it is only knowledgeable about a single class.

However, if 90 transactions are classified as legitimate when 80 transactions are in

fact legitimate, and 10 transactions are classified as fraudulent when 4 transactions

are in fact fraudulent, the accuracy percentage in this case is 80%. The model is good

because both classes are equally or nearly equally represented. To this end, the true

accuracy of the model can be achieved by calculating the F-score or confusion matrix.

29

The true accuracy of the classifier is achieved by having the F-score or confusion

matrix values that represent both classes.

The poor performance of the classification model is not only caused by a smaller

number of illegal transactions in the class of the minority data observation in relation

to higher number of legal transactions in the class of the majority data observation, but

also by the overlapping of between two classes of transactions. Additionally, the

performance of the transaction classifier in unbalanced binary data distribution is

affected by the availability of noise in transactions. The noise is discussed in the next

subsection.

2.9.2. Noise

Noise refers to the possible errors that are associated with data (Lita, et al. 2007, pp.

1 – 5; Somasundaram & Reddy 2017, pp. 1 – 6; Li, et al. 2018, pp. 1 - 10). Examples

of errors that might be found in data include missing values and incorrect dates. An

error in data can result in an erroneous model construction (Somasundaram & Reddy

2017, pp. 1 – 6; Li, et al. 2018, pp. 1 - 10), and a model with errors can result in

prediction accuracy of poor quality. Another challenge associated with detection

techniques, which is discussed in the next section, is overlapping data.

2.9.3. Overlapping Data

Overlapping data poses a challenge to the supervised learning methods. The

challenge of overlapping data points is as a result of a legal transaction looking nearly

the same as the illegal transaction or vice versa (Somasundaram & Reddy 2017, pp.

1 – 6; Mak, et al. 2011, pp. 1 - 6). This is a serious problem since an erroneous model

constructed will detect transactions as fraudulent when they are in fact not fraudulent

or allow fraudulent transactions to go undetected since they are mistakenly treated as

legal transactions (Zhou, et al. 2014, pp. 1 - 6). The challenge of detection techniques

is choosing parameters is discussed in the following sub-section.

2.9.4. Choosing Parameters

Most of machine learning algorithms require several parameters and thresholds values

defined to pre-set by the users (Silva & Wunsch 2017, pp. 1 – 8; Basha, et al. 2017,

pp. 1 - 6). Different parameters in machine learning algorithms normally produce

different results (Silva & Wunsch 2017, pp. 1 - 8). Hence, various parameters can lead

30

to a model with totally changed performance. A model with completely different

performance will increase the complexity of model construction. The challenge of

detection techniques that is in line for a discussion is feature selection.

2.9.5. Feature Selection

Feature selection is the method of picking the subset of features relevant to the

problem from the total number of given features related to the problem domain (Singh,

et al. 2015, pp. 388 – 393; Todd & Harvey 2015, pp. 474 – 489; Kamal, et al. 2009,

pp. 1 - 6). For all features excluding a labelled feature, a subset of features is achieved

by eliminating one of two related features that shows a strong correlation because they

have the same impact on the data model. Thus, elimination of one of two related

features reduces the complexity of the data model while preserving the variety of

features. Given a variety in the features of the dataset, it is not always necessary to

perform feature reduction because the data model might lose useful information.

Knowing which relevant features to use when constructing a predictive model is a

challenge that needs deep understanding of the problem domain (Chezian & Devi.

2016, pp. 161 – 165; West & Bhattacharya 2016, pp. 1734 – 1744; Mei & Jiang 2016,

pp. 301 - 305).

Feature Engineering is a necessary step of data preparation to reduce computational

time and complexity and to avoid overfitting of the data model (Drotár & Gazda 2016,

pp. 1 – 5; Qiu, et al. 2018, pp. 1 – 4; Tran & Li 2009, pp. 1 – 4). The feature engineering

methods discussed in this research study are Univariate Feature Selection Method,

Recursive Feature Elimination Method and Feature Importance. The first feature

engineering method to discuss is Univariate Feature Selection Method and it is

discussed in the subsection below.

 Univariate Feature Selection Method

This method seeks to analyse the relationship between each feature of the input

dataset and the output feature of the dataset. Univariate statistical test is

conducted to test whether there is any statistically significant relationship

between each input feature of the dataset. The Univariate Feature Selection

Method was implemented successfully by (Drotár & Gazda 2016, pp. 1 – 5;

Curtis & Kon 2015, pp. 1 – 4; Subho, et al. 2019, 1 – 6). The next feature

engineering method to discuss is Recursive Feature Elimination Method.

31

 Recursive Feature Elimination Method

This model select features of the input dataset by recursively selecting smaller

subset of the input features. The initial subset of the input features was used to

train the estimator. The estimator is used to estimate the feature importance.

The least important features are pruned from the subset of the input features.

The Recursive Feature Elimination Method was implemented successfully by

(Tran & Li 2009, pp. 1 – 4; Lv, et al. 2014, pp. 1 – 4; Zeng, et al. 2009, pp. 1 -

4). The next feature engineering method to discuss is Feature Importance.

 Feature Importance Method

This method assigns scores to the input features of the dataset based on how

useful the input features are classifying the output feature. The feature

importance scores are obtained by computing the correlation between each

input feature and the output feature. The feature important scores can provide

an insight into the dataset, model and the classification model. The Feature

Importance Method was implemented successfully by (Chu, et al. 2019, pp. 1

– 3; Qiu, et al. 2018, pp. 1 – 4; Dutta, et al. 2018, 1 – 5)

This section highlighted some of the practical issues when solving a machine learning

problem with a skewed class distribution. Generally, classification data models are not

designed to work well with skewed data distribution. Therefore, various data pre-

processing actions are taken to clean and shape datasets such that the classification

process of credit card data can be adequately performed to produce high predictive

accuracy of both fraudulent and non-fraudulent transactions without introducing any

biasness or high variance in the data model. Works of other researchers that are

related to this research study are discussed in the next section.

2.10. State-of-the-Art and Background Theory

In this section, the theoretical background of the state-of-the-art detection techniques

for credit card fraud are discussed. Well analysed data produce good results that

enhance the quality of decision making by organizations. The daily losses suffered by

banks which result from credit card fraud indicate lack of complex analytical tasks to

prevent fraudulent activities related to credit card. The state-of-the-art models are

discussed below.

32

2.10.1. Logistic Regression (LR)

The LR in this research study is focused on the binary classification of transactions

where the predicted value y can only take the value of 1 for the class of fraudulent

transactions or the value of 0 for class non-fraudulent transactions. Thus, y∈{0,1}. The

corresponding 𝑦(𝑖) of 𝑥(𝑖) is called the label for the training sample (Liu, et al. 2017,

pp. 1 – 6; Pavlyshenko 2016, pp. 1 – 5; Ding, et al. 2017, pp. 1 - 6). Hypothesis for

logistic regression is logistic function or sigmoid function (Pushpa & Malini 2017, pp.

255 – 258; Andropov, et al. 2017, pp. 1 – 6; Srivastava, et al. 2016, pp. 1 – 4; Liu, et

al. 2017, pp. 1 – 6; Pavlyshenko 2016, pp. 1 - 5); and it is defined as follows: ℎ𝜃(𝑥) =

𝑔(𝑧), where z = 𝜃𝑇𝑥. Thus, 𝑔(𝑧) =
1

1+𝑒−𝑧
 .

A pictorial representation of LR is captured in figure 2.1.

Figure 2.1: A depiction of the Logistic Regression.

The sigmoid function is used to map any real number to the interval between 0 and 1.

Thus, the function ℎ𝜃(𝑥) must satisfy 0≤ ℎ𝜃(𝑥) ≤ 1. The function will give out the

probability that an output is 0 or 1 (Y.Liu, et al., 2017; Ding, et al., 2017). Any probability

greater or equal to 0.50 suggests an output of 1 (ℎ𝜃(𝑥) ≥ 0.5 → 𝑦 = 1), and any

probability that is less than 0.50 suggests an output of 0 (ℎ𝜃(𝑥) < 0.5 → 𝑦 = 0). The

cost function for logistic regression is defined as: 𝐽(𝜃) =
1

𝑚
∑ 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖))𝑚

𝑖=1

where 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = -log (ℎ𝜃(𝑥)) if the output value y = 1 or 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖))

= -log (1 − ℎ𝜃(𝑥)) if the output value y = 0. The simplified cost function that

accommodates both values of y = 1 and y = 0 is defined as follows: 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖))

33

= -(y) log (ℎ𝜃(𝑥)) – (1-y) log (1-ℎ𝜃(𝑥)). Notice that both (y) and (1-y) are added to the

equation such that if y = 0 then:

𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = -(y) log (ℎ𝜃(𝑥)) – (1-y) log (1-ℎ𝜃(𝑥))

 = -(0) log (ℎ𝜃(𝑥)) – (1-0) log (1-ℎ𝜃(𝑥))

 = -log (1 − ℎ𝜃(𝑥))

And if y = 1 then: 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = -(y) log (ℎ𝜃(𝑥)) – (1-y) log (1-ℎ𝜃(𝑥))

 = -(1) log (ℎ𝜃(𝑥)) – (1-1) log (1-ℎ𝜃(𝑥))

 = -log (ℎ𝜃(𝑥))

Thus, the addition of (y) and (1-y) to the simplified cost function equation of logistic

regression would not affect the results. The simplified cost function of logistic

regression is therefore defined as:

 𝐽(𝜃) =
−1

𝑚
∑ [(𝑦(𝑖))log (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) log (1 −𝑚

𝑖=1

ℎ𝜃(𝑥(𝑖)))].

(2.6)

The logistic regression in this study is used as one of the base models of stacking

ensemble method. The logistic regression model learns the training dataset. The next

subsection discusses the support vector machine model.

2.10.2. Support Vector Machine (SVM)

The logic behind SVM is derived from logistic regression and sigmoid function to

classify the output as either 1 or 0. To explain the support vector machine cost function,

the logistic regression cost function formula and sigmoid function formula, which are

explained in detailed from logistic regression section, are tackled first (Pushpa & Malini

2017, pp. 255 – 258; Andropov, et al. 2017, pp. 1 – 6; Srivastava, et al. 2016, pp. 1 –

4; Liu, et al. 2017, pp. 1 – 6; Pavlyshenko 2016, pp. 1 - 5). The sigmoid function is

defined as follows: ℎ𝜃(𝑥) = 𝑔(𝑧), where z = 𝜃𝑇𝑥. Thus, 𝑔(𝑧) =
1

1+𝑒−𝑧.

SVM is illustrated pictorially if Figure 2.2.

34

Figure 2.2: An illustration of Support Vector Machine.

The LR loss function is defined as follows:

 𝐽(𝜃) = −[(𝑦)log (ℎ𝜃(𝑥)) + (1 − 𝑦) log (1 − ℎ𝜃(𝑥)]

 = −(𝑦)log (ℎ𝜃(𝑥)) − (1 − 𝑦) log (1 − ℎ𝜃(𝑥)]

If the output value is y = 1, then the cost function is −ylog(ℎ𝜃(𝑥)), the goal is for 𝜃𝑇𝑥

to be much greater than 0 (𝜃𝑇𝑥 >> 0). If the output value is y = 0, then the cost function

is −ylog(1 − ℎ𝜃(𝑥)), The goal for 𝜃𝑇𝑥 to be much lesser than 0 (𝜃𝑇𝑥 << 0). (𝜃𝑇𝑥 >>

0) is the cost of z when y = 1 and it is denoted as 𝐶𝑜𝑠𝑡1(𝑧), and (𝜃𝑇𝑥 << 0) is the cost

of z when y=0 and it is denoted by 𝐶𝑜𝑠𝑡0(𝑧). From logistic regression, −log(ℎ𝜃(𝑥𝑖))

will be replaced with 𝐶𝑜𝑠𝑡1(𝜃𝑇𝑥(𝑖)) and −ylog(1 − ℎ𝜃(𝑥(𝑖))) with 𝐶𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖)). If C =

1

⋋
 and both m’s cancel each other, then the simplified minimum cost function for

support vector machine is:

 𝐽(𝜃) = C∑ [𝑦(𝑖)𝐶𝑜𝑠𝑡1(𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖))𝐶𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖))] +𝑚
𝑖=1

1

2
∑ 𝜃𝑗

2𝑛
𝑖=1

(2.7)

In this study, the support vector machine is used as one of the base models of stacking

ensemble method. The support vector machine model will learn the training dataset.

The artificial neural network model is discussed in the section that follows.

2.10.3. Artificial Neural Networks (ANN)

The ANN algorithm is designed to imitate the functionality of the human brain where

the input values are called dendrites and the output values are called are called axons

(Rout, et al. 2017, pp. 1 – 6; Miholca & Onicaş 2017, pp. 1 - 8). The dendrites represent

the input features 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 of the problem (Basheer & Hajmeer 2000). The

35

hypothesis for ANN uses logistic function (Pushpa & Malini 2017, pp. 255 – 258;

Andropov, et al. 2017, pp. 1 – 6; Srivastava, et al. 2016, pp. 1 – 4; Liu, et al. 2017, pp.

1 – 6; Pavlyshenko 2016, pp. 1 - 5); and it is defined as follows: ℎ𝜃(𝑥) = 𝑔(𝑧), where

z = 𝜃𝑇𝑥. Thus, 𝑔(𝑧) =
1

1+𝑒−𝑧
.

Sometimes the dendrites include the input node 𝑥0, which is also known as bias unit,

and is always equal to 1. The ANN hypothesis is composed of input layer, intermediate

layer or layers also known as hidden layers, and the output layer (Andropov, et al.

2017, pp. 1 - 6). The hidden layers of the ANN nodes are denoted by 𝛼𝑖
(𝑗)

, where “i”

represents the unit number and “j” represent the layer number.

The regularised cost function is defined as follows:

𝐽(𝜃) =

−1

𝑚
∑ ∑[(𝑦𝑘

(𝑖)
) log (ℎ𝜃(𝑥(𝑖)))

𝑘
+ (1 − 𝑦𝑘

(𝑖)
) log (1

𝐾

𝑘=1

𝑚

𝑖=1

− log (ℎ𝜃(𝑥(𝑖)))
𝑘

)] +
−1

𝑚
 ∑ ∑ ∑ (𝜃𝑗,𝑖

(𝑙)
)2

𝑆𝐿+1

𝑗

𝑆𝐿

𝑖

𝐿−1

𝐿

(2.8)

where K = is the number of axons (output).

 L = is the total number of layers in the ANN; and

 𝑆𝐿 = is the number of units in layer 1 excluding the bias unit (𝑥0).

The Figure 2.3 is pictorial representation of ANN.

Figure 2.3: A depiction of Artificial Neural Network

The ANN cost function is actually the logistic regression cost function with the double

summation to simply add up the cost calculated for each cell in the output layer. In this

research study, the ANN is used as one of the base models of stacking ensemble

method. The ANN model learns the training dataset. The k-nearest neighbour model

is discussed in the following section.

36

2.10.4. K-Nearest Neighbour (KNN)

The KNN algorithm involves determining the relationship between x and y when given

data with training sample (x, y) (Pushpa & Malini 2017, pp. 255 – 258; Vipani, et al.

2017, pp. 1 - 5). The aim is to learn the algorithm such that when given an unseen

value of x the algorithm can confidently predict the output y value that corresponds to

the x value. k-NN is essentially designed to classify the unseen value of x by

calculating the distance of the nearest class (Pushpa & Malini 2017, pp. 255 – 258;

Vipani, et al. 2017, pp. 1 - 5). Measures such as Manhattan, harming, Chebyshev,

Euclidean distance are used to compute the distance. The most widely used measure

is the Euclidean distance (Pushpa & Malini 2017, pp. 255 – 258; Vipani, et al. 2017,

pp. 1 - 5). The following equation is a definition of the Euclidian distance function:

 d(x,𝑥 ,) = √(𝑥1 − 𝑥1
,)2 + (𝑥2 − 𝑥2

,)2 + ⋯ + (𝑥𝑛 − 𝑥𝑛
,)2 (2.9)

the k-NN classifier is performed using two steps (i.e. positive integer k and a similarity

metric d) when given unseen value of x. The algorithm runs through the dataset

capturing the similarity metric d between each training sample (x, y) and the input

value of x. The k points of the training sample that are closer to input value x are stored

in a separate container (e.g. set A). The conditional probability is predicted for each

class with an indicator function 𝐼(𝑥), which predicts the output value y = 1 if the

transaction is fraudulent or y = 0 if the transaction is not fraudulent. The conditional

probability for each class with an indicator function 𝐼(𝑥) is defined as:

𝑃(𝑦 = 𝑗| 𝑋 = 𝑥) =

1

𝑘
∑ 𝐼(𝑦(𝑖) = 𝑗)

𝑖∈𝐴

(2.10)

The KNN technique pictorially is illustrated in figure 2.4.

37

Figure 2.4: An illustration of the K-Nearest Neighbour technique.

In this study, the KNN is used as one of the base models of stacking ensemble method.

The KNN model will learn the training dataset. The Naïve Bayesian model is discussed

in the sub-section that follows.

2.10.5. Decision Tree (DT)

The DT is a data mining modelling technique for partitioning data into subsets based

on the categories of input variables (Manjaramkar & Kokare 2017, pp. 1 – 4; Chaaya

& Maalouf 2017, pp. 1 – 7; Zakerian, et al. 2017, pp. 1 - 6). This is a modelling

technique presented in a tree-like structure which plays a crucial role that assists in

the understanding of the path taken by decision makers when making an informed

decision. After using historical data to learn the DT model, ways in which the model

decides the class of the credit card transaction can be derived. The DT model is used

as a classifier model to predict the output class of future credit card transactions. The

Figure 2.5 is a pictorial representation of the DT model.

Figure 1.5: A depiction of the Decision Tree.

38

The DT model analyses the given data with the hope of finding the one variable that

divides data into different logical groups (Manjaramkar & Kokare 2017, pp. 1 - 4). The

decision tree models are widely used because they are easy to understand and

interpret. DT model are known for handling missing values well (Chaaya & Maalouf

2017, pp. 1 – 7; Zakerian, et al. 2017, pp. 1- 6). Therefore, if a dataset contains missing

values and people are interested in a quick and easily interpretable and

understandable answer, it is important to use a DT. The next detection technique

discussed is the Naïve Bayesian.

2.10.6. Naïve Bayesian (NB)

The NB classifier is based on the Bayes theorem (Han, et al. 2015, pp. 1 – 4; Katkar

& Kulkarni 2013, pp. 1 - 6). Bayes theorem is named after Thomas Bayes and it is

based on conditional probability (Meiping 2009, pp. 1 - 4). Conditional probability is

the probability that predicts the outcome, given some conditions or events that have

occurred (Han, et al. 2015, p. 1 – 4; Katkar & Kulkarni 2013, pp. 1 - 6). The function of

the conditional probability as follows: 𝑃(𝐴\𝐵) =
𝑃(𝐵\𝐴)×𝑃(𝐴)

𝑃(𝐵)
, where

P(A) is the likelihood of the hypothesis A being correct; P(B) is the likelihood of events

that have occurred; P(B\A) is the likelihood of the hypothesis given an event that has

occurred; and P(A\B) is the likelihood of the hypothesis given an event that has

occurred. The Naïve Bayesian technique is depicted if Figure 2.6.

Figure 2.2: A depiction of the Naïve Bayesian technique.

Since the naïve Bayes classifier uses the Bayes theorem, the classification model

predicts the likelihood of an input data record belonging to a particular class. The input

records are likely to belong to a class with the highest likelihood value. The naïve

39

Bayesian classifier is used as one of the base models of stacking ensemble method.

The naïve Bayesian classifier model will learn the training dataset.

In this research study, the stacking ensemble method uses the various state-of-the-

art algorithms for covering a variety of credit card transaction. The stacking ensemble

method improves the predictive capabilities of the data model by voting the class of

each transaction using the state-of-the-art techniques. The stacking ensemble

technique is used to generate new dataset from model that poorly predict the output

of credit card transactions. The weights of new generated dataset are adjusted to

improve the predictive capability of the model. The next section provides details works

related to fraud prevention technologies.

2.11. Related Works in Fraud Prevention Technologies

Credit card fraud is a criminal activity that financially benefits an individual or group of

individuals. It is deliberately carried out by individuals working against the law. Fraud

prevention technologies have been used in the banking industry for a long time to

prevent fraudulent transactions. However, since fraud masters are adaptive, they

normally find a way around credit card prevention technologies.

Credit card fraud detection within the banking industry is an evolving discipline for

detecting non-preventable fraudulent transactions. Machine learning and statistics are

two broad fields that have demonstrated their effectiveness in fraud detection.

Common state-of-the-art statistical and machine learning techniques for classification

problems utilized for the fraud detection of the credit card transactions include

techniques such as LR, ANN, SVM, decision tree, k-NN and outlier detection (Malini

& Pushpa 2017, pp. 1 – 4; Ganji 2012, pp. 1 – 5; Das, et al. 2017, pp. 1 – 4;

Manjaramkar & Kokare 2017, pp. 1 – 4; Liu, et al. 2017, pp. 1 – 6; Mao, et al. 2017,

pp. 1 - 8).

Given a dataset, some classification techniques are more successful at detecting

future credit card fraudulent transactions than others. These classification techniques

need historical data for the effective prevention of future credit card transactions.

However, historical data is usually accompanied by challenges associated with

imbalanced data, whereby the percentage of illegal transactions is far lower than the

40

percentage of legal transactions (Gosain & Sardana 2017, pp. 79 – 85; Matsuda &

Murase 2016, pp. 349 – 354; Pengfei, et al. 2014, pp. 217 - 222).

To address the issue of imbalanced data, techniques such as oversampling of the

class of minority data observations and under-sampling of the class of majority data

observations are used. In this research study, oversampling techniques such as safe-

level Synthetic Minority Oversampling Technique (SL-SMOTE) and Synthetic Minority

Oversampling Technique (SMOTE) are used to generate synthetic data observations

between the two data observations of the minority class. SMOTE and SL-SMOTE are

sampling methods which oversample the minority class by computing median features

vectors between nominal features sample and its potential nearest neighbours through

Euclidean distance of standard deviations (Chawla, et al. 2002, pp. 321 - 357).

However, SL-SMOTE generates synthetic data observations between the two data

observations at the safe level of the minority class. The use of SL-SMOTE and SMOTE

have been successful (Bunkhumpornpat & Subpaiboonkit 2013, pp. 570 – 575; Gosain

& Sardana 2017, pp. 79 – 85; Bunkhumpornpat, et al. 2011, pp. 1 – 4; Meidianingsil,

et al. 2017, pp. 1167 – 1171).

The concept of the stacking ensemble method is the specialization of machine learning

that takes different machine learning techniques and allows them to vote for an output.

The stacking ensemble method has previously been implemented for voting the output

using weighted voting and majority voting (Ali, et al. 2015, pp. 211 – 216; Li & Wang

2017, pp. 73 – 77; Dalvi & Vernekar 2016, pp. 1747 - 1751). However, this research

study is against the usage of majority voting for a binary classification problem on the

bases that a model with 10% predictive accuracy percentage cannot be treated

similarly with a model with 90% predictive accurate predictive accuracy percentage

when voting the output. For this reason, weighted voting is used for final voting of

transactions in this research study. The usage of weighted voting is widespread (Ali,

et al. 2015, pp. 211 – 216; Mu, et al. 2005, pp. 2661 – 2666; Li & Wang 2017, pp. 73

- 77).

The weights for classifier models per transaction must be high for a class that performs

well, and low for a class that does not perform well. This means that selection of the

appropriate weights of votes for each class per classifier is very important. To select

the appropriate weights of classifier models, Differential Evolution (DE) method is used

41

to search for optimum weights is used in this research study. DE is a stochastic method

for optimization that is simple in structure but efficient for global numerical optimization

(Funaki & Takagi 2011, pp. 287 - 290). Literature evidence on the successful

application of DE is plentiful (Bouteldja & Batouche 2017, pp. 1 – 8; Domingo, et al.

2013, pp. 105 – 111; Hui & Suganthan 2013, pp. 135 – 142; Funaki & Takagi 2011,

pp. 287 - 290; Goudos, et al. 2016, pp. 1 - 4).

Once the prediction of transaction is made, the model must be evaluated. Various

studies have used accuracy score for computing the accuracy of the classifiers (Zaza

& Al-Emran 2015, pp. 275 – 279; Nizar, et al. 2008, pp. 1 – 8; Mei & Jiang 2016, pp.

301 – 305; Singh, et al. 2015, pp. 388 - 393). The model accuracy score is the count

of correctly predicted transactions over the total count of transactions (Singh, et al.

2015, pp. 388 - 393). In simple terms, the number of fraudulent transactions classified

correctly and the number of non-fraudulent transactions classified correctly cannot be

derived from the accuracy score.

The actual accuracy score of the model is obtained through the correct prediction of

the balance between the percentage of fraudulent and non-fraudulent transactions.

The aim is to build a classification model that equally represents both fraudulent and

non-fraudulent classes. Accordingly, to evaluate the classification model, this research

study computes the confusion matrix evaluation method on the values of fraudulent

and non-fraudulent classes. The confusion matrix shows the number of true positives

(TP), true negatives (TN), false positives (FP) and false negatives (FN) predicted

transactions (Rajak & Mathai 2015, pp. 1 - 4).

The number of true positive (TP) transactions is the number of output transactions that

the base classifier has predicted as being fraudulent when they were in fact fraudulent.

Similarly, the count of true negative (TN) transactions is the count of output

transactions that the base classifier has predicted as being non-fraudulent when they

were in fact non-fraudulent, the count of false positive (FP) transactions is the count

of output transactions that the base classifier has predicted as being fraudulent when

they are non-fraudulent, and the count of false negative (FN) transactions is the count

of output transactions that the base classifier has predicted as being non-fraudulent

when they are in fact fraudulent.The confusion matrix evaluation method has been

42

applied successfully by (Rajak & Mathai 2015, pp. 1 – 4; West & Bhattacharya 2016,

pp. 1796 - 1801).

2.12. Summary

The rate at which fraudsters continue to commit fraudulent transactions given

advanced data analytics models to detect fraudulent transactions is growing

continuously. This conveys the existence of an unknown gap between the knowledge

of customers and the techniques of fraudsters, which fraudsters diligently exploit in

order continue to committing fraudulent transactions.

The standard machine learning algorithms that achieve higher accuracies tend to

classify all transactions as the majority class that is always non-fraudulent transactions

especially when data is huge and fraudulent transactions are low in terms of numbers.

This implies poor predictive accuracy of fraudulent transactions (which is the subject

of this research study) since the two classes of transactions are overlapping.

Consequently, the need for elimination of high variance and biasness of data

distribution, tuning of the data models, and combining predictive capabilities of data

analytics methods to improve predictive accuracy was identified as a research gap

that can be addressed by this research study. The research design and methodology

to address the research gap is explained in Chapter 3 of this research study.

43

3. Chapter 3: Research Methodology

The methodology section describes the procedures that were followed to fulfil the

research objectives of this study. After defining the data source systems and collecting

data from the source systems, pre-processing of the data, which involved data

preparation, missing data values, normalization, feature selection, and imbalance of

data distribution sections were undertaken. Lastly, explanatory data analysis for data

understanding and for data mining to uncover the unknowns was undertaken prior to

data modelling involving base models, weighted voting stacking ensemble method,

and differential evolution optimization methods.

The key word algorithm and method are used interchangeably throughout the research

study. In the next section, the data source system of the study is discussed.

3.1. Data Source

This research is designed as one possible solutions to big data challenges faced by

South African banks. Several e-mails sent to South African banks requesting the

dataset. (Pushpa & Malini 2017) have highlighted that banks do not encourage the

sharing of the data for experimental purposes due to the confidentiality of credit cards

information.

To model, evaluate and deploy the approach proposed in this research study, the

Kaggle machine learning competition data repository (Kaggle 2018) was used as a

source system through which dataset to achieve research objectives were collected.

The dataset was chosen because it is the credit card dataset and the dataset contains

the actual transactions performed by credit card users. The link to the Kaggle machine

learning competition data repository dataset is as follows:

https://www.kaggle.com/mlg-ulb/creditcardfraud

The Kaggle machine learning competition data repository dataset available for

experimental purpose was transformed to hide credit card users’ private information.

However, the time and the amount were not transformed. The time and the amount

features correlate with the South African banking sector’s dataset such that the slip of

each and every transaction shows the time and the transaction amount. However, the

time and the transaction amount may not be sufficient enough to correlate the dataset

https://www.kaggle.com/mlg-ulb/creditcardfraud

44

from the Kaggle machine learning competition data repository and the dataset

generated by the South African banks.In the next section, data preparation for this

research study is discussed.

3.2. Data Preparation

The first step involved importing the dataset in csv file format. To import the csv file, a

pandas package was used with pd as its alias. When a pandas package was imported,

the defined function shown below was used for importing the dataset into Jupyter

notebook editor, and the class feature values of the dataset were thereafter separated

from the rest of the features.

def Import ():

 read = pd.read_csv('creditcard.csv', sep = ',')

 Class = read['Class']

 Data = read.loc[:, read.columns != 'Class']

 return Data, Class

The Data and Class of Import function was used to separate the dataset into a testing

data and a training data. The function shown below demonstrates how the Data and

Class data was used to split the dataset, normalized the Time and the Amount in the

dataset, and combined the features of the training dataset with the training dataset

class values and called it a Training_data.

def split_data(Data, Class):

X_train, X_test, y_train, y_test = train_test_split(Data, Class,

test_size=0.3)

X_train['Time'] =

StandardScaler().fit_transform(pd.DataFrame(X_train[['Time']]))

X_train['Amount'] =

StandardScaler().fit_transform(pd.DataFrame(X_train[['Amount']]))

 Training_data = pd.DataFrame(X_train)

 Training_data['Class'] = y_train

 return X_train, X_test, y_train, y_test, Training_data

Since the class distribution was highly skewed, the training dataset was balanced such

that there was an equal representation of both classes on the dataset. The

Training_data from the above function was used for balancing of the dataset. To

balance the dataset, the data observations were separated according to their class

values. The function _separator shown below was used to separate the data

observations. Whereas the Training_data0 represented the non-fraudulent

transactions, which were the majority class data observations, the Training_data1

represented fraudulent transactions which were the minority class data observations.

45

def _separator(Training_data):

 Training_data0 = []

 Training_data1 = []

 for ind in range(len(Training_data)):

 if Training_data.iloc[ind][-1] == 0.0:

 Training_data0.append(Training_data.iloc[ind])

 else:

 Training_data1.append(Training_data.iloc[ind])

 return Training_data0, Training_data1

The credit card data contains transactions that were made in September 2013 by the

European cardholders. This dataset is made up of 492 fraudulent transactions out of

a total of 284 807 transactions that were made in two days. This means that this

dataset is highly unbalanced with 0.17% of fraudulent transactions and 99.83% of non-

fraudulent transactions. The Training_data0, which constitutes the majority class, was

used for down-sampling the data observations while the Training_data1 (i.e. the

minority class) was used for oversampling the data observations.

Due to confidentiality of the customers’ private information, this dataset was

transformed using Principal Component Analysis (PCA) method to contain only

numerical input values in order to hide the background information and the features of

the dataset. This dataset consists of 28 principal components (V_1, V_2, …, V_28)

which are the results of PCA transformation, and the feature Time and Amount that

were not transformed.

The dataset consisted of an additional feature called Class, which is the response

variable of each transaction made by the customers. The response variable 1 denotes

an illegal transaction; on the other hand, the variable response 0 denotes a legal

transaction. The two features that were initially not transformed were transformed

using the PCA method to normalise all variables of the dataset.

3.3. Missing Values

For the purposes of data quality checking, the dataset was tested for null values and

the missing values in this study. The test results from the dataset showed that there

were null values or missing values in the data; this is regarded as important for the

data analysis. The dataset with no missing values says a lot about the legitimacy of

the source systems. Since the dataset is cleaned and pre-transformed, it was not

possible to make any conclusions regarding the legitimacy of the source systems.

3.4. Data Normalization

46

Since some variables have small variance than others, the normalization of data is

required to scale variables to have values of between 0 and 1. That being said, the

dataset to achieve the research objectives consists of 28 principal component features

that were transformed using PCA method, and two features that were not transformed.

Thus, the two features which were not transformed were transformed with the PCA

method to normalise the entire variables of the dataset.

3.5. Feature Selection

Since the data set is at this stage transformed with PCA and the original feature names

of 28 vectors are unknown, the study performed a manual stacking ensemble method

on 3 feature selection methods to select the relevant features that improves the results

of the data model. The 3 methods of feature selection are univariate selection,

recursive feature elimination, and feature importance. The similar features that were

obtained by Univariate selection, feature importance, and recursive feature elimination

were tested by a logistic regression classification model and evaluated by confusion

matrix method.

3.6. Imbalanced data

The dataset was transformed by normalizing all feature vectors such that they have a

scale of between 0 and 1. The normalization was undertaken to deal with the issue of

feature vectors having different feature scales for solving a single problem. Feature

vectors having different feature scales causes the data model to perform poorly.

The data samples from the majority class that have similar variance introduce

duplication of data sample. Thus, too many duplicates were eliminated from the

dataset. Having too many duplicates of the data sample introduces data model

learning one data sample more than the other data samples. The issue of data model

learning one data sample many times other data samples introduce skewed learning

of data samples. This means that the data model had more knowledge of highly

duplicated data sample since their learning was repeated many times. Thus, the

duplicate transactions were eliminated to have equal representation of each legal

transaction.

47

To address the issue of skewed distribution: the under-sampling of majority class to

eliminate skewed learning (which is formally known as biasness) and preserve as

much knowledge as possible was computed together with the Safe-Level SMOTE

oversampling method. The Safe-Level SMOTE is an important oversampling of

minority class because it does not duplicate minority training samples; it instead

introduced new possibilities of the minority class. That is to say, Safe-Level SMOTE

introduced new possibilities of the minority class. SMOTE introduced new possibilities

of abnormal behaviours of credit card fraudsters.

The dataset with low biasness and low variance eliminates issues such as overfitting

the data model, under-fitting the data model, and overlapping data samples. Safe-

Level SMOTE oversampling method was implemented as follows:

 The standard deviation median of the continuous features of the class of

minority data observations, which in this case were fraudulent transactions,

were computed. For nominal features, the median was computed by finding the

Euclidean distance between a data observation and its potential nearest

neighbours.

 The nearest neighbour between the feature vector and other feature vectors in

the class of minority data observations in the continuous feature space was

computed. That is to say, for every vector, a median of the standard deviation

between a feature vector and its potential nearest neighbour was included.

3.7. Visualisation

PCA is a feature reduction technique that compresses dataset using a linear algebra

method. PCA reduction technique is transformed by choosing the number of

dimensional vector spaces or principal components in the transformed results. In this

study, 2 was selected as the number of components in order to visualize the logistic

regression classifier into 2-dimensional vector space. The logistic regression was

visualised on balanced class distribution based on features selected from a manual

stacked ensemble method.

48

3.8. Explanatory Data Analysis

This is an important section of the study, which describes an approach to data

analysis. The Amount and Time were the only known features of the dataset. V1, V2,

…, V28 were the additional features of the dataset that were transformed using PCA

method to hide the origin of the dataset. The scatter plot visual illustrated in Figure 3.1

is the correlation between the transaction amount and Time spent on transaction.

Figure 3.1: Correlation between the transaction amount and Time

The Time vs Amount scatter plot visual reflected the sophistication of credit card

fraudsters. The green data points are non-fraudulent transactions, and the red data

points are fraudulent transactions. The time spent performing a fraudulent transaction

was in the same domain as the time spent performing a non-fraudulent transaction,

and the amount spent on fraudulent transaction was in the same domain as the

amount spent on non-fraudulent transaction. As observed in Figure 3.1, many of the

data points are at y = 0 in relation to time; this suggests that the time feature was not

in the transactions performed.

The heat-map of feature correlation (see Figure 3.2) indicates strongly correlated

features. The selected features are strongly related and have a correlation value that

is greater than 0.4 and -0.4. Using the heat-map, the features found to be strongly

correlated were identified as Time & V3, which possess a correlation value of -0.53.

49

The pictorial presentation of the correlated features provided insight on how fraudulent

transaction could be separated from non-fraudulent transaction.

Figure 3.2: Heatmap of Feature Correlation.

The correlation between the amount and the transformed feature V2, which is

illustrated in Figure 3.3, shows how some of fraudulent transactions can be separated

from non-fraudulent transactions. Whereas the green data points are non-fraudulent

transactions, and the red data points are regarded as fraudulent transactions. The

positive side of V2 showed more fraudulent transaction, and the negative of V2

showed more non-fraudulent transactions. However, many of the fraudulent data

points were at y = 0, suggesting that the fraudulent transactions have less to do with

the transaction amount.

50

Figure 3.3: Correlation between the transaction amount and V2.

The correlation between the Time and the transformed feature V3, which displayed in

Figure 3.4 also paints a picture of how some of fraudulent transaction can be

separated from non-fraudulent transactions. As in the Figure 3.3, the green and red

data points are non-fraudulent and fraudulent transaction respectively. In addition,

while the positive side of V3 showed more non-fraudulent transactions, the negative

side of V3 showed a near balance between fraudulent transactions and non-fraudulent

transactions. However, a V3 of -5 and -32 and a Time of between 5000s and 3000s

and 90000 and 100000 indicated a high number of outliers relating to fraudulent

transactions than those of non-fraudulent transactions.

Figure 3.4: Correlation between the V3 and Time.

51

According to Figure 3.5, which shows a series of correlations between an Amount and

all other features of the dataset, indicate a generally linear relationship. Interestingly,

a lot of data points were observed at y = 0 and x = 0 indicating the absence of the

features. A decision was taken to eliminate the data points that do not add any value

to the correlation visuals. However, for the sake of preserving as much information as

possible about the transactions, a decision was taken not to eliminate data points at x

= 0 and y = 0, since the dataset contains many unknown features.

52

Figure 3.5: Scatter plot correlations between Amount and all other features.

3.9. Data Model Selection and Training

The individual base model classifiers for the stacking model should be powerful and

as diverse as possible in order to cover the scope of the problem and as many

anomalies as possible within the problem domain. The ANN, SVM, KNN, and the

decision tree were chosen to represent the diversity of base models in this study in

order to covers the problem domain. The algorithms were chosen because they are

popular, powerful, widely used, and vary in performance. The first algorithm that is up

for discussion is artificial neural network.

3.9.1. Artificial Neural Network (ANN) Method

The training process adopted for this study used a training sample of size N [(𝑥1, 𝑦1,),

(𝑥2, 𝑦2), …, (𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the

customers (the class labels are either fraudulent or non-fraudulent).

The main technical challenge associated with ANN was to find the number of hidden

layers and the training parameters that produces a good performing model. The

53

number of ANN’s hidden layers and training parameters for the best average accuracy

was accomplished by running a nested loop that loops through the number of hidden

layers and the number of epochs; the best performing number of epochs and hidden

layers were chosen to train the ANN model using the entire training dataset.

After training the ANN model with the training dataset, the testing data was used to

test how well the classifier could separate fraudulent transactions from non-fraudulent

transactions.

3.9.2. Support Vector Machine (SVM) Method

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,),

(𝑥2, 𝑦2), …, (𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the

customers (the class labels are either fraudulent or non-fraudulent). The main

technical challenge encountered with the support vector machine was to find the best

training parameters that produce very good performing support vector machine model.

The grid search method to search for optimal parameters was adopted for this

research study. The optimal parameters are C and gamma for best training the model

looking at the nature of the credit card dataset. Gamma is a free parameter of RBF

(Radial Basis Function) kernel function, and C is a parameter regularization for a soft

margin of a cost function. The optimal SVM parameters were used to train the SVM

model with the entire training dataset.

After training the SVM model, the testing dataset were used to establish how well the

model can separate fraudulent transactions from non-fraudulent transactions.

3.9.3. Decision Tree (DT) Method

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,),

(𝑥2, 𝑦2), …, (𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the

customers (the class labels are either fraudulent or non-fraudulent).

The main technical challenge encountered with training the decision tree model was

to find the training parameters that produce a good performing model. For decision

tree parameter settings, random search and grid search were used, and the search

54

method that produces good results in a lesser period of time was used to train the

entire training dataset.

After the decision tree model was trained with the training data, the testing data was

used to establish how well the model could separate fraudulent transactions from non-

fraudulent transactions.

3.9.4. k-Nearest Neighbour (KNN) Method

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,),

(𝑥2, 𝑦2), …, (𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the

customers (the class labels are either fraudulent or non-fraudulent). The main

technical challenge with KNN was to find the value of K that produces a good

performing KNN model.

A manual selection of K value from 1 up until the value of 7 was performed, and the

best performing K value was selected to train the KNN model using the training data.

The Testing data was used to test how well the KNN method can separate fraudulent

transactions from non-fraudulent transactions.

3.9.5. Naïve Bayesian (NB) Method

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,),

(𝑥2, 𝑦2), …, (𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the

customers (the class labels are either fraudulent or non-fraudulent). The main

technical challenge with the Naïve Bayesian method was to find the statistical data

distribution method for estimating the probability distribution of the input values when

given the training dataset output values.

The normal (gaussian) data distribution method was used for estimating the probability

distribution of the input value from the training data output values. The Testing data

was used to test how well the NB model could can separate fraudulent transactions

from non-fraudulent transactions.

55

3.9.6. Stacking Model

Stacking ensemble method is a technique that takes the output values of machine

learning algorithms defined in subsections 3.9.1 - 3.9.5 to vote the final output of each

credit card transaction. In this research study, the voting method used in the stacking

ensemble method is the weighted voting.

Weighted voting is a voting system in which different base models are given different

weighting for decision making purposes (Smolyakov, 2017). Basically, some base

models have more influence than others. For example, one base model may have

57% score for predicting the outcome of a particular dataset, and another base model

has achieved a score of 90% for predicting the outcome of the same dataset.

When using a majority voting system, it is realistic to say this will cause conflict in

many cases whereby the first base model incorrectly classified a data sample and the

second base model correctly classified a data sample. Thus, the majority voting

system is not significant when using two base models. In a case where there is a

conflict, a third base model is added and it becomes the decider. The higher the

predicting score of the decider model the better the chance of the classifier adding

value to the decision making of the stacking model.

Majority voting is a voting in which all the base model classifiers have equal voting

regardless of their weighting (Smolyakov, 2017). According to the majority voting, a

base model with a predictive score of 10% should have equal voting rights as the base

model with a predictive score of 98%, which logically does not make sense because

the difference between 98% and 10% is 88%, and not 50% used for assigning the

weight of the voting.

Unlike the majority voting, every model of weighted voting plays a role in making the

final decision on the classification of a data sample. The weighting voting applied in

this research study was based on predictive score of each base model. Although the

predictive score was used to assign weights of votes per classifier for the binary

classes, appropriate selection of the weights of votes for the binary classes was

considered important. Thus, appropriate weighting of votes was deemed an

optimization issue. The choice of the optimizer was regarded as being important

because the chosen optimizer was expected to be able to correct the incorrect weights

56

of votes for the binary classes. In this research study, differential evolution method

was chosen as the optimizer for correcting the incorrect weights of votes.

Differential evolution is a stochastic method of optimization that is simple in structure

but efficient for global numerical optimization. Differential evolution optimizes a

problem of incorrectly weighting of votes by maintaining a population of candidates

with optimal weighting of votes and creates a new candidate with the best score on

the optimization of incorrectly weighting of votes (Brest, et al. 2006, pp. 646 - 657;

Srinivas, et al. 2018, pp. 216 - 217; Madathil, et al. 2017, pp. 1 - 5). It is expected that

the stacking classifier model of the study will make predictions based on weighted

voting on unknown credit card transactions.

3.10. Evaluation of Data Models

A good binary classification data model represents both the fraudulent class and the

non-fraudulent class equally or nearly equal without any bias. Thus, the true accuracy

of the classification data model will be achieved by computing the confusion matrix of

fraudulent and non-fraudulent classes. When the true positive value of the confusion

matrix of the fraudulent and non-fraudulent transaction classes are equal or close to

each other, the accuracy percentage achieved by the model will be regarded as the

true accuracy of the model.

The machine learning algorithms discussed in subsections 3.9.1 - 3.9.5 are base

models for stacking ensemble method. Each base model was coded from scratch and

was computed with optimum hyper-parameter values using the training dataset. The

testing dataset was used to assess the performance of each base model.

To assess the performance of the base models, the accuracy function was designed

by counting the correctly classified credit card transactions against the total number of

transactions. However, the accuracy of the base models does not say much about the

equal representation of correctly classified class values. The equal representation of

correctly classified class values was achieved by computing the confusion matrix

function.

The confusion matrix output had four values, namely the true positive (TP)

transactions, the false positive (FP) transactions, the false negative (FN) transactions,

57

and true negative (TN) transactions. The true positive (TP) transactions arose from

the count of output transactions that was predicted by the base classifier as being

fraudulent when they were in fact fraudulent. The false positive (FP) transactions are

the number of output transactions that was predicted by the base classifier as being

fraudulent when they were in fact non-fraudulent. The false negative (FN) transactions

are the number of output transactions that was predicted by the base classifier as

being non-fraudulent when they are in fact fraudulent. Lastly, the false positive (FP)

transactions refers to the number of output transactions that was predicted by the base

classifier as being fraudulent when they were in fact non-fraudulent.

The evaluation of base models was based on the base models’ higher accuracy

percentage while the true negatives (TP) and true positives (TN) were well

represented in each base model. The higher percentage of TP and TN that were closer

to each other when the false negative (FN) and false positive (FP) percentages were

low symbolizes a well performing base model that was not biased. The well performing

base models were used to vote the final prediction of each credit card transaction.

The weighted voting method of the stacking ensemble method was used to vote the

final output class values. The appropriate weights of the base models were achieved

by computing a differential evolution stochastic optimizer method which converges to

the optimum solution while searching the search space. The optimum solution were

the appropriate weights of the base models. The appropriate weights of the base

models were multiplied with the probabilities of each transaction of the base models

and a logistic function was used to class the transactions.

A confusion matrix was computed for the weighted voting stacking ensemble method

with differential evolution stochastic optimizer method with a view to evaluate how well

the class values were represented. The higher percentage of TP and TN that were

closer to each other when the false negative (FN) and false positive (FP) percentages

were low, thus symbolizing a well performing weighted voting stacking ensemble

method with differential evolution stochastic optimizer method that was not biased.

The base models of the stacking ensemble method outlined in subsections 3.9.1 -

3.9.5 was designed from scratch using the object-oriented programming (OOP) data

structure. In this research study, the weighted voting stacking ensemble method and

58

differential evolution stochastic optimization method were also designed from scratch.

Thus, the design and documentation of all algorithms was required. The design of all

algorithms is well documented in chapter 4.

3.11. Tool Selection

An open source tool called Python was used in this research study for performing data

analysis and predicting future outcomes. Tools for data analysis include:

 The computer system/ laptop with enough storage system for installing the

requisite programming software and packages for achieving the objectives of

this research study. The computer system/laptop was also used for storing and

processing the dataset.

 Internet connectivity has proven to be important for downloading and installing

all the necessary requisite software and packages for accomplishing the study

objectives of this research study. Internet connectivity also proved to be

important when downloading the dataset required for computing the research

study objectives.

 Internet browser was used for accessing the repository in which the dataset to

accomplish the objectives of this study was located. The internet browser was

also used for running the Jupyter notebook (i.e. the editor for the python code).

 The Anaconda setup was installed on the laptop. The Anaconda contains the

Jupyter notebook, which is the editor through which the python 3 programming

language was coded.

 Other relevant packages such as NumPy, pandas, matplotlib, seaborn were

installed on the laptop and were used for importing the dataset and for

performing mathematical operations and data modelling, data manipulation and

data visualization.

3.12. The Final Model

The Figure 3.6 below shows a flow of how the research objectives of this research

study are carried out. The shaded dot indicates the begin of the flow chart, the arrows

indicate the direction, the circle and square shapes indicate the activities, and the

shaded dot with circle around indicates the end of the flow chart.

59

Figure 3.6: Credit card fraud model

3.13. Summary

In this chapter, a detailed description of the research design and methodology have

been given. The experimental dataset from Kaggle machine learning competition data

repository was used to fulfil the research objectives of this research. This chapter was

ended off with the flow chart of how the research objectives of this research are carried

out. The experimental algorithms to fulfil the research objectives are discussed in

chapter 4 of this research study.

60

4. Chapter 4: Algorithm Design

An algorithm represents a set of instructions that tell a computer system what to do.

In this study, a set of instructions to fulfil the research objectives of this study were

defined by the Jupyter notebook editor. The Jupyter notebook file and the dataset were

stored in the same folder in order to avoid specifying the path to where the dataset

was stored.

Save for the decision tree algorithm, algorithms such as ANN, SVM, KNN, DT and NB

were defined from scratch. The algorithms were used as base models of the weighted

voting stacking ensemble method. The weighted voting stacking ensemble method

was also defined from scratch to vote the final output of each transaction. The

weighted voting of the final output for each transaction was computed using the

differential evolution stochastic technique. The differential evolution stochastic

technique was also defined from scratch with a view to obtain the optimum weights of

the base models.

The algorithms were defined to analyse the credit card dataset with the aim of

overcoming the challenges of the classifier models. Challenges associated with

machine learning classifiers include an inability to classify the fraudulent transaction

correctly. Whereas some machine learning classifiers are good for classifying specific

portions of the dataset, other machine learning algorithms are good for classifying

other portions of the credit card dataset. Thus, weighted voting stacking ensemble

method with differential evolution stochastic optimization method was designed to

mainly overcome the challenges of the machine learning algorithms for detecting

illegal credit card transactions.

In the first section of this chapter, the data balancing methods were discussed.

Balancing the dataset for binary classification problem means that two classes of the

dataset must have equal representation so as to avoid biasness in the dataset. The

data balancing method for down-sampling the majority dataset was for removing the

duplicate data observation and randomly sample the data observations. The data

balancing method for oversampling the minority class is selected from among SMOTE,

SL-SMOTE, Modified SMOTE, and Modified SL-SMOTE. The Modified SMOTE and

Modified SL-SMOTE are the algorithms designed in this study for modifying the

61

performance of the existing SMOTE and SL-SMOTE. The oversampling method with

a superior performance was chosen to oversample the minority class of the credit card

dataset when balancing the class distribution.

The balancing of the dataset was followed by a feature engineering process. The

feature engineering process is a process through which important features for decision

making are selected for data modelling. Feature selection was followed by the

construction of the weighted voting stacking ensemble model for weight voting the final

output transactions. The weighted voting stacking ensemble model was followed by

differential evolution method for the optimization of the weights of the stacking

ensemble method. In the next sub-section, the balancing of class distribution of the

dataset is discussed.

4.1. Balancing the Dataset

This section is focussed on how the class distribution was balanced. To balance the

class distribution, the down-sampling of majority class was performed in order to

decrease the number of data observation from the class of the majority data

observations. The oversampling of data observation from the class of the minority data

observations was performed to increase the data observations.

To down-sample the class of the majority data observations, duplicate data

observations were removed, and random sampling of the data observations was

performed. The algorithm 1 in section 8.4 was used to remove duplicate data

observations, and store data observations without duplicates in Training_data0_df.

The pseudo-code below is the highlight of the algorithm 1 in section 8.4.

Algorithm 1: Remove Duplicates in the Training Dataset

Input: Training Dataset

Output: Training Dataset without duplicates

Begin

1. Select the training dataset

2. Get the size of duplicates

3. Remove the duplicates

4. Return the size of the duplicates and the training data without duplicates

End of the function

62

The Training_data0_df was used for random sampling of data observations. The

algorithm 2 in section 8.4 was used to demonstrate how the random data sampling is

carried out. The 700 refers to the number of minority class data observations multiplied

by two, since the minority class is also be oversampled. The pseudo-code below is the

highlight of the algorithm 2 in section 8.4.

Algorithm 2: Random Sampling

Input: Training Dataset

Output: Random Sample

Begin

Initial: reduced = [], index = []

1. For i = 1 to 700 do

2. ind = random integer value between 0 and the size of the training dataset

3. IF ind not in index

4. Then append ind into index

5. Append training dataset row at ind into reduced

6. End IF

7. Else
8. i = i – 1

9. End Else

10. Return reduced

End of the function

The randomly chosen data observations from Training_data_df were combined with

the minority class. The algorithm 3 in section 8.4 was used to show how the

Training_data_df and training_data (i.e. the minority class) are combined. The pseudo-

code below is the highlight of the algorithm 3 in section 8.4.

Algorithm 3: Combine Training Dataset without Duplicates with Random Sample Dataset

Input: Training Dataset without Duplicates, Random Sample Dataset

Output: Combined Dataset

Begin

1. Combined Dataset = Random Sample Dataset

2. Append Training Dataset without Duplicates into Combined Dataset

3. Return Combined Dataset

End of the function

The recombination from the algorithm 3 in section 8.4 involves a combination of

Training_data (i.e. the down-sampled dataset) and Training_data1 (i.e. the minority

class of data observation). To balance the dataset, the minority class were

63

oversampled using Safe-Level-SMOTE, which introduced new minority class data

observations.

The SL-SMOTE method used the Euclidean-distance to compute the five nearest

neighbours of the minority class and called it k. One of the five nearest neighbours

was chosen at random, and was used to compute its five nearest neighbours and

assigned them to n_neighbors. From k, the Safe-Level-SMOTE counted the number

of positive instances and called it SLp. From n_neighbor, the Safe-Level-SMOTE also

counted the number of positive instances and called it SLn.

If SLn is not equal to 0, the Safe-Level ratio was computed by dividing SLp by SLn;

instances where SLn equalled 0 the Safe-Level ratio were defined as infinity. If Safe

Level ratio was not equal to infinity and SLp was not equal to 0, Safe-Level-SMOTE

generates feature values for new data observation such that if Safe Level ratio was

equal to infinity and SLp was not equal to 0 then feature value gap was equal to 0. If

Safe Level ratio was equal to 1, the feature value gap was the randomly chosen value

that was located between the value of 0 and 1, and if Safe Level ratio was found to be

greater than 1 then the feature value gap was the randomly chosen value that was

located between 0 and 1 / (Safe Level ratio). If Safe Level ratio was found to be less

than 1, the feature value gap was the randomly chosen value that was located between

(1 – Safe Level ratio) and 1.

The feature value n_neighbor at index is i plus (gap multiplied by the difference

between the k feature value at index i and n_neighbor feature value at index I) for all

features. Feature values are appended to a list called feature, and feature represents

a newly generated data observation and is appended to New_data list as a new

instance of the minority class. The algorithm 4 in section 8.4 was computed to generate

synthetic instances of the Safe Level SMOTE method. The pseudo-code below

demonstrates the flow of the Safe Level SMOTE algorithm in section 8.4.

Algorithm 4: Safe Level SMOTE

64

Input: Minority data observations-T, Size of new instance in percentage-N,

Size of the nearest neighbours-K

Output: I=(N/100)*count(T) – is the newly generated minority class instances of

 size I – Synthetic-instances.

Begin

1. No-of-minority = count(T)

2. No-new-Instances = I

3. No-of-attributes = count(T[0] – 1

4. Minority-instances = T

5. Synthetic-instances= []

6. For each positive-instance in positive-instances:

7. Compute 5 neighbours of positive-instance and call it K.

8. Compute 5 neighbours of positive-instance and call it N.

9. Count number of positive instances in K and call it SLp.

10. Count number of positive instances in N and call it SLn.

11. If SLp != 0:

12. SL-ratio = SLp/SLn

13. Else:

14. SL-ratio = np.inf

15. If SL-ratio == np.inf AND SLp ==0:

16. Continue.

17. Else:

18. Feature = []

19. For index in range(len(np.array(T)[0])):

20. If SL-ratio == np.inf AND SLp != 0:

21. Gap = 0

22. Elseif SL-ratio == 1:

23. Gap = np.random.uniform(0,1)

24. Elseif SL-ratio > 1:

25. Gap = np.random.uniform(0,1 / SL-ratio)

26. Elseif SL-ratio < 1:

27. Gap = np.random.uniform(1 - SL-ratio , 1)

28. difference = nnarray[nn][attribute] – positive instance[attribute].

29. Gap = generate random value between 0 and 1.

30. Synthetic-instances.append(positive - instance[attribute]+ difference * gap)

31. Append minority class value to Synthetic-instance.

End of the function

The oversampled minority class data observations were combined with the down-

sampled data observations from the majority class to form a balanced class

distribution. However, the objective of SMOTE algorithm was violated by how the

algorithm was designed. The design of SMOTE and Safe-Level-SMOTE algorithms,

and the algorithms are rectified to meet their objectives are discussed in the next

section.

4.1.1. SMOTE vs Safe-Level-SMOTE

The objective of SMOTE (Synthetic Minority Over-sampling Technique) is to create a

new data observation between the two existing data observations of the minority class.

65

Instead of creating new data observation anywhere in the class of the minority data

observations, a safe-level smote oversampling technique argues that the new data

observation must be created between the two minority class data observations at the

safe level.

The SMOTE, SL-SMOTE, modified SMOTE, and the modified SL-SMOTE were used

to oversample the data observations of the minority class of the dataset in combination

with down-sampling method. Through the down-sampling method, the duplicates were

removed and a non-duplicate data sample was randomly chosen from the class of the

majority data observations in order to control the best-fit line to an optimum place that

equally represents illegal transactions and legal transactions. A dataset with an equal

representation of legal transactions and illegal transactions makes it easier for a

classification model to thoroughly learn the data of the two classes.

Thus, the SMOTE, SL-SMOTE, modified SMOTE, and the modified SL-SMOTE were

tested by running ANN, SVM, NB and KNN algorithms. Whereas the SMOTE method

is compared with the Modified SMOTE method in this section, the SL-SMOTE method

is also compared with the corresponding Modified SL-SMOTE method. Thereafter, the

Modified SMOTE method is compared with the Modified SL-SMOTE method.

The objective of SMOTE algorithm is to create a new data observation between two

existing data observations of the minority class (Chawla, et al. 2002, pp. 321 - 357).

In this research study, it is argued that the logic used for generating new data instances

using the SMOTE and Safe-Level SMOTE does not always generate a new data

instance between two given data instances.

The synthetic instance is generated by finding the difference between the attribute

values of between the data instance of interest and its chosen nearest neighbour. The

difference is multiplied by the gap consisting of a random value chosen between 0 and

1. The multiplication of the difference and the gap is then added to the data instance

of interest.

Although this method works well, there are limitations associated with its objective. On

the basis of the logic behind the mathematics of the discussed attribute loop of Safe-

Level SMOTE method, it is suggested in this study that if two data instances have

values of opposite signs then the Safe-Level SMOTE algorithm would not generate a

66

new data instance that is between the two data instances, which violates the objective

of SMOTE algorithm. The mathematical difference operation for the attribute loop of

Safe-Level SMOTE changes to the addition operation when the values of the two data

instances assume opposite signs.

The Modified SMOTE algorithm shown below is a demonstration of the above claim

using the attribute loop of SMOTE. The attribute loop of SMOTE is where the new data

instance is generated between two data points. The algorithm 5 in section 8.4 was

computed to generate synthetic instances of the SMOTE method. The pseudo-code

below demonstrates the flow of the SMOTE algorithm in section 8.4.

Algorithm 5: SMOTE

Input: Minority data observations-T, Size of new instance in percentage-N,

Size of the nearest neighbours-K

Output: I=(N/100)*count(T) – is the newly generated minority class instances of

 size I – Synthetic-instances.

Begin

1. No-of-minority = count(T)

2. No-new-Instances = I

3. No-of-attributes = count(T[0] – 1

4. Minority-instances = T

5. Synthetic-instances= []

6.

7. For positive-instance in positive-instances:

8. Compute 5 neighbours of positive-instance and call it nnarray.

9. For index in No-new-instances:

10. Choose a random number between 0 and number of neighbours and call it nn.

11. For attribute in attributes:

12. difference = nnarray[nn][attribute] –positive-instance[attribute].

13. Gap = generate random value between 0 and 1.

14. Synthetic-instances.append(positive-instance[attribute]+ difference * gap)

15. Append minority class value to Synthetic-instance

End of the function

4.1.2. Modified SMOTE Algorithm

In this study, a random generation of values between the value of data observation 1

and data observation 2 as a way of ensuring that the newly generated values lie within

the boundary of data observations 1 and 2 is proposed. The modified function of the

attribute loop of smote is represented by the algorithm 6 in section 8.4. The pseudo-

code below demonstrates the flow of the Modified SMOTE algorithm in section 8.4.

67

Algorithm 6: Modified SMOTE

Input: Minority data observations-T, Size of new instance in percentage-N,

Size of the nearest neighbours-K

Output: I=(N/100)*count(T) – is the newly generated minority class instances of

 size I – Synthetic-instances.

Begin

1. No-of-minority = count(T)

2. No-new-Instances = I

3. No-of-attributes = count(T[0] – 1

4. Minority-instances = T

5. Synthetic-instances= []

6.

7. For positive-instance in positive-instances:

8. Compute 5 neighbours of positive-instance and call it nnarray.

9. For index in No-new-instances:

10. Choose a random number between 0 and number of neighbours and call it nn.

11. For attribute in attributes:

12. row.append(np.random.uniform(instances[0][attr], instances[1][attr])

13. Append minority class value to Synthetic-instance

End of the function

4.1.3. Modified Safe-Level-SMOTE Algorithm

By generating data instances within the boundaries of data instances 1 and 2, the

objective of the original smote method was achieved and thus gave merit to a

comparison of the smote and safe-level smote algorithms. The function definition of

the Modified safe-level SMOTE algorithm is defined in algorithm 7 of section 8.4. The

pseudo-code below demonstrates the flow of the Modified safe-level SMOTE

algorithm in section 8.4.

Algorithm 7: Modified Safe Level SMOTE

Input: Minority data observations-T, Size of new instance in percentage-N,

Size of the nearest neighbours-K

Output: I=(N/100)*count(T) – is the newly generated minority class instances of

 size I – Synthetic-instances.

Begin

1. No-of-minority = count(T)

2. No-new-Instances = I

3. No-of-attributes = count(T[0] – 1

4. Minority-instances = T

68

5. Synthetic-instances= []

6. For positive-instance in positive-instances:

7. Compute 5 neighbours of positive-instance and call it K.

8. Compute 5 neighbours of positive-instance and call it N.

9. Count number of positive instances in K and call it SLp.

10. Count number of positive instances in N and call it SLn.

11. If SLp != 0:

12. SL-ratio = SLp/SLn

13. Else:

14. SL-ratio = np.inf

15. If SL-ratio == np.inf AND SLp ==0:

16. Continue.

17. Else:

18. Attribute = []

19. For index in range(len(np.array(T)[0])):

20. If SL-ratio == np.inf AND SLp != 0:

21. Gap = 0

22. Elseif SL-ratio == 1:

23. Gap = np.random.uniform(0,1)

24. Elseif SL-ratio > 1:

25. Gap = np.random.uniform(0,1 / SL-ratio)

26. Elseif SL-ratio < 1:

27. Gap = np.random.uniform(1 - SL-ratio , 1)

28. Attribute.append(np.random.uniform(nnarray[nn][attribute],positiveinstances[attribute])

29. Attribute.append[-1] = 1.0

30. Synthetic-instance.append(Attribute)

31. Append minority class value to Synthetic-instance.

End of the function

From the algorithm described above, it can be seen that the new data instances that

are generated follow the same logic as the above-mentioned smote method, except

the fact that the newly generated data values in this case are generated at the safe

level of SMOTE. In addition, to preserve the primary objective of the SMOTE

algorithm, the new data values Safe-Level SMOTE must be generated between the

data instances at the safe-level of SMOTE. The use of the modified Safe-Level

SMOTE algorithm in combination with the down-sampling method that removes

duplicates and randomly chooses non-duplicate data sample from the majority class,

were used to generate a balanced class distribution. A balanced class distribution was

used for feature selection process. In the section that follows, the manner in which the

feature selection process is being performed is discussed.

4.2. Feature Selection Method

The balanced class distribution dataset is used for feature selection. The feature

selection is performed using the manual stacking ensemble method of Univariate

Selection, Recursive Feature Elimination, and Feature Importance. The three feature

69

selection algorithms were computed, and the Time column of the dataset appeared

not to add any positive value to the decision making of base models. The Time column

was eliminated from the data and the performance of the base classifiers of stacking

ensemble method was improved significantly. Other features of the dataset were

removed individually, and the performance of base models did not improve

significantly. The three feature selection methods, namely Univariate Selection,

Recursive Feature Elimination and Feature Importance, are discussed in the sub-

sections that follows.

4.2.1. Univariate Selection Method

The Univariate Selection Method is performed using the selectKbest method to select

the best features based on the f_classification method. The value of k (i.e. the number

of features) was set at 30 since there were 30 features of the dataset. The fit.scores

was used to get scores for each feature of the dataset. The scores in relation to

features were sorted in order to rank the features according their importance. The

function definition of the Univariate Selection Method is defined in algorithm 8 of

section 8.4. The following pseudo-code shows the flow of how the Univariate Selection

Method was defined in section 8.4.

Algorithm 8: Univariate Selection Method

Input: Features, Class

Output: Univariate Scores

Begin

1. Test = pass score function as f_classif and number of input features to SelectKBest

2. Fit = fit the input features and class values

3. Scores = get scores

4. Append sorted scores in descending order into Univeriate_Scores

5. Return Univeriate_Scores

End of the function

4.2.2. Recursive Feature Elimination Method

In this research study, the Recursive Feature Elimination Method was used in

combination with the logistic regression binary classification method since the

balanced class distribution dataset was separable. The function definition of the

Recursive Feature Elimination Method is defined in algorithm 9 of section 8.4. The

70

following pseudo-code shows the flow of how the Recursive Feature Elimination

Method was defined in section 8.4.

Algorithm 9: Recursive Feature Elimination Method

Input: Features, Class

Output: Recursive Scores

Begin

1. Model = Logistic Regression

2. RFE = pass the model to Recursive Feature Elimination Method

3. Fit = fit the input features and class values to the RFE

4. Ranking = rank the scores

5. Append sorted scores in descending order into Recursive_Scores

6. Return Recursive_Scores

End of the function

4.2.3. Feature Importance Method

The third feature selection method is Feature Importance. In this research study, the

Feature Importance was used in combination with the ExtraTreeClassifier method.

The ExtraTreeClassifier is used for binary classification, and the features of the

dataset were ranked according their importance. The function definition of the feature

importance Method is defined in algorithm 10 of section 8.4. The following pseudo-

code shows the flow of how the feature importance Method was defined in section 8.4.

Algorithm 10: Feature Importance Method

Input: Features, Class

Output: Recursive Scores

Begin

1. Model = Extract Tree Classifier

2. Fit = fit the input features and class values to the Model

3. Scores = generate feature importance

4. Append sorted scores in descending order into Importance_Scores

5. Return Importance_Scores

End of the function

In this research study, the dataset of the selected features was used for the

construction of the data models for binary classification. The weighted stacking

ensemble method of classifiers is proposed in this research study as the data model

71

for the detection of malicious activities. The construction of the weighted stacking

ensemble method is discussed in the next section.

4.3. Weighted Stacking Ensemble Method of Classifiers

The stacking ensemble method adopted for this study was performed by voting the

output of a data instance through the use of various classification methods such as

ANN, SVM, KNN, NB and DT for the prediction of the output class of a given data

instance. The stacking ensemble method uses the weighted voting method for

decision making. The weights of base models were generated by the differential

evolution technique. Differential evolution is an optimization technique for finding

optimum weights of base models; and it is discussed in detailed later in this chapter.

The definition of the various classification methods such as Artificial Neural Network

(ANN), Support Vector Machine (SVM), k-Nearest Neighbours (KNN), Naïve Bayesian

(NB), and Decision Tree (DT) methods are outlined in detail in the section that follows.

4.3.1. Artificial Neural Network (ANN) Method

The ANN method is illustrated using a data structure called class. The class name for

the ANN method is NNClassifier, which contains a constructor to initialize values. The

Table 8.1 in section 8 shows the names and descriptions of the class properties of the

NNClassifier class. The class definition of the ANN Method is defined in algorithm 11

of section 8.4. The following pseudo-code shows the flow of how the ANN Method was

defined in section 8.4.

Algorithm 11: Artificial Neural Network (ANN)

Input: Number of Features, Number of Classes, Number of Hidden Units, L1 regularization, L2

regularization, Number of Epochs, Learning Rate, Number of Batches, Random Seed

Output: Predicted Output

Begin

1. Function for random initialisation of weights (input layers (W1) and inner layer (W2))

2. Function for adding the bias unit (value = 1)

3. Function to define the sigmoid/logistic function:
1

1+ 𝑒−(𝑤𝑇𝑥)

4. Forward feed on the network.

Input: input features.

Net_input = add bias unit to the first layer of the network

Net_hidden = dot product of input layer and Net_input (𝑤1𝑇𝑥)

Act_hidden = apply sigmoid function to Net_hidden

Act_hidden = add bias unit to Act_hidden

72

Net_out = dot product of inner layer (w2) and Act_hidden

Act_out = apply sigmoid function to Net_out

Return Net_input, Net_hidden, Act_hidden, Net_out, Act_out

5. Function for defining the derivative of Sigmoid function:
1

1+ 𝑒−(𝑤𝑇𝑥)
(1 +

1

1+ 𝑒−(𝑤𝑇𝑥)
)

6. Backpropagation of the network.

Input: Net_input, Net_hidden, Act_hidden, Net_out, Act_out, Class values (y)

Sigma3 = Act_out – y

Net_hidden = add bias unit to the Net_hidden

sigma2 = (𝑤2𝑇sigma3) * sigmoid_prime(net_hidden)

grad1 = dot product of sigma2 and Net_input

grad2 = dot product of sigma3 and Act_hidden

Return grad1, grad2

7. L2 Regularization function:

Input: lambda, w1, w2, length (m)

Return (∑ √𝑤1
𝑛

𝑘=0
+ ∑ √𝑤2

𝑛

𝑘=0
) /

𝜆

2m

8. Function for defining the Loss/Cost function.
Input: predicted values (output), actual output values (y)

For i=0 to length of class values (y)

 if y = 1.0

 sumEntropy += (-log(output[i]))

 else

 sumEntropy += (-log(1 - output[i]))

Return sumEntropy

9. Function for error rate
Input: predicted values (output), actual output values (y)

L2_term = L2 Regularization function

Error = Cross_entropy(output, y) + L2_term

Return 0.5 * mean(Error)

10. Backpropagation to update the weights

Input: predicted values (output), actual output values (y)

Net_input, Net_hidden, Act_hidden, Net_out, Act_out = forward feed function(output)

grad1, grad2 = self._backward(net_input, net_hidden, act_hidden, act_out, y)

grad1 += w1 + L2

grad2 += w2 + L2

Error = Error(y, Act_out)

Return Error, grad1, grad2

11. Function for predictions

Input: input features.

Net_input, Net_hidden, Act_hidden, Net_out, Act_out = forward feed function(output)

Return Maximum Likelihood Estimator on Net_out

12. Decision Making Function (Softmax)

Input: inputs

Return
𝑒(𝑖𝑛𝑝𝑢𝑡𝑠)

 ∑ 𝑒(𝑖𝑛𝑝𝑢𝑡𝑠)𝑛

𝑘=0

13. Class probability prediction function

Input: input features.

Net_input, Net_hidden, Act_hidden, Net_out, Act_out = forward feed function(output)

Return [softmax(i) for i = 0 to length(net_out)]

14. Function to fit the model
Input: input features(x) and output values (y)

y = apply function to_categorical to y

for i = 0 to the number of epochs

 error, grad1, grad2 = backpropagation to update the weights(x, y)

73

 w1 -= learning rate * grad1

 w2 -= learning rate * grad2

 print('>epoch=%d, error=%.3f'%(epoch, error))

15. Function to display the score

Input: input features(x) and output values (y)

y_hat = predict (x)

Return sum(y == y_hat) / length(x)

End of the Class

4.3.2. Support Vector Machine (SVM) Method

In this research study, the SVM method is illustrated using a data structure called

class. The class name for the SVM method is Support_Vector_Machine, and contains

a constructor to initialize values. The Table 8.2 in section 8 shows the names and

descriptions of the class properties of the Support_Vector_Machine class. The class

definition of the SVM Method is defined in algorithm 12 of section 8.4. The following

pseudo-code shows the flow of how the SVM Method was defined in section 8.4.

Algorithm 12: Support Vector Machine (SVM)

Input: Number of Features, Number of Classes, Number of Epochs, Learning Rate, Random Seed

Output: Predicted Output

Begin

1. Function for random initialisation of weights (input layers (W1) and inner layer (W2))

2. Function for adding the bias unit (value = 1)

3. Function for formatting class values to float number (format_y)

4. Function for predicting the probability (predict_proba)

Input: input features(x) and output values (y)

Net_input = add bias unit to the input features

Weighted = dot product of weights (w) with Net_input

Format_y = format_y(y)

X_pred = dot product of weights (w) with format_y

Return X_pred

5. Function for prediction

Input: input features(x) and output values (y)

Proba = predict_proba(x, y)

Pred = [maximum likelihood estimator (value) for value in Proba]

Return Pred

6. Function for calculating the score
Input: input features(x) and output values (y)

Pred = predict(x, y)

Count = 0

For i = 0 to length of Pred

 If pred[i] == list(y)[i]

 Count += 1

Return Count / length of y

7. Function to calculate highest class probability

Input: Predicted list (pred_list) and Predicted probability list (pred_proba_list)

74

Proba = []

For each Index and value in pred_list

 Append pred_proba_list[Index][value] into Proba

Return Proba

8. Function to train the dataset
Input:x_train, y_train

For each epoch in epochs

 Pred = predict_proba(x_train, y_train)

 For ind = 0 to length of Pred:

 If Pred[ind][1] >= 0

 W = w + learning rate * (-2 *
1

 epochs
 * w)

 Else

 W = w + learning rate * y_train[ind] *(x_train[ind]) - (-2 *
1

 epochs
 * w)

Return self

End of the Class

4.3.3. k-Nearest Neighbours (KNN) Method

In this study, the KNN method is illustrated using a data structure called class. The

class name for the KNN method is k_Nearest_Neighbors, and contains a constructor

to initialize values. The Table 8.3 in section 8 shows the names and descriptions of

the class properties of the k_Nearest_Neighbors class. The class definition of the KNN

Method is defined in algorithm 13 of section 8.4. The following pseudo-code shows

the flow of how the KNN Method was defined in section 8.4.

Algorithm 13: K-Nearest Neighbour (KNN)

Input: Row length, neighbours, TrainDataX, TrainDataY, Random Seed

Output: Predicted Output

Begin

1. Function for calculating the distance: (𝑟𝑜𝑤1_𝑣𝑎𝑙𝑢𝑒 − 𝑟𝑜𝑤2_𝑣𝑎𝑙𝑢𝑒)2

2. Function for calculating the Euclidean distance:

Input: row1, row2

Distance = 0

For ind = 0 to length of the row

 Distance += distance(row1, row2)

Return the square root of the Distance

3. Function to calculate the nearest neighbours (getNeighbors)

Input:TrainDataX

k-nearest_neighbour = []

for ind = 0 to length of TrainDataX

 dist = Euclidean_Distance(row1[ind], row2[ind])

 Append (ind, dist) into k-nearest_neighbour

Sort the dist in the k-nearest_neighbour

Return top 5 nearest distances

4. Function for predicting the transactions

Input:TestRow

75

k-nearest_neighbours = getNeighbors(TestRow)

for each neighbour in k-nearest_neighbours:

 count0, count1 = 0, 0

 if TrainDataY[Neighbor[0]] = 0:

 count0 += 1

 elif TrainDataY[Neighbor[0]] = 1:

 count1 += 1

if count0 > count1:

 predictions = 0

else

 predictions = 1

Return predictions

5. Function to get the predictions

Input: TestDataX

Predictions = []

For each TestRow in TestDataX

 Append predicted values into Predictions

Return Predictions

6. Function to return the Class probability

Input: TestDataX

Percentage = []

For each TestRow in TestDataX

 k-nearest_neighbours = getNeighbors(TestRow)

 count0, count1 = 0, 0

 for each Index and Neighbour in k-nearest_neighbours

 if TrainDataY[Index] = 0.0:

 count0 += 1

 elif TrainDataY[Index] = 0.0:

 count1 += 1

 if count0 > count1:

 Percentage.append(count0/5)

 Else

 Percentage.append(count1/5)

Return Percentage

7. Function to get an Accuracy

Input: TestDataY, predictions

Correct = 0

For y = 0 to length of TestDataY

 If TestDataY[y] = predictions[y]

 Correct += 1

Return (Correct / length of TestDataY) * 100

End of the Class

4.3.4. Naïve Bayesian (NB) Method

In this research study, the NB method is illustrated using a data structure called class.

The class name for the NB method is Naïve_Bayesian, and it contains a constructor

to initialize values. The Table 8.4 in section 8 shows the names and descriptions of

the class properties of the Naïve_Bayesian class. The class definition of the NB

76

Method is defined in algorithm 14 of section 8.4. The following pseudo-code shows

the flow of how the NB Method was defined in section 8.4.

Algorithm 14: Naïve Bayesian (NB)

Input: TrainDataX, TrainDataY, Random Seed

Output: Predicted Output

Begin

1. Function to calculate the mean: sum(numbers) / length of numbers

2. Function to calculate the standard deviation: ∑
(𝑥−𝑚𝑒𝑎𝑛)2

𝑛

𝑛

𝑘=0

3. Function to calculate the Gaussian Distribution (CalculateProbability):

Input: RowValue, mean, standard deviation

Exponent =
(𝑅𝑜𝑤𝑉𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛)2

2(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)2

Return
1

√2∗𝑝𝑖
 𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡

4. Function to summarise the input data:

Input: TrainData

Summary = mean(TrainData), standard deviation(TrainData)

Return Summary

5. Function to separate Transaction by class values (seperateByClass):

Input: TrainDataX

Seperated = {}

For i = 0 to length of TrainDataX

 Vector = TrainDataX[i]

 If TrainDataX[i] not in Seperated

 Separated[TrainDataY[i]] = []

 Append vector into Seperated

Return Seperated

6. Function to summarise values by class (SummarizeByClass):

Separated = seperateByClass()

Summaries = []

For each classvalue and instances in Seperated

 Summaries[classValue] = summarise(instances)

Return Summaries

7. Function to calculate the class probability:

Input: TestDataInstance

Probabilities = []

Summaries = summarizeByClass()

For each classValue, classSummaries in Summaries

 Probabilities[classValue] = 1

 For ind = 0 to length of classSummaries:

 Mean, standard deviation = classSummaries[ind]

 RowValue = TestDataInstance[ind]

 Probabilities[classValue] *= CalculateProbability()

Return Probabilities

8. Function to predict the output of the transaction:

Input: TestDataInstance

Probabilities = calculateClassProbabilities(TestDataInstance)

bestLabel, bestProb = None, -1

for each classValue, probability in probabilities()

 if bestLabel is none or probability > bestProb

77

 bestProb = probability

 bestLabel = classValue

Return bestLabel

9. Function to get Predictions
Input: TestDataX

Predictions = []

For i = 0 to length of TestDataX

 Result = predict(TestDataX[i])

 Append Result in predictions

Return Predictions

10. Function to return probabilities
Input: TestDataX

Probas = []

For each TestDataInstance in TestDataX

 Proba = CalculateClassProbability(TestDataInstance)

 Proba = maximum likelihood estimator (Proba)

 Append Proba in Probas

Return Probas

11. Function to get an Accuracy

Input: TestDataY, predictions

Correct = 0

For y = 0 to length of TestDataY

 If TestDataY[y] = predictions[y]

 Correct += 1

Return (Correct / length of TestDataY) * 100

End of the Class

4.3.5. Decision Tree (DT) Method

The last and the final base model of stacking ensemble, the DT method, is illustrated

using a data structure called class. The class name for the DT method is

Decision_tree, and contains a constructor to initialize values. The Table 8.5 in section

8 shows the names and descriptions of the class properties of the Decision_tree class.

The class definition of the DT Method is defined in algorithm 15 of section 8.4. The

following pseudo-code shows the flow of how the DT Method was defined in section

8.4.

Algorithm 15: Decision Tree (DT)

78

Input: Gini_Criterion, Max_depth, Min_samples_leaf, Entropy_Criterion, Random Seed

Output: Predicted Output

Begin

1. Function to train the dataset using Gini

Input: criterion, random state, max depth, min sample leaf, TrainX, TrainY

Clf_gini = decisionTreeClassifier(Input)

Fit Clf_gini model with TrainX and TrainY

Return Clf_gini

2. Function to train the dataset using Entropy

Input: criterion, random state, max depth, min sample leaf, TrainX, TrainY

Clf_entropy = decisionTreeClassifier(Input)

Fit Clf_entropy model with TrainX and TrainY

Return Clf_entropy

3. Function to predict the probability

Input: TestX, clf_object

Predict_prob = clf_object.predict(TestX)

Return Predict_prob

4. Function to make predictions

Input: TestX, clf_object

Y_pred = clf_object.predict(TestX)

Return Y_pred

5. Function to calculate the probability

Input: pred_list, pred_proba_list

Proba = []

For each index and value in pred_list

 Append pred_proba_list[index][value] into Proba

Return Proba

6. Function to get an Accuracy

Input: TestDataY, predictions

Correct = 0

For y = 0 to length of TestDataY

 If TestDataY[y] = predictions[y]

 Correct += 1

Return (Correct / length of TestDataY) * 100

End of the Class

The weighted stacking ensemble method of the above defined base models was

performed by voting out the output of any given credit card transaction as to whether

the transaction is illegal or not. The output of the base models was used to generate

a new dataset. The new dataset was stored in a data dictionary consisting of columns

as names of base models, and rows as the predicted output of base models. The data

dictionary of the new dataset is discussed in the next section.

4.4. Predictions Data Dictionary

The weighted voting Stacking Ensemble method was achieved by creating the data

dictionary of base models that contain predicted values of each credit card transaction,

79

and the new feature names as the name of base models. The data dictionary is named

Model_predictions and is defined as follows:

Model_predictions = {'ANN':nn.predict(X_test)

 'SVM':nnSVM._predict(X_test, y_test)

 'KNN':nnKNN._getPredictions(np.array(X_test))

 'DT':nnDT._prediction(X_test, clf_object)

 'NB':nnNB._getPredictions(X_test)}

The nn, nnSVM, nnKNN, nnDT, and nnNB are the class objects of the base models,

which are defined in section 4.4. The predict, _predict, _getPredictions, and

_prediction are the property of the class objects. The testing dataset was supplied to

the prediction class properties of base models in order to get the predicted values.

Once all the base models had generated the predicted values per credit card

transaction, the voting method was required to generate the final prediction output.

The voting method used in the stacking Ensemble method of the base data models is

discussed in the next section.

4.5. Stacking Ensemble of Base Models

The voting class named Voting, which is defined below, allows base models to vote

the final output of each transaction of credit card data. The final output value of each

transaction can either be classified as 1 to denote a fraudulent transaction or 0 to

denote a non-fraudulent transaction. The voting method that has been adopted for this

study is based on the principle of majority rule, which means that the class with the

majority of votes in respect of base models is the final classification of the transaction.

The Table 8.6 in section 8 shows the names and descriptions of the class properties

of the Voting class. The class definition of the Voting Method is defined in algorithm

16 of section 8.4. The following pseudo-code shows the flow of how the Voting Method

was defined in section 8.4.

Algorithm 16: Stacking Ensemble Method

80

Input:

Output: Predicted Output

Begin

1. Function to return voted class (Mode_Fun)

Input: List

Predict, Count0, Count1 = 0, 0, 0

For each value in the List

 If value = 0

 Count0 += 1

 Esif value = 1

 Count += 1

If Count0 > Count1

 Predict = 0

Else

 Predict = 1

Return Predict

2. Function to return list of predicted values
Input: List of Base model predicted values (Model_pred_A)

Predictions = []

For each Row in Model_pred_A

 Mode = Mode_fun(Row)

 Append Mode into Predictions

Return Predictions

3. Function to get an Accuracy

Input: TestDataY, predictions

Correct = 0

For y = 0 to length of TestDataY

 If TestDataY[y] = predictions[y]

 Correct += 1

Return (Correct / length of TestDataY) * 100

4. Function to return unmatched Indexes

Input: TestDataY, Predictions

Incorrect = []

For ind = 0 to length of TestDataY

 If TestDataY[ind] is not equal to Predictions[ind]

 Append ind into Incorrect

Return Incorrect

End of the Class

To enhance the performance of the voting method, the weighted voting technique is

required. In this study, the weighted voting method was performed using the predicted

class probabilities of output values generated by the base models. Probability is known

to be the number between 0 and 1 indicating the likelihood of an event occurring, and

class value is the number that represents the class in which the probability value is

closer to. This means that, in this study, the predicted class probability of an output

class was used for weighted voting method.

81

For performing weighted voting method, a data dictionary of predicted class

probabilities of each base model is required. The data dictionary of predicted

probabilities of base models defined in sub-section 4.4, is discussed in this next

section.

4.6. Probability Data Dictionary

The use of the Stacking Ensemble method in combination with weighted voting of the

base data models involves creating a new data dictionary of base models that is

composed of class probability of the predicted value of each credit card transaction.

The data dictionary name is Model_Probability and is defined as follows:

Ann_pred = nn.predict(X_test)

Ann_pred_Avg = nn.predict_proba(X_test)

ANNProbability = nn.probability(Ann_pred, Ann_pred_Avg)

SVM_pred_Avg = nnSVM._predict_proba(X_test, y_test)

SVM_pred = nnSVM._predict(X_test, y_test)

SVMProbability = nnSVM.probability(SVM_pred, SVM_pred_Avg)

KNNProbability = nnKNN._probability(np.array(X_test))

clf_object = nnDT._train_using_entropy(Xs, Ys)

DT_pred_proba = nnDT._pred_proba(X_test, clf_object)

DT_pred = nnDT._prediction(X_test, clf_object)

DT_pred = [1 if i == 1.0 else 0 for i in DT_pred]

DTProbability = nnDT.probability(DT_pred, DT_pred_proba)

NBProbability = nnNB.probability(X_test)

Model_Probability= {'ANN':ANNProbability,

 'SVM':SVMProbability,

 'KNN':KNNProbability,

 'DT' :DTProbability,

 'NB' :NBProbability }

The nn, nnSVM, nnKNN, nnDT, and nnNB are the class objects of the base models

defined in section 4.4. The Model_Probability is the new data dictionary that is

composed of predicted class probability and base model names.

The Differential Evolution Optimization technique is used for generating the optimum

weights for base model algorithms in decision making, and it is discussed in the next

section.

82

4.7. Differential Evolution Optimization Method

The weight voting of the stacking ensemble method is optimised using the Differential

Evolution technique. Differential Evolution is a stochastic technique that is powerful

and efficient over a continuous space for solving differentiable and non-linear

optimization problems. In this research study, the Differential Evolution method in this

study was used for searching for global optimum weights from a defined search space.

The class definition of the Differential Evolution Method is defined in algorithm 17 of

section 8.4. The following pseudo-code shows the flow of how the Differential

Evolution Method was defined in section 8.4.

Algorithm 17: Differential Evolution Optimization Method

Input: TrainDataX, population_size, Scaling_Factor, Max_Iterator, Crossover_Probability,

random_seed

Output: Predicted Output

Begin

1. Function to define the bounding of the search space (Bounds)

Input: TrainDataX

Bounds = []

min = minimum values of all input features

max = maximum values of all input features

Append min and max into Bounds

Return Bounds

2. Function to ensure the bounds of the search space

Input: vector, bound

New_vector = []

For ind = 0 to length of vector

 If lower bound[ind] >= vector[ind]

 Append lower bound[ind] into New_vector

 If upper bound[ind] <= vector[ind]

 Append upper bound[ind] into New_vector

 If lower bound[ind] <= vector[ind] and upper bound[ind] >= vector[ind]

 Append vector[ind] into New_vector

Return New_vector

3. Function to define the cost function

Input: input(x)

Sums = sum([𝑥𝑖
2 for i=0 to length of x])

Return Sums

4. Function to select a sample population size

Input: population size (pop_size)

Bounds = Bounds()

Population = []

For Index=0 to length of pop_size

 Individual = []

 For each value1 and value2 in Bounds

83

 Append random value between value1 and value2 into Individual

 Append Individual into Population

Return Population

5. Function to select random values

Input: lengthList

Count, RandomList = 0, []

While count < LengthList

 RandomNumber = Random value between 0 and Population size

 If RandomNumber not in RandomList

 Append RandomNumber into RandomList

 Count += 1

 Else

 Count += 0

Return RandomList

6. Function to define Mutation

LengthList = 3

RandomList = 3 random integer values between 0 and the length of the population

𝑋1 = Population value associated with the integer value 1

𝑋2 = Population value associated with the integer value 2

𝑋3 = Population value associated with the integer value 3

Diff = 𝑋1 - 𝑋2

V_donor = 𝑋1 + Scaling_Factor * Diff

V_donor = Apply Ensure bound function on V_donor

Return V_donor

7. Function to define Crossover

V_Targets = Population()

V_donor = Mutation()

V_trials = []

For V_Target in V_Targets:

 V_trial = []

 For Index = 1 to length of the V_Target

 Crossover = random value between 0 and 1

 If crossover < Crossover_Probability

 Append V_donor[Index] into V_trial

 Else

 Append V_Target[Index] into V_trial

 Append V_trial into V_trials

Return V_trials

8. Function to return Scores

Gen_Scores = []

V_trials = Crossover()

V_Targets = Population()

For i=0 to Max_Iterator

 Trial_Costs = Cost_Func of V_trials

 Target_Cost = Cost_Func of V_target

 For Index = 1 to length of Trail_Costs

 If Trial_Costs[Index] < Target_Costs[Index]

 Population[Index] = V_trials[Index]

 Append Trial_Costs[Index] into Gen_Scores

 Else

 Append Target_Costs[Index] into Gen_Scores

Return Gen_Scores

9. Function to define best population

Gen_Scores = Scores()

84

Gen_min = min(Gen_Scores)

Gen_Sol = get population value associated with the minimum score(Gen_min)

Print(‘Best Generation: ’, Gen_min)

Print(‘Best Solution: ’, Gen_Sol)

Return Gen_Sol

10. Function to define Logistic/Sigmoid function:
1

1+ 𝑒−(𝑤𝑇𝑥)

11. Function to get predictions

List = []

Best_Solution = Best_Population()

For each observation in model_probability

 DotProduct = sigmoid of dot product of observation and Best_Solution

 If DotProduct >= 0.838

 Append 1 into List

 Else

 Append 0 into List

Return List

12. Function to get model Accuracy

Input: TestDataY, predictions

Correct = 0

For y = 0 to length of TestDataY

 If TestDataY[y] = predictions[y]

 Correct += 1

Return (Correct / length of TestDataY) * 100

End of the Class

The Differential Evolution method searches the search space that is defined by the

lower and the upper bound values of each feature of the dataset, and thereafter

generates new members of the population. A For-loop was created to loop through the

algorithm and find the best performing number of population members. Another loop

was created for learning the search space. The mutation method used was (X1 +

Scaling factor * (X2 – X3)), where X1, X2 and X3 are the population members and

Scaling factor is a random number between 0 and 2. The crossover method was

performed on a mutation vector and the given population vector, and the cost was

calculated.

A vector that achieves minimum cost was chosen as an optimum solution for the

problem. An optimum solution vector is a set of weights. A set of weights were

multiplied with predicted class probabilities, and a logistic function was used. The

results of all algorithms defined in this chapter are analysed in detail in the next

chapter. The next chapter discusses the data analysis.

4.8. Summary

This chapter discussed the algorithms that were used to carry out the research study.

Various machine learning algorithms were defined and optimised to fulfil the research

85

objectives of this research study. The findings are explained in chapter 5 and 6 of this

research study.

5. Chapter 5: Data Analysis

This chapter discusses the findings of this study. The overall objective of this research

study is to develop an optimized credit card fraud detection model that can efficiently

and effectively detect fraudulent transactions within a minimum number of attempts or

the first time the fraudster attempts to commit fraud. Simply put, the model must

overcome the weaknesses of the classifier models which fraudsters take advantage

of in order to commit credit card fraud.

To satisfy the research objective, the base models of this study are executed and the

output of each base model is observed. The output of each base model involves the

overall accuracy, the predicted output values, and the probabilities of the predicted

output values.

The data dictionary named Model_predictions defined in chapter 4 was used to store

the predicted output values of all base models of the stacking ensemble method, and

the data dictionary named Model_Probability defined in chapter 4 was used to store

the probabilities of the predicted output values. The accuracy of base models,

Model_predictions and Model_Probability with optimized weights of Differential

Evolution were compared to evaluate the overall performance.

The violation of SMOTE and SL-SMOTE oversampling method definitions was noted

in section 4.2. The SMOTE and SL-SMOTE are oversampling methods for balancing

the class distribution of the dataset. The study seeks to demonstrate the claim that

new data instance is not always generated between two existing data instances of the

minority class of SMOTE. The demonstration of SMOTE and SL-SMOTE, and the

modification of SMOTE and SL-SMOTE algorithms to always meet the main objective

is shown in the section that follows.

5.1. SMOTE vs Safe-Level-SMOTE

This section of the research study seeks to demonstrate that SMOTE and SL-SMOTE

algorithms do not always generate a new data instance between two existing data

instances. In this study, the SMOTE and SL-SMOTE algorithms were modified such

86

that they always meet the main research objective defined in section 4.2. For

demonstration purposes, the new random values of two data instances were

generated.

The following random values of instances were chosen to test the claim made in this

study: instances = [[-10, -21, -4, 45, -66, -93, 1], [10, 21, 4, 45, 66, 93, 1]]. For a pictorial

display of the output, the x-axis values were required. The standard numbering system

from 1 to 7 was used for visualization and demonstration purposes. The SMOTE and

the modified SMOTE are demonstrated in the following sub-section.

5.1.1. SMOTE vs New SMOTE

The values of instances and standard numbering system were used in this sub-section

to demonstrate the SMOTE and the modified SMOTE. The different colours were used

to differentiate between the randomly generated values of instances and the new

generated instance. The blue data points are randomly generated instances and the

red data points are new data instance, respectively. The blue and red colouring system

of the data points is adopted throughout the dissertation for the scatter plot. The

pictorial representation of SMOTE method is shown in Figure 5.1.

Figure 5.1: Original Data Instances VS Original SMOTE Instances.

According to Figure 5.1, the SMOTE instance was not generated between data

instance1 and data instance 2. This means that the claim made in this research study

about the SMOTE method is correct. The larger the space between the values of data

instance 2 and data instance 1, the larger the space between generated data value

and the values of data instance 2 and data instance 1.

87

To solve the problem of the SMOTE instances that are generated outside the

boundaries of data instances 1 and 2, the difference variable in the attribute loop of

SMOTE method outlined in section 4.2 must be modified to handle the issue of

opposite signs. To this end, the Modified SMOTE algorithm outlined in section 4.2 is

defined to handle the issue of opposite signs. A pictorial representation of the Modified

SMOTE method is shown in Figure 5.2.

Figure 5.2: Original Data Instances VS New SMOTE Instances.

With respect to Figure 5.2, the SMOTE instance was generated within the boundaries

of data instances 1 and 2. This suggests that the claim made about the SMOTE

method in this research study is absolutely correct. A demonstration of the Safe-Level

SMOTE and New SL-SMOTE algorithms is discussed in the following sub-section.

5.1.2. SL-SMOTE vs New SL-SMOTE

In this sub-section, the random values of instances and standard numbering system

were also used to demonstrate the SL-SMOTE and the modified SL-SMOTE

algorithms.

The same testing method used for SMOTE algorithm was used for the Safe_Level

SMOTE algorithm because the manner in which a new data point is generated for the

SMOTE and Safe_Level SMOTE algorithms is the same. Consequently, the visual

depictions of both the SMOTE and the Safe_Level SMOTE algorithms are the same.

The Safe-Level SMOTE method is presented pictorially in Figure 5.3.

88

Figure 5.3: Original Data Instances VS Original Safe-Level SMOTE Instances.

The Safe-Level-SMOTE instance was generated outside the boundaries of data

instances 1 and 2 in Figure 5.3 thus suggesting the correctness of the claim made

about the Safe-Level SMOTE method.

To solve the problem of the Safe-Level SMOTE instance that are generated outside

the boundaries of data instances 1 and 2, the difference variable in the attribute loop

of Safe-Level SMOTE method listed in section 4.2 had to be modified to handle the

opposite signs factor. In section 4.2, the Modified Safe-Level SMOTE algorithm is

defined to handle the issue of opposite signs.

The same testing method used for the New SMOTE algorithm was also used for the

New Safe_Level SMOTE because the manner in which a new data point is generated

for the algorithm is the same for both algorithms. To this end, a visual depiction of the

two algorithms (i.e. New SMOTE and New Safe_Level SMOTE) appears to be similar.

As stated before, the blue data points are randomly generated instances, and the red

data points are new data instance. A pictorial representation of Modified Safe-Level

SMOTE method is shown in Figure 5.4.

89

Figure 5.4: Original Data Instances VS Original New Safe-Level SMOTE Instances.

According to Figure 5.4, the SL-SMOTE instance was generated within the boundaries

of data instances 1 and 2 thus suggesting that the claim made in this study about the

SL-SMOTE method being correct.

The performance of the SMOTE, SL-SMOTE, modified SMOTE, and the modified SL-

SMOTE methods were tested by computing the ANN, SVM, NB, DT and KNN

algorithms defined in section 4.4. The four SMOTE methods were carried out in

combination with the down-sampling of majority class data instances by removing

duplicate data instances and by performing random sampling (see section 4.2). A

grouped bar chart showing the performance of SMOTE algorithms against the chosen

machine learning algorithms is shown in Figure 5.5.

90

Figure 5.5: Scores by SMOTE groups

Although it is evident from Figure 5.5 that both the SMOTE and the Safe-Level SMOTE

algorithms perform well. The two algorithms do not always generate a new data

instance between two given data instances. This means that the two algorithms violate

the objective of the smote algorithm. In this research study, the SMOTE and the Safe-

Level SMOTE algorithms were re-designed such that they always met the objectives

of the SMOTE algorithm while at the same time preserving and improving the

capabilities of the algorithms. The re-designed Safe-Level SMOTE algorithm was

therefore used to fulfil the objectives of this research study.

As discussed in the methodology chapter, the last step of the data engineering process

involved balancing of the class distribution. The data engineering was followed by the

data modelling, which was followed by defining the class objects of stacking ensemble

base models defined in section 4.4. In this section that follows, the stacking ensemble

class objects of the base model as well as the hyperparameters that are passed to the

class definition of the base models during the creation of class objects are defined.

5.2. Stacking Ensemble Base Models

In this section, the class objects and the hyper-parameter values that are passed to

class definition of the base models during the creation class objects are discussed.

The hyper-parameter values are required for running the base model algorithms.

Although, optimum parameter values are important for achieving the optimum

91

performance of the algorithms, the first base model for defining its class object and the

hyper-parameter values involves the ANN method.

5.2.1. Artificial Neural Network (ANN) Method

To run the class code of ANN method defined in chapter 4, an object that contains

class definition must be defined. The class object of ANN method was defined as nn,

and nn contains the set of hyperparameter values below, which are passed to the

class definition. A nested loop that loops through the number of hidden units and

epochs is used to obtain optimum hyperparameter values. The code shown below

illustrates the manner in which hyper-parameter values are passed to the class

definition in order to create a class object.

N_CLASSES = 2

N_FEATURES = 29

RANDOM_SEED = 25

nn = NNClassifier(n_classes=N_CLASSES,

 n_features=N_FEATURES,

 n_hidden_units=123,

 l2=0.5,

 epochs=199,

 learning_rate=0.001,

 n_batches=25,

 random_seed=RANDOM_SEED)

The second base model to define its class object and the hyperparameter values is

the SVM method. The class object and the hyper-parameter values of the SVM

method are defined in the sub-section that follows.

5.2.2. Support Vector Machine (SVM) Method

To run the class code of SVM method defined in chapter 4, an object that contains

class definition must be defined. The object of SVM method in this study is defined as

nnSVM, and nnSVM contains the set of hyperparameter values below are passed to

the class definition. A loop to loops through the number of epochs was used to search

for optimum number of epochs. The code shown below shows the manner in which

the set of hyperparameter values are passed to the class.

N_CLASSES = 2

N_FEATURES = 29

RANDOM_SEED = 25

nnSVM = Support_Vaector_Machine(n_classes=N_CLASSES,

 n_features=N_FEATURES,

92

 learning_rate=0.001,

 epochs = 300,

 random_seed=RANDOM_SEED)

The next base model to define its class object and the hyperparameter values is the

KNN method. The class object and the hyper-parameter values of the KNN method

are defined in the subsection that follows.

5.2.3. k-Nearest Neighbour (KNN) Method

To run the class code of KNN method defined in chapter 4, an object that contains

class definition must be defined. In this research study, the object of the KNN method

was defined as nnKNN. nnKNN contains the following set of hyper-parameters, which

are passed to the class definition. The code shown below shows the manner in which

the set of hyper-parameter values that are passed to the class.

N_FEATURES = 29

N_NEIGHBORS = 5

TRAINx = Xs

TRAINy = Ys

RANDOM_SEED = 25

nnKNN = k_Nearest_Neighbor(row_length=N_FEATURES,

 neighbors = N_NEIGHBORS,

 TrainDataX = TRAINx,

 TrainDataY = TRAINy,

 random_seed=RANDOM_SEED)

Another base model for defining its class object and the hyper-parameter values is the

Naïve Bayesian method. The class object and the hyper-parameter values of the

Naïve Bayesian method are defined in the following subsection.

5.2.4. Naïve Bayesian (NB) Method

To run the class code of NB method defined in chapter 4 of this study, an object that

contains class definition must be defined. The object of Naïve Bayesian method in this

study is defined as nnNB, and nnNB contains the following set of hyperparameter

values which are passed to the class definition. The code below shows the manner in

which set of hyper-parameters are passed to the class.

TRAINx = Xs

TRAINy = Ys

RANDOM_SEEDS = 25

nnNB = Naive_Bayesian(TRAINx, TRAINy, RANDOM_SEEDS)

93

The last base model for defining its class object and the hyperparameter values is the

Decision Tree method. The class object and the hyperparameter values of Decision

Tree method are defined in the subsection that follows.

5.2.5. Decision Tree (DT) Method

An object that contains class definition must be defined in order to run the class code

of the DT method defined in chapter 4. The object of Decision Tree method in this

research study is defined as nnDT, which contains the following set of hyper-

parameters that are passed to the class definition. The Entropy was used as the

criterion for training the tree. The optimum maximum depth and minimum sample leaf

chosen were optimum. The code shown below illustrates the manner in which set of

hyper-parameter values are passed to the class.

MAX_DEPTH = 3

MIN_SAMPLES_LEAF = 5

ENTROPY_CRITERION = 'entropy'

RANDOM_SEED = 1

nnDT = Decision_tree(Max_depth = MAX_DEPTH,

 Min_samples_leaf = MIN_SAMPLES_LEAF,

 Entropy_Criterion = ENTROPY_CRITERION,

 random_seed = RANDOM_SEED)

The class objects were created by passing the hyper-parameter values that enables

stacking ensemble base models to learn the dataset, and were used for accessing the

defined class properties. After defining the class objects of stacking ensemble base

models, the class objects were deemed ready to be used for accessing the defined

class definitions. In the following section, the manner in which the defined performance

class is accessed through the usage of class objects is described.

5.3. Performance of Base Models

The class objects in section 5.2 are created by passing the optimum hyper-parameter

values to class definition of base models defined in section 4.4. The class objects of

stacking ensemble base models described in this section were used to access the

defined performance property of the base model classes in order to compare the

performance.

The model’s overall accuracy as well as the true negative transactions, true positive

transactions, false negative transactions, and false positive transactions. The

94

accuracy of the base models, which involves the overall accuracy and confusion matrix

of the model, are discussed in the section that follows.

5.3.1. Accuracy of Base Models

The python code below prints the name and the overall accuracy score of the base

models. Nn, nnSVM, nnKNN, nnDT, and nnNB are the class objects defined in section

5.2, and score and getAccuracy are the class properties of base models in section 4.4.

The X_test and y_test are the respective input and output values of the test data. The

accuracy of the base model was achieved by running the following code:

print('Artificial Neural Network: '+str(nn.score(X_test, y_test)))

print('Support Vector Machine: '+str(nnSVM._score(X_test, y_test)))

print('K-Nearest Neighbor: '+str(nnKNN._getAccuracy(list(y_test),

knn_pred)))

print('Decision Tree: '+str(nnDT._getAccuracy(list(y_test), predProb)))

print('Naive Bayesian: '+str(nnNB._getAccuracy(list(y_test), Predicted_y)))

Output:

Artificial Neural Network: 0.9518275341455708

Support Vector Machine: 0.7108598714932762

K-Nearest Neighbor: 90.83482555621877

Decision Tree: 99.17488852217268

Naive Bayesian: 97.06002832297555

When compared with other base models, the Decision Tree Method performed

extremely well and achieved a higher accuracy rate. The Support Vector Machine

method achieved an accuracy that is far lower than that of other base models. The

overall performance of all the base models is good. However, the statistics to show

which class of the distribution is well classified is not shown.

5.3.2. Confusion Matrix

The confusion matrix is a classification model evaluation method that shows the total

number of true negative, true positive, false negative, and false positive. The number

of true positive (TP) transactions is the number of output transactions that the base

classifier has predicted as being fraudulent when they were in fact fraudulent.

Similarly, the count of true negative (TN) transactions is the count of output

transactions that the base classifier has predicted as being non-fraudulent when they

were in fact non-fraudulent, the count of false positive (FP) transactions is the count

of output transactions that the base classifier has predicted as being fraudulent when

they are non-fraudulent, and the count of false negative (FN) transactions is the count

95

of output transactions that the base classifier has predicted as being non-fraudulent

when they are in fact fraudulent.

The function definition of the confusion matrix Method is defined in algorithm 18 of

section 8.4. The following pseudo-code shows the flow of how the confusion matrix

Method was defined in section 8.4.

Algorithm 18: Confusion Matrix Method

Input: PredictedClassValues, ClassValues

Output: Confusion Matrix Scores

Begin

1. Pivot = []

2. For each column in columns

3. Column = column value

4. Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN)

5. For ind = 1 to length of the Column

6. IF ClassValue and PredictedClassValue at ind are both equal to 1

7. Then TP += 1

8. ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0

9. Then FN += 1

10. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1

11. Then FP += 1

12. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0

13. Then TN += 1

14. Append TP, TN, FP,FN into the Pivot

15. Return Pivot

End of the function

To run the confusion matrix, the following function object code was used:

ConfusionMatrix(Model_predictions, y_test). The total number of illegal and legal transactions

for testing dataset was 137 and 85306.

Table 5.1: Confusion matrix.

Model TP TN FP FN

ANN 5 81130 4176 132

SVM 22 61753 23553 115

KNN 7 77359 7947 130

 DT 0 84492 814 137

96

Model TP TN FP FN

 NB 4 82699 2607 133

It is clear from negative (legal) and positive (illegal) transactions listed in table 5.1 that

the base models are extremely biased. To give the above confusion matrix table

meaning, the table can be shown in a form of statistics. The function definition of the

confusion matrix stats Method is defined in algorithm 19 of section 8.4. The following

pseudo-code shows the flow of how the confusion matrix Method was defined in

section 8.4.

Algorithm 19: Confusion Matrix Stats Method

Input: PredictedClassValues, ClassValues

Output: Confusion Matrix Scores

Begin

1. Pivot = []

2. For each column in columns

3. Column = column value

4. Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN)

5. For ind = 1 to length of the Column

6. IF ClassValue and PredictedClassValue at ind are both equal to 1

7. Then TP += 1

8. ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0

9. Then FN += 1

10. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1

11. Then FP += 1

12. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0

13. Then TN += 1

14. Class0, Class1 = 0, 0

15. For each value in the ClassValue

16. IF value = 0

17. Class0 += 1

18. ELIF value = 1

19. Class1 += 1

20. Append TP/Class1, TN/Class0, FP/Class1,FN/Class0 into the Pivot

21. Return Pivot

End of the function

To run the confusion matrix statistics function, the following function object code was

used: ConfusionMatrixStat(Model_predictions, y_test). The output of confusion matrix

statistics is shown in Table 5.2.

97

Table 5.2: Confusion Matrix Statistics.

Model TP TN FP FN

ANN 0.036496 0.951047 30.481752 0.001547

SVM 0.160584 0.723900 171.919708 0.001348

KNN 0.051095 0.906841 58.007299 0.001524

DT 0.000000 0.990458 5.941606 0.001606

NB 0.029197 0.969439 19.029197 0.001559

It is clear from the negative (FN) transactions listed in table 5.2 that the Decision Tree

method had a higher percentage of accuracy compared to other base models.

However, the Decision Tree method was extremely biased compared to other base

models; the Support Vector Machine method had a lower percentage of accuracy

when compared with other base models. On the other hand, the true positive (TP) of

Support Vector Machine method is greater than the true positive value of other base

models.

Therefore, it can be concluded that a higher percentage of accuracy of the base model

that is extremely biased is meaningless compared to an average percentage of

accuracy of the base model where all output class values are well represented. In this

study, the true accuracy of a base model is the accuracy in which all output classes

are well represented.

The stacking ensemble base models were optimised to achieve equal representation

of output classes while ensuring that the high overall accuracy of base models is

maintained. The optimization methods of stacking ensemble base models are

discussed in the next section.

5.4. Optimized Stacking Ensemble Base Models

To obtain the true accuracy of base models and thus achieve a classification problem

of equal representation of class values, the hyper-parameters of the base models were

modified. Furthermore, a classification problem of equal representation of class values

was optimized to maintain the higher overall accuracy of base models. The definitions

98

of the base models (outlined in section 4.4) and class objects (outlined in section 5.3)

were modified. A description of the manner in which each of the base models was

modified in order to maintain a high level of is as follows

 Optimization of the ANN model – for the ANN base model, the number of

epochs was manually changed from 199 to 50 as defined in section 5.1.1, and

used a FOR loop to loop through the hidden layers. The best number of hidden

layers in relation to the epochs was achieved by computing the following code.

ListItems = []

for ind in range(500):

 nn = NNClassifier(n_classes=N_CLASSES,

 n_features=N_FEATURES,

 n_hidden_units=ind,

 l2=0.5,

 epochs=50,

 learning_rate=0.001,

 n_batches=25,

 random_seed=RANDOM_SEED)

 Ann_pred = nn.predict(X_test)

 CM = ConfusionMatrixDE(Ann_pred, y_test)

 if np.array(CM)[0][1]/137 >= 0.50 and np.array(CM)[0][2]/85306 >=

0.50:

 ListItems.append([ind, np.array(CM)[0][1]/137,

np.array(CM)[0][2]/85306])

The ListItems contains a list of hidden layers, true positive and true negative

statistics. The hidden layer highest performance and good balance of class

representation statistics between illegal transactions and legal transactions

were chosen. The number of nearest neighbours was also changed from 5 to

1 (see section 5.1.3).

 Optimization of the SVM model – In the case of the SVM model, the classifier

value was changed from 0 to 0.1 as stipulated in section 4.4.2.

 Optimization of the KNN model – In the case of the KNN model, the number

of nearest neighbors was changed from 5 to 1 as stipulated in section 5.1.3.

 Optimization of the Decision Tree model – for the Decision Tree model, the

training method was changed from entropy criterion to Gini criterion in section

4.4.5.

 Optimization of the Naïve Bayesian model - the predict function of the Naïve

Bayesian class in section 4.4.4 was modified by multiplying the class probability

99

of legal transactions by 0.51 and the class probability of illegal transaction by

0.41 for each transaction. The Naïve Bayesian prediction function was

redefined as follows:

def _predict(self, TestDataInstance):

 probabilities =

self._calculateClassProbabilities(TestDataInstance)

 List, Clas = [], 0

 for classValue, probability in probabilities.items():

 List.append([classValue, probability])

 Prob0 = List[0][1] * 0.51

 Prob1 = List[1][1] * 0.49

 if Prob0 > Prob1:

 Clas = List[0][0]

 else:

 Clas = List[1][0]

 return Clas

The naïve Bayesian function is redefined inside the naïve Bayesian class.

Once all the base models were optimized, the class object were used in combination

with the class properties to re-run the accuracy code and print the true accuracies of

the base models. The true accuracies of the base models are detailed in the following

sub-section.

5.4.1. True Accuracy of Base Models

The python code shown below was used to prints the name and the overall true

accuracy score of the base models. The class object and the class properties were

used to run the accuracy code to print the true accuracies of the base models.

Whereas the X_test refers to the input values of the test data, the y_test refers to the

output values of the test data. The true accuracy of the base model was achieved by

running the following code:

print('Artificial Neural Network: '+str(getAccuracy(Ann_pred,

np.array(y_test))))

print('Support Vector Machine: '+str(getAccuracy(SVM_pred,

np.array(y_test))))

print('K-Nearest Neighbor: '+str(getAccuracy(knn_pred, np.array(y_test))))

print('Decision Tree: '+str(getAccuracy(DT_pred1, np.array(y_test))))

print('Naive Bayesian: '+str(nnNB._getAccuracy(list(y_test), NB_pred)))

Output:

Artificial Neural Network: 95.19562749435296

Support Vector Machine: 72.8637805320506

K-Nearest Neighbor: 92.20650023992604

Decision Tree: 95.18158304366654

100

Naive Bayesian: 96.94065049214096

The Naïve Bayesian method performed extremely well; relative to other base models,

a higher accuracy rate was achieved. The accuracy of the SVM method was far lower

than those of other base models. To check how well the class values of base models

are represented, the confusion matrix is required. The true confusion matrix is

discussed in the sub-section that follows.

5.4.2. True Confusion Matrix

This shows the number of true negative, true positive, false negative, and false positive

transactions, which are defined in section 5.3.2. The confusion matrix function was

used to generate the following confusion matrix shown in Table defined in section 5.3.2

of this study. For the testing of the dataset, the total count of illegal transactions and

the total count of legal transactions of 137 and 85306 were used, respectively.

Table 5.3: True Confusion Matrix.

Model TP TN FP FN

ANN 98 81240 4066 39

SVM 136 62121 23185 1

KNN 126 78658 6648 11

DT 125 84711 595 12

NB 124 82705 2601 13

To give the above confusion matrix more meaning, the confusion matrix statistics is

required. To display the confusion matrix statistics, the confusion matrix statistics

function defined in section 5.3.2 was used. The output of the confusion matrix statistics

is shown in Table 5.4.

101

Table 5.4: True Confusion Matrix Statistics.

Model TP TN FP FN

ANN 0.715328 0.952336 29.678832 0.000457

SVM 0.992701 0.728214 169.233577 0.000012

KNN 0.919708 0.922069 48.525547 0.000129

DT 0.912409 0.993025 4.343066 0.000141

NB 0.905109 0.969510 18.985401 0.000152

The confusion matrix statistics in Table 5.4 shows that the true positive and negative

transactions are well represented. This means that the fraudulent data and non-

fraudulent data instances are well classified. Since the true accuracy of a base model

is the accuracy in which all output classes are well represented, it can be concluded

that the accuracies in section 5.4.2 are true accuracies of base models. The true

accuracies are required to model a stacking ensemble method. Stacking ensemble

method is a classification method that uses more than one classification model for

decision making, and it is discussed in the next section.

5.5. Stacking Ensemble Method

The Stacking Ensemble Method is the final voting of the class values generated by the

base modes defined in section 4.4. The voting class named Voting, which is discussed

in section 4.6, allows base models to vote the final output of each transaction of credit

card data. To run the Voting class code, the class Voting() was used as an object. The

class object contains the class definition called class properties. The

Model_predictions data dictionary that contains predicted class values by the base

models was used for voting of the final class values. The following class object was

used to return a list of predicted output values:

Final_pred = Voting().Vote_Func(np.array(pd.DataFrame(Model_predictions)))

Vote_Func is the class property of Voting class, which returns the list of final prediction

of class values that belongs to credit card transactions. The list of predicted class

values was required to compute the accuracy of stacking ensemble method. The

102

accuracy of the stacking ensemble method that represents the class values of the

dataset well while maintaining or enhancing the performance of the classification

model is essential to gain a confidence in the classifier model. The accuracy of the

stacking ensemble method is discussed in the next sub-section.

5.5.1. Stacking Ensemble Method Accuracy

The stacking ensemble method accuracy was the accuracy that represents the class

values of the dataset well while maintaining or enhancing the performance of the

classifier model. The voting class property of accuracy was getAccuracy which takes

two parameters, namely: the test output values of the dataset named y_test, and the

predicted output of credit card transactions named Final_pred. To display the accuracy

of the stacking ensemble method, the following python code was executed:

Voting().getAccuracy(np.array(y_test), Final_pred).

The output of 99.26500708074389 suggested that the stacking ensemble method was

performing well. However, to determine how well the stacking ensemble method was

performing, the confusion matrix defined in sub-section 5.3.2 was required. The

confusion matrix of stacking ensemble method is discussed in the subsection that

follows.

5.5.2. Confusion Matrix of Stacking Ensemble.

This shows the number of true negative, true positive, false negative, and false positive

transactions. The confusion matrix was discussed in more detail in section 5.3.2. The

function definition of the confusion matrix of Stacking Ensemble Method is defined in

algorithm 20 of section 8.4. The following pseudo-code shows the flow of how the

confusion matrix Method was defined in section 8.4.

Algorithm 20: Confusion Matrix for Stacking Ensemble Method

Input: PredictedClassValues, ClassValues

Output: Confusion Matrix Scores

Begin

1. Pivot = []

2. For each column in columns

3. Column = column value

4. Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN)

5. For ind = 1 to length of the Column

6. IF ClassValue and PredictedClassValue at ind are both equal to 1

7. Then TP += 1

103

8. ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0

9. Then FN += 1

10. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1

11. Then FP += 1

12. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0

13. Then TN += 1

14. Append TP, TN, FP,FN into the Pivot

15. Return Pivot

End of the function

The Model_predictions is the data dictionary that contains predicted class values of

base models that represent the class values well, and y-test is the output values of the

testing dataset. Vote_Func is the class property of Voting class that returns the list of

the final prediction of class values belonging to credit card transactions. The above

confusion matrix function was executed, and the output is given in Table 5.5:

Table 5.5: Confusion Matrix of Stacking Ensemble.

Model TP TN FP FN

Stacking Ensemble 1 84814 478 150

The total number of illegal and legal transactions is 137 and 85306, respectively. The

output of stacking ensemble method confusion matrix shows that the both base

models and stacking ensemble method are performing well. However, to enhance the

understanding of the confusion matrix, the statistics of the confusion matrix was

required. The statistics of the stacking ensemble method confusion matrix is discussed

in the following sub-section.

5.5.3. Confusion Matrix Statistics of Stacking Ensemble.

The statistics function of the stacking ensemble method confusion matrix was

designed to show how well the class values are represented (in a form of percentages)

by the prediction model. The function definition of the confusion matrix stats of

Stacking Ensemble Method is defined in algorithm 21 of section 8.4. The following

pseudo-code shows the flow of how the confusion matrix Method was defined in

section 8.4.

Algorithm 21: Confusion Matrix Stats for Stacking Ensemble Method

104

Input: PredictedClassValues, ClassValues

Output: Confusion Matrix Scores

Begin

1. Pivot = []

2. For each column in columns

3. Column = column value

4. Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN)

5. For ind = 1 to length of the Column

6. IF ClassValue and PredictedClassValue at ind are both equal to 1

7. Then TP += 1

8. ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0

9. Then FN += 1

10. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1

11. Then FP += 1

12. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0

13. Then TN += 1

14. Class0, Class1 = 0, 0

15. For each value in the ClassValue

16. IF value = 0

17. Class0 += 1

18. ELIF value = 1

19. Class1 += 1

20. Append TP/Class1, TN/Class0, FP/Class1,FN/Class0 into the Pivot

21. Return Pivot

End of the function

Whereas the Model_predictions is the data dictionary that contains predicted class

values of base models representing the class values well, and y-test is the output

values of the testing data. The above confusion matrix code was executed, and the

output is displayed in Table 5.6.

Table 5.6: Confusion Matrix Statistics of Stacking Ensemble.

Model TP TN FP FN

Stacking Ensemble 0.006623 0.994396 3.165563 0.001759

While the total number of illegal transactions was found to be 137, and the total number

of legal transactions was 85306. The statistics of the stacking ensemble method

confusion matrix shows how well the class values are represented by the prediction

model. However, a good classification model minimises the count of false negatives

and positives, even when the count of true negatives and positives is good in relation

to the total count of transactions.

Therefore, this research study sought to optimize the stacking ensemble method to

decrease the number of misclassified transaction while enhancing the performance of

105

the stacking ensemble method. The optimization technique that was adopted for this

research study is Differential Evolution Method, which is detailed in the next sub-

section.

5.6. Differential Evolution Method

To run the class code of Differential Evolution Method defined in section 4.8, an object

containing class definition must be defined. The object of the Differential Evolution

Method is defined as DE, and DE contains the set of parameter values of the class

that are passed to the constructor. The code shown below shows how the set of hyper-

parameters that are passed to the class and the Model_proba_df1, which is the Data-

Frame of predicted probabilities of transactions representing the class values well.

TrainDataX = Model_proba_df1

population_size = 100000

Scaling_Factor = 0.9

Max_Iterator = 500

Crossover_Probability = 1.2

random_seed = 25

DE = DifferentialEvolution(TrainDataX,

 population_size,

 Scaling_Factor,

 Max_Iterator,

 Crossover_Probability,

 random_seed)

The object code DE.Best_Population() was used to return the error rate named “Best

Generation” and the best weight solution named “Best Solution”. The output of

DE.Best_Population() is as follows:

Best Generation: 0.9784773967015673

Best Solution: [0.5191182431959512, -0.21487774856187453, 0.600552155776322

6, 0.5496892828208568, 1.384309253288074e-11]

The best solution is the set of weights which are multiplied by the predicted class pro

babilities of each transaction. The logistic function and the optimized threshold of 0.8

38 were used for differential evolution decision making. The accuracy of differential e

volution model was required to determine how the model was performing. Differential

evolution optimization was performing well if the class values of transactions were w

ell represented and high accuracy of the model was preserved. The accuracy of the

differential evolution is discussed in the next sub-section.

106

5.6.1. Differential Evolution Accuracy

The differential evolution accuracy refers to the accuracy in which the class values of

differential evolution prediction model are well represented while maintaining or

enhancing the performance of the model. The accuracy in which the class values of

the classification model are well represented is defined as true accuracy of the model.

To perform the true accuracy of differential evolution model, the class object was

required.

In this research study, the object of the Differential Evolution Method was defined in

section 5.4 as DE. While Model_Probability_df is the data-frame that contains the

predicted class probability of credit card transactions, getPredictions is the function of

differential evolution that returns the list of predicted output classes of credit card

transactions. On the other hand, getAccuracy is also the function of differential

evolution that returns the accuracy of the differential evolution technique. The

accuracy of Differential Evolution Model was achieved by running the following code:

predictions = DE.getPredictions(Model_proba_df1)

DE.getAccuracy(np.array(y_test), predictions)

y_test is the output values of the test data described in the data split function in section

4.1. The true accuracy of Differential Evolution Optimization Model is

99.9133925541004. To check how well the class values of Differential Evolution

Optimization Model were represented, confusion matrix was required, and it is outlined

in the following sub-section.

5.6.2. Differential Evolution Confusion Matrix

This shows the number of true negative, true positive, false negative, and false positive

transactions. The confusion matrix was discussed in great detail in section 5.3.2. The

function definition of the differential evolution confusion matrix Method is defined in

algorithm 22 of section 8.4. The following pseudo-code shows the flow of how the

confusion matrix Method was defined in section 8.4.

Algorithm 22: Confusion Matrix for Differential Evolution Method

107

Input: PredictedClassValues, ClassValues

Output: Confusion Matrix Scores

Begin

1. Pivot = []

2. For each column in columns

3. Column = column value

4. Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN)

5. For ind = 1 to length of the Column

6. IF ClassValue and PredictedClassValue at ind are both equal to 1

7. Then TP += 1

8. ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0

9. Then FN += 1

10. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1

11. Then FP += 1

12. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0

13. Then TN += 1

14. Append TP, TN, FP,FN into the Pivot

15. Return Pivot

End of the function

The Model_proba_df1 refers to the Data-Frame of predicted probabilities of

transactions that represent the class values well. The getPredictions is the property of

DE class object and is used to return the list of predicted class values of credit card

transactions. The Model_proba_df1 Data-Frame, the class object, the getPredictions

class property, and the confusion matrix function shown below were used to display

the differential evolution confusion matrix indicated in Table 5.7.

predictions = DE.getPredictions(Model_proba_df1)

ConfusionMatrixDE(predictions, y_test)

Table 5.7: Differential Evolution Confusion Matrix.

Model TP TN FP FN

Differential Evolution 117 85252 54 20

y_test is the output values of the test data described in section 4.1 under the data split

function. The total count of illegal and legal transactions is 137 and 85306,

respectively. The output Differential Evolution confusion matrix shows that both the

base model and Differential Evolution Optimization Model are performing well. The

class values of the prediction models are well represented and the overall accuracy is

good. To enhance the meaning of the above confusion matrix, the statistics of

confusion matrix was required. For this reason, the statistics of the Differential

Evolution confusion matrix is discussed in the following sub-section.

108

5.6.3. Differential Evolution Confusion Matrix Statistics

In this research study, the differential evolution confusion matrix statistics function was

designed to establish to how well the class values are represented (in a form of

percentages) by the prediction model. The function definition of the differential

evolution confusion matrix statistics Method is defined in algorithm 23 of section 8.4.

The following pseudo-code shows the flow of how the confusion matrix Method was

defined in section 8.4.

Algorithm 23: Confusion Matrix Stats for Differential Evolution Method

Input: PredictedClassValues, ClassValues

Output: Confusion Matrix Scores

Begin

1. Pivot = []

2. For each column in columns

3. Column = column value

4. Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN)

5. For ind = 1 to length of the Column

6. IF ClassValue and PredictedClassValue at ind are both equal to 1

7. Then TP += 1

8. ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0

9. Then FN += 1

10. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1

11. Then FP += 1

12. ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0

13. Then TN += 1

14. Class0, Class1 = 0, 0

15. For each value in the ClassValue

16. IF value = 0

17. Class0 += 1

18. ELIF value = 1

19. Class1 += 1

20. Append TP/Class1, TN/Class0, FP/Class1,FN/Class0 into the Pivot

21. Return Pivot

End of the function

The Data-Frame of predicted probabilities of transactions that represent the class

values well is referred to as the Model_proba_df1. The getPredictions of DE class

object was used to return the list of predicted class values of credit card transactions.

The Model_proba_df1 Data-Frame, the class object, the getPredictions class property,

and the confusion matrix statistics function shown below were used for displaying the

Differential Evolution confusion matrix.

predictions = DE.getPredictions(Model_proba_df1)

ConfusionMatrixStatDE(predictions, y_test)

109

Table 5.8: Differential Evolution Confusion Matrix Statistics.

Model TP TN FP FN

Differential Evolution 0.854015 0.999367 0.394161 0.000234

The output values of the test data (i.e. y_test) was defined in the data split function

described in section 4.1; the total count of illegal transactions is 137 and the total count

of legal transactions is 85306. The output of true differential evolution confusion matrix

statistics shows how well the class values are represented by the prediction model. In

the next subsection, a comparative analysis of the confusion matrix of the Differential

Evolution Optimization Method and the Stacking Ensemble Method is undertaken.

5.7. Differential Evolution Method vs Stacking Ensemble Method

The confusion matrix is explained in details in sub-section 5.3.2. Figure 5.6 shows the

true negative and true positive transactions of the stacking ensemble method and the

classification problem of the differential evolution optimization of stacking ensemble

method.

Figure 5.6: True Positive/Negatives of Stacking Ensemble vs Differential Evolution Methods.

It is clear from Figure 5.6 that the number of true positive transactions (fraudulent

transactions) generated from the stacking ensemble method is exceeded by that of

the true positives generated using the Differential Evolution Optimization of Stacking

Ensemble method. Put differently, the number fraudulent transaction detected by the

differential evolution optimization of Stacking Ensemble classifier is substantially

higher than those of Stacking Ensemble model.

110

The number of true negative transactions (non-fraudulent transactions) of the Stacking

Ensemble method is lower than that of the true negatives of the differential evolution

optimization of stacking ensemble method. This suggest that the number of non-

fraudulent transaction detected using the Differential Evolution Optimization of

Stacking Ensemble classifier are greater than those detected by the Stacking

Ensemble method.

A comparative analysis of the misclassified transactions using the differential evolution

optimization of stacking ensemble classifier and the stacking ensemble classifier is

displayed in Figure 5.7.

Figure 5.7: False Positive/Negatives of Stacking Ensemble vs Differential Evolution Methods.

According Figure 5.7, the number of false positive transactions (misclassified

fraudulent transactions) generated using the Stacking Ensemble method is slightly

higher than the false positives associated with the Differential Evolution Optimization

of Stacking Ensemble method. Relative to the false positive transactions, the

percentage of negative transactions (misclassified non-fraudulent transactions) is

significantly low and therefore not visible.

111

Figure 5.8: False Negatives of Stacking Ensemble vs Differential Evolution Methods.

Figure 5.8 shows the number of false negative transactions (misclassified non-

fraudulent transactions) for the two methods. The number of false negative

transactions generated through the stacking ensemble method is greater than that of

the Differential Evolution Optimization of Stacking Ensemble method.

5.8. Summary

In this chapter, the presentation, the analysis and interpretation of the results of the

research study were put forward. It is found that the differential evolution optimization

of stacking ensemble classifier outperforms the stacking ensemble classifier in terms

of classification and misclassification of credit card fraudulent transactions. The

discussion and conclusion of the findings are explained in chapter 6 of this research

study.

112

6. Chapter 6: Discussion and Conclusion

This last and final chapter of this research study is composed of two sections. Efforts

in the first section are aimed at establishing whether the research questions that were

raised in the first chapter have been addressed. The second section concludes this

research study and recommends the future works to address the limitations of the

study.

6.1. Discussion

The Main Research Question, which was outlined in Chapter 1, was:

 “Is the Differential Evolution optimization method a good approach for

defining the weighting function to predict the outcome of future credit

card fraudulent transactions?”

As indicated in Chapter 5 (Data Analysis), the differential evolution stochastic

optimization method shows that the weighted voting stacking ensemble method, when

used in combination with a differential evolution stochastic optimization method

performed better than the base models.

When used in combination with the differential evolution stochastic optimization

method, the weighted voting stacking ensemble method was able to achieve higher

accuracy for confusion matrix true negative (TN) and true positive (TP) transactions.

The confusion matrix false negative (FN) and false positive (FP) transactions of the

credit card fraud data were, on the other hand, extremely low.

This means that when used in combination with the differential evolution stochastic

optimization method, the weighted voting stacking ensemble method performed very

well without any biasness of the class distribution. Thus, the differential evolution

optimization method is a good approach for defining the weighting function to predict

the outcome of future fraudulent credit card transactions.

The following sub-research questions for addressing the problem statement were

asked:

(a) First Sub-research Question

113

“Does Safe-Level-SMOTE oversampling method (on the minority classes) used

with under-sampling method (that eliminates duplicate data samples on the

majority class) have positive impact on reducing the high skewedness of the

class distribution than SMOTE oversampling method (on the minority classes)

used with the under-sampling method (that also eliminates duplicate data

samples on the class with majority data observations)?”

The SMOTE and the Safe-Level-SMOTE methods were computed with under-

sampling methods that eliminates duplicate data observations and randomly

select the data observations of the class with majority data observations to

balance the class distribution. The SL-SMOTE method actually performed

better than SMOTE. However, the logic behind the mathematical

representation of both the SMOTE and the SL-SMOTE methods was found to

be violating the objective of SMOTE method. For this reason, the modified

SMOTE and the modified SL-SMOTE methods were designed and tested in

this research study.

The modified SMOTE method was found to perform better than the modified

SL-SMOTE method when tested with the credit card dataset used in this

research study. Lastly, it can be concluded that both SMOTE and SL-SMOTE

methods are powerful oversampling methods when used in combination with

majority class data observations that were down-sampled by removing

duplicate data observations and randomly select the data observation to

balance the class distribution. Therefore, it can be concluded that incorrect

computation of an algorithm can cloud the true computing capabilities of an

algorithm.

(b) Second Sub-research Question

“Does Safe-Level-SMOTE oversampling method and the under-sampling

method (that eliminates duplicate data samples on the class of the majority data

observations) reduce or eliminate the problem of overlapping data samples

between fraudulent and non-fraudulent classes?”

114

The Safe-Level-SMOTE oversampling method and the under-sampling method

that eliminates duplicate data samples and randomly select data observations

from the majority class to balance the class distribution did not eliminate the

overlapping data observations since the training dataset was not entirely

separable.

The training dataset was not entirely separable because the SVM that is known

to be wide road separator algorithm did not achieve the 100% accuracy. That

is to say, the SVM method is the wide separator of illegal and legal transactions,

and its inability to separate the two transactions speaks volumes about the

dataset. However, it can be concluded that the overlapping data observations

were reduced since all the base models (machine learning algorithms)

performed well to classify the illegal and legal transactions according to their

respective classes.

(c) Third Sub-research Question

“Does manual stacking of feature selection methods that are diverse on the

PCA transformed features to hide the actual feature names, select enough

good features to solve the problem than just selecting a feature selection

algorithm?”

The manual stacking of feature selection methods that are diverse on the PCA

transformed features performed differently for each of the features. However,

similarities were noted for features that were not adding or adding less value to

the classification problem. The time feature appeared to be adding less value

to the classification problem when computing univariate selection algorithm,

recursive feature elimination algorithm, and feature importance algorithm. For

this reason, the time feature was removed from the dataset.

(d) Fourth Sub-research Question

115

“Does the stacking of the supervised machine learning algorithms have an

impact on predictive accuracy given the under-sampling technique to remove

the duplicate data observations on the majority class, and the Safe-Level-

SMOTE oversampling method?”

The stacking of the supervised machine learning algorithms has proven to

positively impact the predictive accuracy given the under-sampling technique

to remove the duplicate data observations on the majority class, and the Safe-

Level-SMOTE oversampling method. Like the base models (machine learning

methods), the stacking method was found to be extremely biased.

However, the stacking method had fewer false negatives and false positives

compared to the base models. This means that the stacking ensemble method

performed slightly better than the base models. Therefore, the claim about the

majority voting stacking ensemble method not being a good stacking ensemble

method for the credit card dataset as compared to the weighted voting stacking

ensemble method was correct.

(e) Fifth Sub-research Question

“Will the proposed data model for fraud detection efficiently detect credit card

fraudulent activities?”

The proposed method for fraud detection is the weighted voting stacking

ensemble method used in combination with the differential evolution stochastic

optimization method. The proposed data model was tested and evaluated with

the credit card dataset that contained transactions effected in September 2013

by the European cardholders. The dataset was downloaded from the Kaggle

competition data repository (Kaggle, 2018).

The weighted voting stacking ensemble method was designed and used for the

credit card dataset since the base models (machine learning methods) are

different and performs differently. Finding the relevant weights for the base

models has proven to be a challenging task. However, the differential evolution

116

method was employed to search the optimum weights for the weighted voting

stacking ensemble method.

The differential evolution method was able to find the optimum weights for the

weighted voting stacking ensemble method. When used in combination with

differential evolution stochastic optimization method, the weighted voting

stacking ensemble method performed far much better than the base models

(machine learning methods) and the weighted voting stacking ensemble

method. The true negative (TN) and the true positive (TP) transactions of the

confusion matrix were high while the false negative (FN) and the false positive

(FP) transactions were low.

This means that the weighted voting stacking ensemble method with differential

evolution method was able to generalize the data distribution by classifying

fraudulent and non-fraudulent transactions correctly, and the model is not

biased. It can therefore be concluded that the weighted voting stacking

ensemble method in combination with differential evolution stochastic

optimization method was able to classify illegal and legal transactions correctly

and efficiently.

Some researchers have managed to create machine learning methods for addressing

the detection of credit card fraud (Malini & Pushpa 2017, pp. 1 – 4; Ganji 2012, pp. 1

– 5; Das, et al. 2017, pp. 1 – 4; Manjaramkar & Kokare 2017, pp. 1 – 4; Liu, et al. 2017,

pp. 1 – 6; Mao, et al. 2017, pp. 1 - 8). However, their approach involves the individual

use of the machine learning methods and a comparison of the output accuracies. It is

argued in this research study that one machine learning method cannot, regardless of

its computational power, be used to solve problems in all the cases. This argument is

supported by the No-Free-Lunch (NFL) theorem, which states that there is no machine

learning method that can achieve the best performance for all measures in every given

application (Macready & Wolpert 1996, pp. 67 - 82).

The argument presented is this study is based on the fact that credit card fraudsters

continue to upskill themselves with skills that allow them to bypass the powerful

machine learning algorithms used in banks, and fraudsters exploit the loopholes

present in every algorithm to their own benefit. Therefore, the creation of a detection

117

method that overcomes the loopholes found in the individual machine learning

methods is seen as the best way for reducing or eliminating malicious activities

associated with credit card fraud.

The approach adopted in this research study for combating credit card fraud was

different. Various machine learning algorithms that performs differently were chosen.

Various machine learning methods were chosen with the aim to cover the search

space of the problem. However, the method to guide the researchers in terms of the

machine learning methods being various enough to cover the search space of the

problem is unknown and was not designed in this study. Various machine learning

models were chosen to weight vote the final output of each transaction of the dataset.

The voting of the machine learning models was designed to solve the problem of weak

classifier models given a credit card transaction.

Since various machine learning method produced different prediction probability for

each transaction, the weights for each voting machine learning model were used.

However, to get the optimum weights for the machine learning techniques, it was

necessary that the differential evolution method was used. The study has

demonstrated that the differential evolution method is a good optimizer of weights for

the machine learning models to vote the final output class of the credit card

transactions.

6.2. Conclusions

The Main Research Question, which was outlined in Chapter 1, was: To obtain

optimum data analytics algorithms that performs data insights to reveal fraudulent data

patterns in order to prevent future fraudulent transactions. Dataset available from

Kaggle machine learning competitions data repository (Kaggle, 2018) was used for

addressing the objectives of the research study. This publicly available Kaggle

repository data contained credit card dataset transactions made during September

2013 by European cardholders and was consisted of a total of 284 807 transactions,

of which 0.172% (492) were illegal.

The Safe-Level SMOTE method was used for oversampling the fraudulent

transactions while the duplicates were removed and random sampling was performed

to non-fraudulent transactions to balance the class distribution. The feature selection

118

methods such as univariate selection algorithm, recursive feature elimination

algorithm, and feature importance algorithm were stacked and majority voting was

performed to vote out the feature(s) that did not add value to the decision making of

the base models.

The weaknesses of the widely used, popular, and powerful base models selected for

the detection of credit card malicious activities was examined through the designing,

testing, and evaluation processes. An evaluation of the base models using the

confusion matrix revealed that the performance expectancies of the base models were

different and each base model performed well in specific areas or behaviours of the

dataset. Furthermore, the data observations were different in nature, and their

differences creates further research opportunities in areas of the credit card data

whereby the individual base models are unable to detect fraudulent behaviours.

Various machine learning methods that perform differently and target various areas of

the credit card data observations cover almost the entire search space of credit card

data observations. To encourage proper credit card fraud detection or management

system, financial institutions must design an environment that enables the adoption of

weighted stacking ensemble methods with relevant base model weights to address

the problem of credit card fraud.

In this research study, it is proposed that the weighted stacking ensemble method with

differential evolution stochastic optimization model is suitable for the issue of illegal

activities associated with credit card fraud. The DE approach produced better results

because it can be easily applied on a variety of real valued problems where the feature

vector space is multi-dimensional and where noise exist in the dataset. The noise was

corrected by correcting the crossover vectors with values which are less than the lower

bound and values which are more than the upper bound of the search space. Another

important point why DE produced better results the hyper-parameters (CR and F) do

not require the same fine tuning unlike in many other Evolutionary Algorithms where

the same hyper-parameter fine tuning is required. This helps vectors in DE to evolve

and converge towards the optimum weights of the stacking ensemble method.

The proposed model, which was evaluated using the confusion matrix, was found to

perform better than the base models in terms of accuracy. Furthermore, the model

was found to cover almost the entire search space of the credit card transactions.

119

However, it is noteworthy that the proposed model has its own limitations. Specifically,

the framework for guiding the study in terms of the selection for stacking ensemble

method of the base models covering the entire search space of the credit card data

observations was not addressed.

It is recommended that future works should include the implementation of the

framework to guide the financial institutions in terms of selection for stacking ensemble

method of the base models that covers the entire search space of the credit card data

observations. The framework should be flexible enough to cater for all types of credit

card datasets.

120

7. References

Ahluwalia, S. & Mahajan, P., 2011. Implications of new privacy and data protection rules.

[Online]

Available at: http://www.internationallawoffice.com/Newsletters/Banking/India/Amarchand-

Mangaldas-Suresh-A-Shroff-Co/Implications-of-new-privacy-and-data-protection-rules

[Accessed 19 August 2011].

Ali, S., Tirumala, S. S. & Sarrafzadeh, A., 2015. Ensemble learning methods for decision

making: Status and future prospects. 2015 International Conference on Machine Learning

and Cybernetics (ICMLC), pp. 211 - 216.

Altayar, M. & Almoqren, N., 2016. The motivations for big data mining technologies adoption

in saudi banks. 4th Saudi International Conference on Information Technology (Big Data

Analysis) (KACSTIT), pp. 1 - 8.

Anbarasi, M. & Dhivya, S., 2017. Fraud Detection using Oulier predictor in health insurance

Data. INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION &

EMBEDDED SYSTEMS, pp. 1 - 6.

Andel, M. et al., 2015. Sparse Omics-network Regularization to Increase Interpretability and

Performance of Linear Classification Models. IEEE International Conference on

Bioinformatics and Biomedicine, pp. 1 - 6.

Anderson, R., 2017. 'Petroleum Analytics Learning Machine’ For Optimizing the Internet of

Things Of Today’s Digital Oil Field-To-Refinery Petroleum System. IEEE International

Conference on Big Data (BIGDATA), pp. 1 - 4.

Andrew, N., 2017. Machine Learning. [Online]

Available at: https://www.coursera.org/learn/machine-learning

Andropov, S., Guirik, A., Budko, M. & Budko, M., 2017. Network Anomaly Detection 8sing

Artificial Neural Networks. 20th Conference of Open Innovations Association, pp. 1 - 6.

Arief, H., Saptawati, G. & Asnar, Y., 2016. Fraud detection based-on data mining on

Indonesian E-Procurement System (SPSE). International Conference on Data and Software

Engineering (ICoDSE), pp. 1 - 6.

Babu, B. & Rajeshwari, U., 2016. Real-time credit card fraud detection using Streaming

Analytics. 2nd International Conference on Applied and Theoretical Computing and

Communication Technology (iCATccT), pp. 439 - 444.

121

Babu, S., Vasavi, S. & Nagarjuna, K., 2017. Framework for Predictive Analytics as a Service

using ensemble model. IEEE 7th International Advance Computing Conference, pp. 121 -

128.

Ball, G. & Flamm, B., 1996. 1960's Sowing the seeds of the calculator revolution. [Online]

Available at: http://www.vintagecalculators.com/html/history_of_electronic_calculat.html

Bardwell, L. & Fearnhead, P., 2017. Bayesian detection of abnormal segments in multiple

time series. international society of bayesian analysis, Volume 12, pp. 193-218.

Basha, S., Sahlol, A., Baz, S. & Hassanien, A., 2017. Neutrosophic Rule-based prediction

system for assessment of pollution on benthic foraminifera in burullus Lagoon in egypt. 12th

International Conference on Computer Engineering and Systems (ICCES), pp. 1 - 6.

Basheer, I. & Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing,

design, and application. Journal of Microbiological Methods, pp. 1 - 29.

Behadada, O. et al., 2016. Logistic Regression Multinomial for Arrhythmia Detection. IEEE

1st International Workshops on Foundations and Applications of Self-Systems, pp. 1 - 5.

Bouteldja, M. A. & Batouche, M., 2017. A study on Differential Evolution and Cellular

Differential Evolution for multilevel color image segmentation. 2017 Intelligent Systems and

Computer Vision (ISCV), pp. 1 - 8.

Brest, J. et al., 2006. Self-Adapting Control Parameters in Differential Evolution: A

Comparative Study on Numerical Benchmark Problems.. IEEE Transactions on Evolutionary

Computation, pp. 646 - 657.

Brownlee, J., 2016. Supervised and Unsupervised Machine Learning Algorithms. [Online]

Available at: https://machinelearningmastery.com/supervised-and-unsupervised-machine-

learning-algorithms/

Bunkhumpornpat, C., Sinapiromsaran, K. & Lursinsap, C., 2009. Safe-Level-SMOTE: Safe-

Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced

Problem. Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 475 - 482.

Bunkhumpornpat, C., Sinapiromsaran, K. & Lursinsap, C., 2011. MUTE: Majority under-

sampling technique. 2011 8th International Conference on Information, Communications &

Signal Processing, pp. 1 - 4.

Bunkhumpornpat, C. & Subpaiboonkit, S., 2013. Safe level graph for synthetic minority over-

sampling techniques. 2013 13th International Symposium on Communications and

Information Technologies (ISCIT), pp. 570 - 575.

122

Calma, A. et al., 2016. From Active Learning to Dedicated Collaborative Interactive Learning.

International Conference on Architecture of Computing Systems, pp. 1 - 8.

Cao, M. & Guo, C., 2017. Research on the Improvement of Association Rule Algorithm for

Power Monitoring Data Mining. 10th International Symposium on Computational Intelligence

and Design, pp. 1-4.

Chaaya, G. & Maalouf, H., 2017. Anomaly Detection on a Real-Time Server Using Decision

Trees. 8th International Conference on Information Technology, pp. 1 - 7.

Chase, M., 2018. The state of data management in the public sector in 2018. [Online]

Available at: https://www.edq.com/blog/the-state-of-data-management-in-the-public-sector-

in-2018/

Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P., 2002. SMOTE: Synthetic

Minority Over-sampling Technique. Journal of Artificial Intelligence Research, pp. 321 - 357.

Cheng, C., Xu, W. & Wang, J., 2012. A Comparison of Ensemble Methods in Financial

Market Prediction. 2012 Fifth International Joint Conference on Computational Sciences and

Optimization, pp. 755 - 759.

Chezian, R. & Devi., C., 2016. A Relative Evaluation of the Performance of Ensemble

Learning in Credit Scoring. IEEE International Conference on Advances in Computer

Applications (ICACA), pp. 161 - 165.

Cui, B. et al., 2018. Superpixel-Based Extended Random Walker for Hyperspectral Image

Classification. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pp. 1 -

11.

Dalvi, P. T. & Vernekar, N., 2016. Anemia detection using ensemble learning techniques and

statistical models. 2016 IEEE International Conference on Recent Trends in Electronics,

Information & Communication Technology (RTEICT), pp. 1747 - 1751.

Das, T., Tripathy, A. & Mishra, A., 2017. Optical Character Recognition using Artificial Neural

Network. International Conference on Computer Communication and Informatic, pp. 1 - 4.

Dehghan, A. et al., 2017. Predicting Likelihood of Requirement Implementation within the

Planned Iteration: An Empirical Study at IBM. 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR), pp. 124 - 134.

Ding, L., Sun, Y. & Xiong, Z., 2017. Early Chatter Detection based on Logistic Regression

with Time and Frequency Domain Features. IEEE International Conference on Advanced

Intelligent Mechatronics, pp. 1 - 6.

123

Domingo, B., Ponnambalam, S. & Kanagaraj, G., 2013. A Differential Evolution Based

Algorithm for Single Container Loading Problem. 2013 IEEE Symposium on Differential

Evolution (SDE), pp. 105 - 111.

Eurofinas & ACCIS, 2011. Fraud Prevention and Data Protection, s.l.: Eurofinas.

Flood, D., Jagadish, H. & Raschid, L., 2016. Big data challenges and opportunities in

financial stability monitoring. Banque de France, Financial Stability Review, pp. pp. 1-20.

Funaki, R. & Takagi, H., 2011. Application of Gravity Vectors and Moving Vectors for the

Acceleration of both Differential Evolution and Interactive Differential Evolution. 2011 Fifth

International Conference on Genetic and Evolutionary Computing, pp. 287 - 290.

Ganji, V., 2012. Credit card fraud detection using anti-k nearest neighbor algorithm.

International Journal on Computer Science and Engineering, pp. 1 - 5.

Gestel, T. et al., 2011. Financial Time Series Prediction Using Least Squares Support Vector

Machines Within the Evidence Framework. IEEE TRANSACTIONS ON NEURAL

NETWORKS, pp. 1 - 13.

Giannakis, G., 2018. Sketched Subspace Clustering. IEEE TRANSACTIONS ON SIGNAL

PROCESSING, Volume 66, pp. 1- 13.

Godase, A. & Attar, V., 2012. Classification of data streams with skewed distribution. IEEE

Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1 - 6.

Gomes, F. et al., 2016. Heuristic Regression Method for Descriptive Data Analysis. IEEE

16th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1-5.

Gosain, A. & Sardana, S., 2017. Handling class imbalance problem using oversampling

techniques: A review. 2017 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 79 - 85.

Gosain, A. & Sardana, S., 2017. Handling Class Imbalance Problem using Oversampling

Techniques: A Review. 2017 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), pp. 79 - 85.

Goudos, S. K. et al., 2016. Optimization of Power Consumption in Wireless Access

Networks Using Differential Evolution with Eigenvector Based Crossover Operator. 2016

10th European Conference on Antennas and Propagation (EuCAP), pp. 1 - 4.

Government, G., 2013. Act No.4 of 2013: Protection of Personal Information Act. 26

Novermber, pp. pp.1-149.

124

Grace, E., Rai, A. & Redmiles, E., 2016. Detecting Fraud, Corruption, and Collusion in

International Development Contracts: The Design of a Proof-of-Concept Automated System.

IEEE International Conference on Big Data (Big Data), pp. pp.1-10.

Gunasekaran, A. et al., 2017. Big data and predictive analytics for supply chain and

organizational performance. Journal of Business Research, Volume 70, pp. 308-317.

Guo, X., Yin, Y., Zhou, G. & Dong, C., 2008. Solving Cross-selling Problems with Ensemble

Learning: A Case Study. International Conference on Advanced Computer Theory and

Engineering, pp. pp.1-6.

Guoying, Z. & Wenge, L., 2010. Evaluation of China's Oil Security Based on Support Vector

Machine（SVM Theory. International Conference of Information Science and Management

Engineerin, pp. 1 - 4.

Haneem, F., Ali, R., Kama, N. & Basri, S., 2017. Descriptive Analysis and Text Analysis in

Systematic Literature Review: A review of Master Data Management. International

Conference on Research and Innovation in Information Systems (ICRIIS), pp. 1-6.

Han, X., Xu, L., Ren, M. & Gu, W., 2015. A Naive Bayesian network intrusion detection

algorithm based on Principal Component Analysis. 7th International Conference on

Information Technology in Medicine and Education, pp. 1 - 4.

Hoffman, C., 2017. How Credit Card Skimmers Work, and How to Spot Them. [Online]

Available at: https://www.howtogeek.com/193958/atm-skimmers-explained-how-to-protect-

your-atm-card/

Hsu, C.-M. & Chao, H.-M., 2007. An Online Fraud-Resistant Technology for Credit Card E-

Transactions. IEEE Region 10 Conference, pp. 1 - 4.

Hui, S. & Suganthan, P. N., 2013. Ensemble Crowding Differential Evolution with

Neighborhood Mutation for Multimodal Optimization. 2013 IEEE Symposium on Differential

Evolution (SDE), pp. 135 - 142.

Infromatica, 2017. Informatica. [Online]

Available at: https://www.informatica.com/services-and-training/glossary-of-terms/data-

preparation-definition.html#fbid=LbxGDp-7XKa

Jensen, N. et al., 2015. A ScalablevPrescriptive Parallel Debugging Model. IEEE 29th

International Parallel and Distributed Processing Symposium, pp. 1 - 11.

125

Jia, O. et al., 2017. Joint Sparse Auto-encoder: A Semi-supervised Spatio-temporal

Approach in Mapping Large-scale Croplands. IEEE International Conference on Big Data,

pp. 1 - 10.

John, S. et al., 2016. Realtime fraud detection in the banking sector using data mining

techniques/algorithm. International Conference on Computational Science and

Computational Intelligence, pp. 1186 - 1191.

kaggle, 2018. Kaggle dataset. [Online]

Available at: https://www.kaggle.com/datasets

Kalajac, E., Karabegović, A. & Ponjavić, M., 2018. Optimization of the structures locations

using a genetic algorithm in the transmission line design. 2018 41st International Convention

on Information and Communication Technology, Electronics and Microelectronics (MIPRO),

pp. 883 - 886.

Kamal, A., Zhu, X., Pandya, A. & Hsu, S., 2009. Feature Selection with Biased Sample

Distributions. IEEE International Conference on Information Reuse & Integration, pp. 1 - 6.

kareem, S., Ahmad, R. & Sarlan, A., 2017. Framework for the Identification of Fraudulent

Health Insurance Claims using Association Rule Mining. IEEE Conference on Big Data and

Analytic, pp. 1 - 6.

Katkar, V. & Kulkarni, S., 2013. Experiments on Detection of Denial of Service Attacks using

Naive Bayesian Classifier. International Conference on Green Computing, Communication

and Conservation of Energy (ICGCE), pp. 1 - 6.

Keith, F., 2017. A Brief History of Big Data. [Online]

Available at: http://www.dataversity.net/brief-history-big-data/

Kho, J. & Vea, L., 2017. Credit card fraud detection based on transaction behavior. IEEE

Region 10 Conference, pp. 1 - 5.

Khoshgoftaar, T., Allen, E. & Deng, J., 2001. Controlling Overfitting in Software Quality

Models: Experiments with Regression Trees and Classification. Proceedings Seventh

International Software Metrics Symposium, pp. 1 - 9.

Legal_Information_Institute, n.d. Credit Card Fraud. [Online]

Available at: https://www.law.cornell.edu/wex/credit_card_fraud

Li, M., Liu, W. & Li, H., 2018. Probabilistic Regularized Extreme Learning Machine for

Robust Modeling of Noise Data. IEEE TRANSACTIONS ON CYBERNETICS, pp. 1 - 10.

126

Li, R. & Wang, X., 2017. Self-adaptive weighted majority vote algorithm based on entropy.

2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 73 - 77.

Lita, I., Visan, D., Oprea, S. & Cioc, B., 2007. Hardware Design for Noise Reduction in Data

Acquisition Modules. 30th International Spring Seminar on Electronics Technology, pp. 1 - 5.

Liu, H. & Dash, M., 1997. Feature Selection for Classification. Intelligent Data Analysis, 1(3),

pp. 131-156.

Liu, R. et al., 2018. An Ensemble of Classifiers Based on Positive and Unlabeled Data in

One-Class Remote Sensing Classification. IEEE JOURNAL OF SELECTED TOPICS IN

APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, pp. 1 - 13.

Liu, X., Wei, W. & Yu, F., 2007. SVM Theory and Its Application in Fault Diagnosis of HVDC

System. Third International Conference on Natural Computation, 2007. ICNC 2007, pp. 1 - 5.

Liu, Y. & Khoshgoftaar, T., 2004. Reducing overfitting in genetic programming models for

software quality classification. Eighth IEEE International Symposium on High Assurance

Systems Engineering, 2004. Proceedings., pp. 1 - 10.

Liu, Y. et al., 2017. On Over-Exposed Region Detection with Regularized Logistic

Regression. 10th International Conference on Ubi-media Computing and Workshop, pp. 1 -

6.

Li, X., Chang, W., Zhou, S. & Wei, F., 2017. The Panel Data Predictive Model for

Recurrence of Cerebral Infarction with Health Care Data Analysis. IEEE International

Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1 - 6.

Ll, L., Huang, D. & Wang, M., 2011. Protein-Protein Interaction Extraction Based on

Ensemble Kernel Model and Active Learning Strategy. 7th International Conference on

Natural Language Processing and Knowledge Engineering, pp. 1 - 6.

Macready, W. & Wolpert, D., 1996. No free lunch theorems for optimization. IEEE

transactions on evolutionary computation, pp. 67 - 82.

Madathil, D., Pandi, V. R., Ilango, K. & Nair, M. G., 2017. Differential evolution based energy

management system for zero net energy building. 2017 International Conference on

Technological Advancements in Power and Energy (TAP Energy), pp. 1 - 5.

Mak, L., Ng, G., Lim, G. & Mao, K., 2011. A merging Fuzzy ART clustering algorithm for

overlapping data. IEEE Symposium on Foundations of Computational Intelligence (FOCI),

pp. 1 - 6.

127

Malini, N. & Pushpa, M., 2017. Analysis on Credit Card Fraud Identification Techniques

based on KNN and Outlier Detection. 3rd International Conference on Advances in

Electrical, Electronics, Information, Communication and Bio-Informatics, pp. 1 - 4.

Manjaramkar, A. & Kokare, M., 2017. Decision Trees for Microaneurysms Detection In Color

Fundus Images. IEEE International Conference on Innovations in Green Energy and

Healthcare Technologies, pp. 1 - 4.

Mao, X., Wang, Y., Liu, X. & Guo, Y., 2017. A Hybrid Feedforward-feedback Hysteresis

Compensator in Piezoelectric Actuators Based on Least Squares Support Vector Machine.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, pp. 1 - 8.

Matsuda, K. & Murase, K., 2016. Single-Layered Complex-Valued Neural Network with

SMOTE for Imbalanced Data Classification. 2016 Joint 8th International Conference on Soft

Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced

Intelligent Systems (ISIS), pp. 349 - 354.

Meidianingsih, Q., Erfiani & Sartono, B., 2017. Study of Safe-Level SMOTE Method in

Unbalanced Data Classification Cases. International Journal of Scientific & Engineering

Research Volume 8, Issue 5, May-2017 , pp. 1167 - 1171.

Meiping, X., 2009. Application of Bayesian Rules Based on Improved K-Means Cassification

on Credit Card. International Conference on Web Information Systems and Mining, pp. 1 - 4.

Mei, X. & Jiang, Y., 2016. Association Rule-based Feature Selection for Credit Risk

Assessment. 2016 IEEE International Conference of Online Analysis and Computing

Science (ICOACS), pp. 301 - 305.

Mei, X. & Jiang, Y., 2016. Association Rule-based Feature Selection for Credit Risk

Assessment. IEEE International Conference of Online Analysis and Computing Science

(ICOACS), pp. 301 - 305.

Miholca, D. & Onicaş, A., 2017. Detecting depression from fMRI using Relational Association

Rules and Artificial Neural Networks. 13th IEEE International Conference on Intelligent

Computer Communication and Processing (ICCP), pp. 1 - 8.

Mitik, M. et al., 2016. Data Mining based Product Marketing Technique for Banking Products.

IEEE 16th International Conference on Data Mining Workshops, pp. 552 - 559.

Mitik, M. et al., 2016. Data Mining based Product Marketing Technique for Banking Products.

2016 IEEE 16th International Conference on Data Mining Workshops, pp. 552 - 559.

128

Monk, A., 2016. Practical Applications of How Technology Will Change the Business of

Investing. 69th CFA Institute Annual Conference, pp. pp. 1-3.

Munar, A., Chiner, E. & Sales, I., 2014. A Big Data Financial Information Management

Architecture for Global Banking. International Conference on Future Internet of Things and

Cloud, pp. 1-4.

Mu, X., Watta, P. & Hassoun, M., 2005. Combining local similarity measures: summing,

voting, and weighted voting. 2005 IEEE International Conference on Systems, Man and

Cybernetics, Volume 3, pp. 2661 - 2666.

Nizar, A. H., Dong, Z. Y. & Zhang, P., 2008. Detection Rules for Non Technical Losses

Analysis in Power Utilities. 2008 IEEE Power and Energy Society General Meeting -

Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1 - 8.

Nyikes, Z. & Rajnai, Z., 2015. Big Data, As Part of the Critical Infrastructure. IEEE 13th

International Symposium on Intelligent Systems and Informatic, pp. 217 - 222.

Pang, S., He, Y. & Wang, L., 2016. The Intelligent Control Model and Application for

Commercial Bank Systems Emergence under Risk Status Based on Big Data. 12th

International Conference on Computational Intelligence and Security, pp. 1-5.

Patil, A. & Gupta, P., 2017. A Review on Up-growth algorithm using Association Rule mining.

International Conference on Computing Methodologies and Communication, pp. 1-4.

Patwardhan, R., 2016. Data Analytics: Which one is correct for me – Descriptive, Predictive,

or Prescriptive?. [Online]

Available at: http://www.rtap.io/blog/data-analytics-which-one-is-correct-for-me-descriptive-

predictive-or-prescriptive/

[Accessed 09 06 2016].

Pavlyshenko, B., 2016. Machine Learning, Linear and Bayesian Models for Logistic

Regression in Failure Detection Problems. IEEE International Conference on Big Data, pp. 1

- 5.

Pengfei, J., Chunkai, Z. & Zhenyu, H., 2014. A new sampling approach for classification of

imbalanced data sets with high density. 2014 International Conference on Big Data and

Smart Computing (BIGCOMP), pp. 217 - 222.

Peng, Y. et al., 2017. Negative ε Dragging Technique for Pattern Classification. IEEE

Access, pp. 1 - 7.

129

Pushpa, M. & Malini, N., 2017. Analysis on Credit Card Fraud Identification Techniques

based on KNN and Outlier Detection. 3rd International Conference on Advances in

Electrical, Electronics, Information, Communication and Bio-Informatics (AEEEICB17), pp.

255 - 258.

Pushpa, M. & Malini, N., 2017. Analysis on Credit Card Fraud Identification Techniques

based on KNN and Outlier Detection. 3rd International Conference on Advances in

Electrical, Electronics, Information, Communication and Bio-Informatics (AEEEICB17), pp.

255 - 258.

Queiroz, J., Leitão, P. & Dias, A., 2016. Predictive data analysis driven multi-agent system

approach for electrical micro grids management. IEEE 25th International Symposium on

Industrial Electronics (ISIE), pp. 1 - 6.

Rajaei, R., Shafai, B. & Ramezani, A., 2017. A top-down scheme of descriptive time series

data analysis for healthy life. IEEE High Performance Extreme Computing Conference

(HPEC), pp. 1 - 6.

Rajak, I. & Mathai, K., 2015. Intelligent Fraudulent Detection System Based SVM And

Optimized By Danger Theory. IEEE International Conference on Computer, Communication

and Control, pp. 1 - 4.

Reddy, R., Ramadevi, Y. & Sunitha, K., 2017. Enhanced Anomaly Detection using ensemble

support vector machine.. InternationalConference On Big Data Analytics and

computationalIntelligence, pp. 1 - 5.

Rijmenam, M., 2017. The Future of Big Data? Three Use Cases of Prescriptive Analytics.

[Online]

Available at: https://www.linkedin.com/pulse/future-big-data-three-use-cases-prescriptive-

mark-van-rijmenam

Rout, S., Mishra, S. & Mishra, S., 2017. A review on application of artificial neural

network(ANN) on protein secondary structure prediction. Second International Conference

on Electrical, Computer and Communication Technologies (ICECCT), pp. 1 - 6.

Rushin, G. et al., 2017. Horse Race Analysis in Credit Card Fraud—Deep Learning, Logistic

Regression, and Gradient Boosted Tree. Systems and Information Engineering Design

Symposium (SIEDS), pp. 117 - 121.

Salazar, A., Safont, G. & Vergara, L., 2014. Surrogate techniques for testing fraud detection

algorithms in credit card operations. International Carnahan Conference on Security

Technology (ICCST), pp. 1 - 6.

130

Silva, L. & Wunsch, D., 2017. Validity index-based vigilance test in adaptive resonance

theory neural networks. IEEE Symposium Series on Computational Intelligence (SSCI), pp.

1 - 8.

Singh, P., Jain, N. & Maini, A., 2015. Investigating the Effect Of Feature Selection and

Dimensionality Reduction On Phishing Website Classification Problem. IEEE International

Conference on Advances in Computer Applications (ICACA), pp. 388 - 393.

Singh, P., Jain, N. & Maini, A., 2015. Investigating the Effect Of Feature Selection and

Dimensionality Reduction On Phishing Website Classification Problem. 2015 1st

International Conference on Next Generation Computing Technologies (NGCT), pp. 388 -

393.

Smolyakov, V., 2017. Ensemble Learning to Improve Machine Learning Results. [Online]

Available at: https://blog.statsbot.co/ensemble-learning-d1dcd548e936

Somasundaram, A. & Reddy, U., 2017. Modelling a Stable Classifier for Handling Large

Scale Data with Noise and Imbalance. International Conference on Computational

Intelligence in Data Science, pp. 1 - 6.

Srinivas, V. S., Srikrishna, A. & Reddy, B. E., 2018. Automatic Feature Subset Selection for

Clustering Images using Differential Evolution. 2018 IEEE Conference on Multimedia

Information Processing and Retrieval (MIPR), pp. 216 - 217.

Srivastava, A. et al., 2016. Credit Card Fraud Detection at Merchant Side using Neural

Networks. 3rd International Conference on Computing for Sustainable Global Development

(INDIACom), pp. 1 - 4.

Staff, W., 2017. The biggest types of credit card fraud in South Africa. [Online]

Available at: https://businesstech.co.za/news/banking/172249/the-biggest-types-of-credit-

card-fraud-in-south-africa/

TCI, 2015. Driving profitable growth through improved data insights and segmentation

practices for the future customer and digital bank. Indaba Hotel⁃Sandton, Trade

Conferences International, pp. pp. 1-7.

Todd, D. & Harvey, M., 2015. Automated Feature Design for Numeric Sequence

Classification by Genetic Programming. IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, 19(4), pp. 474 - 489.

131

Toporek, D., Power, G. & Hutchings, A., 2011. Making Fault Data and Non-SCADA Data

Accessible for Predictive Analysis in Data Historians. IEEE Power and Energy Society

General Meeting, pp. 1 - 4.

Trelewicz, J., 2017. Big Data and Big Money - The Role of Data in the Financial Sector.

IEEE Computer Society, pp. 1 - 3.

Verma, A. & Mehta, S., 2017. A comparative study of ensemble learning methods for

classification in bioinformatics. 2017 7th International Conference on Cloud Computing, Data

Science & Engineering - Confluence, pp. 155 - 158.

Vipani, R., Hore, S., Basak, S. & Dutta, S., 2017. Detection of Epilepsy using Hilbert

Transform and KNN Based Classifier. IEEE International Conference on Smart Technologies

and Management for Computing, Communication, Controls, Energy and Materials, pp. 1 - 5.

Wang, G. et al., 2010. Predicting credit card holder churn in banks of China using data

mining and MCDM. IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology, pp. 215 - 218.

Wang, J. et al., 2017. From Partition-Based Clustering to Density-Based Clustering: Fast

Find Clusters With Diverse Shapes and Densities in Spatial Databases. IEEE Access, pp. 1 -

12.

Wang, T., Fang, C. V. & Chun-Ming Lai, S. W., 2015. Triaging Anomalies in Dynamic

Graphs: Towards Reducing False Positives. 2015 IEEE International Conference on Smart

City/SocialCom/SustainCom together with DataCom 2015 and SC2 2015, pp. 354 - 359.

Wang, X., NiBai, Y., Zhang, R. & Wei, X., 2017. The Research of Entertainers Collaboration

Relation Based On Association Rules. 10th International Symposium on Computational

Intelligence and Desig, pp. 1-4.

Wang, Y. & Hajli, N., 2017. Exploring the path to big data analytics success in healthcare.

Journal of Business Research, Volume 70, pp. 287-299.

West, J. & Bhattacharya, M., 2016. An Investigation on Experimental Issues in Financial

Fraud Mining. 2016 IEEE 11th Conference on Industrial Electronics and Applications

(ICIEA), pp. 1796 - 1801.

West, J. & Bhattacharya, M., 2016. Some Experimental Issues in Financial Fraud Mining.

The International Conference on Computational Science (ICCS), p. 1734 – 1744.

Woodford, C., 2017. A brief history of computers. [Online]

Available at: http://www.explainthatstuff.com/historyofcomputers.html

132

Woten, D. & Shenawee, M., 2007. Improvement of artificial neural network detection of

breast cancer using broadband dual polarized antenna. IEEE Antennas and Propagation

Society International Symposium, pp. 1 - 4.

Writer_Staff, 2017. The biggest types of credit card fraud in South Africa. [Online]

Available at: https://businesstech.co.za/news/banking/172249/the-biggest-types-of-credit-

card-fraud-in-south-africa/

Writer, S., 2015. Watch out for these card skimming and PIN theft tricks criminals use.

[Online]

Available at: https://mybroadband.co.za/news/banking/128194-watch-out-for-these-card-

skimming-and-pin-theft-tricks-criminals-use.html

Wu, P. & Yang, C., 2017. The Green Fleet Optimization Model for A Low-Carbon Economy:

APrescriptive Analytics. Proceedings of the 2017 IEEE International Conference on Applied

System Innovation, pp. 1 - 4.

Xu, L., Luo, B., Yu, F. & Xie, J., 2011. A novel description of the reproducing kernel support

vector machines. IEEE International Conference on Computer Science and Automation

Engineering, pp. 1 - 5.

Yuan, H., Ding, B. & Sun, Z., 2008. Workflow Exception Forecasting Method Based on SVM

Theory. International Symposium on Computational Intelligence and Design, pp. 1 - 6.

Yu, Y. et al., 2017. A combinatorial clustering method for sequential fraud detection.

International Conference on Service Systems and Service Management, pp. 1 - 6.

Zakerian, A., Maleki, A., Mohammadnian, Y. & Amraee, T., 2017. Bad data detection in state

estimation using Decision Tree technique. 25th Iranian Conference on Electrical

Engineering, pp. 1 - 6.

Zaza, S. & Al-Emran, M., 2015. Mining and Exploration of Credit Cards Data in UAE. Fifth

International Conference on e-Learning, pp. 275 - 279.

Zeager, M. et al., 2017. Adversarial Learning in Credit Card Fraud Detection. Systems and

Information Engineering Design Symposium (SIEDS), pp. 112 - 116.

Zhang, J., Chen, W., Gao, M. & Shen, G., 2017. Mitigating Fiber Nonlinearity Using Support

Vector Machine with Genetic Algorithm. Conference on Lasers and Electro-Optics Pacific

Rim (CLEO-PR), pp. 1 - 3.

Zhdanova, M. et al., 2014. No Smurfs: Revealing Fraud Chains in Mobile Money Transfers.

9th International Conference on Availability, Reliability and Security, pp. 11 - 20.

133

Zhou, P. et al., 2014. A Two-Stage Classification Framework for Imbalanced Data with

Overlapping Labels. Proceedings of 2014 IEEE International Conference on Service

Operations and Logistics, and Informatics, pp. 1 - 6.

Zirpe, S. & Joglekar, B., 2017. Negation Handling using Stacking Ensemble Method. 2017

International Conference on Computing, Communication, Control and Automation

(ICCUBEA), pp. 1 - 5.

Chu, L. et al., 2019. Feature Importance Identification through Bottleneck Reconstruction.

Milan, Italy, Italy, IEEE.

Curtis, J. & Kon, M., 2015. Class Discovery via Bimodal Feature Selection in Unsupervised

Settings. Miami, FL, USA, IEEE.

Drotár, P. & Gazda, J., 2016. Two-Step Feature Selection Methods for Selection of Very

Few Features. IEEE, Dubai, United Arab Emirates, pp. 1-5.

Dutta, D., Paul, D. & Ghosh, P., 2018. Analysing Feature Importances for Diabetes

Prediction using Machine Learning. Vancouver, BC, Canada, IEEE.

Lv, X., Wu, J. & Liu, W., 2014. Face Image Feature Selection Based on Gabor Feature and

Recursive Feature Elimination. Hangzhou, China, IEEE.

Qiu, C. et al., 2018. Feature Importance Analysis of Sentinel-2 Imagery for Large-Scale

Urban Local Climate Zone Classification. Valencia, Spain, IEEE.

Subho, M. R. H. et al., 2019. A Univariate Feature Selection Approach for Finding Key

Factors of Restaurant Business. Kolkata, India, India, IEEE.

Tran, H. D. & Li, H., 2009. Sound event classification based on Feature Integration,

Recursive Feature Elimination and Structured Classification. Taipei, Taiwan, IEEE.

Zeng, X., Chen, Y.-W., Tao, C. & Alphen, D. v., 2009. Feature Selection Using Recursive

Feature Elimination for Handwritten Digit Recognition. Kyoto, Japan, IEEE.

134

8. Appendix

8.1. Ethical Clearance

135

136

8.2. Turnitin Report

137

8.3. Editorial Certificate

138

8.4. Python Source Codes

Algorithm 1: Remove Duplicates in the Training Dataset

def _duplicates(Training_data0):

 Training_data0_df = pd.DataFrame(Training_data0)

 Training_data0_df.drop_duplicates(keep='first', inplace=True)

 Num_removed = len(Training_data0) - len(Training_data0_df)

 return Num_removed, Training_data0_df

Algorithm 2: Random Sampling

def _randomSamples(Training_data0_df):

 reduced = []

 index = []

 for i in range(700):

 ind = np.random.randint(0, len(training_data0_df))

 if ind not in index:

 index.append(ind)

 reduced.append(training_data0_df.iloc[ind])

 else:

 i -= 1

 return reduced

Algorithm 3: Combine Training Dataset without Duplicates with Random Sample

Dataset

def _recombination(training_data , Training_data1):

 randomSamples = pd.DataFrame(_randomSamples(training_data))

 recombination = randomSamples.append(Training_data1)

 return recombination

Algorithm 4: Safe Level SMOTE

def euclidean_distance (x, y):

 return np.sqrt(sum(pow(a-b, 2) for a, b in zip(x , y)))

def _safe_level_smote(recombination):

 New_data = []

 for Pos_instance in [j for j,i in enumerate(np.array(recombination)) if

float(i[-1]) == 1.0]:

 k_distances =

[[euclidean_distance(np.array(recombination)[Pos_instance],

np.array(recombination)[i]), i] for i in range(len(np.array(recombination)))

if i != Pos_instance]

 k_distances.sort(reverse = False)

 k = [np.array(recombination)[j] for j in [i[1] for i in

k_distances[0:5]]]

 n = k.pop(np.random.randint(0,5))

 n_distances = [[euclidean_distance(n, np.array(recombination)[i]),

i] for i in range(len(np.array(recombination)))]

 n_distances.sort(reverse = False)

 n_neighbors = [np.array(recombination)[j] for j in [i[1] for i in

n_distances[1:6]]]

 SLp = len([i for i in k if i[-1] == 1])

139

 SLn = len([i for i in n_neighbors if i[-1] == 1])

 if SLn != 0:

 SL_ratio = SLp/SLn

 else:

 SL_ratio = np.inf

 if SL_ratio == np.inf and SLp == 0:

 continue

 else:

 feature = []

 for i in range(len(np.array(recombination)[0])):

 if SL_ratio == np.inf and SLp != 0:

 gap = 0

 elif SL_ratio == 1:

 gap = np.random.uniform(0, 1)

 elif SL_ratio > 1:

 gap = np.random.uniform(0, 1/SL_ratio)

 elif SL_ratio < 1:

 gap = np.random.uniform(1 - SL_ratio, 1)

 dif = k[0][i] - n_neighbors[0][i]

 feature.append(n_neighbors[0][i] + gap*dif)

 feature[-1] = 1.0

 New_data.append(feature)

 return New_data

Algorithm 5: SMOTE

def _Smote_func(recombination, No_of_neighbours, Percentage):

 No_of_minority=len([i for i in (np.array(recombination)) if float(i[-1])

 == 1.0])

 No_New_instances = int((Percentage / 100) * No_of_minority)

 # Number of attributes excluding the class attribute.

 No_of_attributes = len(np.array(recombination)[0]) - 1

 Sythetic_values = []

 for Pos_instance in [j for j,i in enumerate(np.array(recombination))

 if float(i[-1]) == 1.0]:

k_distances=[[euclidean_distance(np.array(recombination)[Pos_instance

], np.array(recombination)[i]), i]

 for i in range(len(np.array(recombination))) if i != Pos_instance and

 np.array(recombination)[i][-1] == 1.0]

 k_distances.sort(reverse = False)

 nnarray = [np.array(recombination)[j] for j in [i[1] for i in

 k_distances[0:No_of_neighbours]]]

 for newIndex in range(No_New_instances):

 row = []

 nn = np.random.randint(0, No_of_neighbours)

 for attr in range(0, No_of_attributes):

 difference=float(nnarray[nn][attr])-

float(np.array(recombination)[Pos_instance][attr])

 gap = np.random.uniform(0, 1)

 row.append(np.array(recombination)[Pos_instance][attr]+

(difference * gap))

 row.append(float(1.0))

 Sythetic_values.append(row)

 return Sythetic_values

140

Algorithm 6: Modified SMOTE

def _Smote_func_new(recombination, No_of_neighbours, Percentage):

 No_of_minority = len([i for i in (np.array(recombination))

 if float(i[-1]) == 1.0])

 No_New_instances = int((Percentage / 100) * No_of_minority)

 # Number of attributes excluding the class attribute.

 No_of_attributes = len(np.array(recombination)[0]) - 1

 Sythetic_values = []

 for Pos_instance in [j for j,i in enumerate(np.array(recombination))

 if float(i[-1]) == 1.0]:

k_distances=[[euclidean_distance(np.array(recombination)[Pos_instance],

np.array(recombination)[i]), i]

 for i in range(len(np.array(recombination))) if i != Pos_instance and

 np.array(recombination)[i][-1] == 1.0]

 k_distances.sort(reverse = False)

 nnarray = [np.array(recombination)[j] for j in [i[1]

 for i in k_distances[0:No_of_neighbours]]]

 for newIndex in range(No_New_instances):

 row = []

 nn = np.random.randint(0, No_of_neighbours)

 for attr in range(0,No_of_attributes):

 row.append(np.random.uniform(float(nnarray[nn][attr]),

float(np.array(recombination)[Pos_instance][attr])))

 row.append(float(1.0))

 Sythetic_values.append(row)

 return Sythetic_values

Algorithm 7: Modified Safe Level SMOTE

def _safe_level_smote_new(recombination):

 New_data = []

 for Pos_instance in [j for j,i in enumerate(np.array(recombination)) if

float(i[-1]) == 1.0]:

 k_distances =

[[euclidean_distance(np.array(recombination)[Pos_instance],

np.array(recombination)[i]), i]

 for i in range(len(np.array(recombination))) if i !=

Pos_instance]

 k_distances.sort(reverse = False)

 k = [np.array(recombination)[j] for j in [i[1] for i in

k_distances[0:5]]]

 n = k.pop(np.random.randint(0,5))

 n_distances = [[euclidean_distance(n, np.array(recombination)[i]),

i] for i in range(len(np.array(recombination)))]

 n_distances.sort(reverse = False)

141

 n_neighbors = [np.array(recombination)[j] for j in [i[1] for i in

n_distances[1:6]]]

 SLp = len([i for i in k if i[-1] == 1])

 SLn = len([i for i in n_neighbors if i[-1] == 1])

 if SLn != 0:

 SL_ratio = SLp/SLn

 else:

 SL_ratio = np.inf

 if SL_ratio == np.inf and SLp == 0:

 continue

 else:

 feature = []

 for i in range(len(np.array(recombination)[0])):

 if SL_ratio == np.inf and SLp != 0:

 gap = 0

 elif SL_ratio == 1:

 gap = np.random.uniform(0, 1)

 elif SL_ratio > 1:

 gap = np.random.uniform(0, 1/SL_ratio)

 elif SL_ratio < 1:

 gap = np.random.uniform(1 - SL_ratio, 1)

 feature.append(np.random.uniform(k[0][i],

n_neighbors[0][i]))

 feature[-1] = 1.0

 New_data.append(feature)

 return New_data

Algorithm 8: Univariate Selection Method

def Uni_select(Features, Class):

 test = SelectKBest(score_func = f_classif, k = 30)

 fit = test.fit(Features, Class)

 Score = list(fit.scores_)

 Univeriate_Scores = [(b,a)for a, b in zip(Features.columns, Score)]

 Univeriate_Scores.sort(reverse = True)

 return Univeriate_Scores

Algorithm 9: Recursive Feature Elimination Method

def Recursive(Features, Class):

 model = LogisticRegression()

 rfe = RFE(model, 1)

 fit = rfe.fit(Features, Class)

 ranking = fit.ranking_

 Recursive_Scores = [(b,a)for a, b in zip(Features.columns, ranking)]

 Recursive_Scores.sort()

 return Recursive_Scores

Algorithm 10: Feature Importance Method

def Importance(Features, Class):

142

 model = ExtraTreesClassifier()

 model.fit(Features, Class)

 importance = model.feature_importances_

 Importance_Scores = [(b,a)for a, b in zip(Features.columns, importance)]

 Importance_Scores.sort(reverse = True)

 return Importance_Scores

Algorithm 11: Artificial Neural Network (ANN)

Table 8.1: Artificial Neural Network class properties.

Function Name Description

1) _init_weight The function to initialize the weights.

2) _add_bias_unit The function to add the bias unit value

of 1 to the layers of the model.

3) _forward The forward propagation function of the

model.

4) sigmoid_prime The derivative function of logistic

function.

5) _backward The backpropagation function.

6) L2_reg The regularize term function.

7) _error The model’s error function.

8) _backprop_step The function defined to update weights

of the model.

The class of the ANN method is defined as follows:

class NNClassifier():

 #Constructor

 def __init__(self, n_classes, n_features, n_hidden_units=30,

 l1=0.0, l2=0.05, epochs=200, learning_rate=0.01,

 n_batches=1, random_seed=None):

 if random_seed:

 np.random.seed(random_seed)

 self.n_classes = n_classes

 self.n_features = n_features

 self.n_hidden_units = n_hidden_units

 self.w1, self.w2 = self._init_weights()

 self.l1 = l1

 self.l2 = l2

 self.epochs = epochs

 self.learning_rate = learning_rate

 self.n_batches = n_batches

 #Initialize Weights

 def _init_weights(self):

 w1 = np.random.uniform(-1.0, 1.0, size=self.n_hidden_units *

(self.n_features + 1))

 w1 = w1.reshape(self.n_hidden_units, self.n_features + 1)

 w2 = np.random.uniform(-1.0, 1.0, size=self.n_classes *

(self.n_hidden_units + 1))

 w2 = w2.reshape(self.n_classes, self.n_hidden_units + 1)

143

 return w1, w2

 # Adding Bias Terms

 def _add_bias_unit(self, X, how='column'):

 if how == 'column':

 X_new = np.ones((X.shape[0], X.shape[1] + 1))

 X_new[:, 1:] = X

 elif how == 'row':

 X_new = np.ones((X.shape[0] + 1, X.shape[1]))

 X_new[1:, :] = X

 return X_new

 # Sigmoid Fuction

 def sigmoid(self, activation):

 return 1.0 / (1.0 + np.exp(-activation))

 #Forward Feed

 def _forward(self, X):

 net_input = self._add_bias_unit(X, how='column')

 net_hidden = self.w1.dot(net_input.T)

 act_hidden = self.sigmoid(net_hidden)

 act_hidden = self._add_bias_unit(act_hidden, how='row')

 net_out = self.w2.dot(act_hidden)

 act_out = self.sigmoid(net_out)

 return net_input, net_hidden, act_hidden, net_out, act_out

 #Derivative of Sigmoid Function

 def sigmoid_prime(self, output):

 return output * (1.0 - output)

 #Backpropagation

 def _backward(self, net_input, net_hidden, act_hidden, act_out, y):

 y = list(zip(*y))

 sigma3 = act_out - y

 net_hidden = self._add_bias_unit(net_hidden, how='row')

 sigma2 = self.w2.T.dot(sigma3) * self.sigmoid_prime(net_hidden)

 sigma2 = sigma2[1:, :]

 grad1 = sigma2.dot(net_input)

 grad2 = sigma3.dot(act_hidden.T)

 return grad1, grad2

 #Regularizer

 def L2_reg(self, lambd, w1, w2, m):

 return (np.sum(np.square(self.w1)) +

np.sum(np.square(self.w2)))*(lambd/(2*m))

 #Loss/Cost Fuction

 def cross_entropy(self, output, y):

 SumEntropy = 0

 for ind in range(len(y)):

 if y[ind][1] == 1.0:

 SumEntropy += (-np.log(output[1][ind]))

 else:

 SumEntropy += (-np.log(1 - output[0][ind]))

 return SumEntropy

 #Error Rate

 def _error(self, y, output):

144

 L1_term = self.L1_reg(self.l1, self.w1, self.w2, len(y))

 L2_term = self.L2_reg(self.l2, self.w1, self.w2, len(y))

 error = self.cross_entropy(output, y) + L2_term

 return 0.5 * np.mean(error)

 #Updating Weights

 def _backprop_step(self, X, y):

 net_input, net_hidden, act_hidden, net_out, act_out =

self._forward(X)

 grad1, grad2 = self._backward(net_input, net_hidden, act_hidden,

act_out, y)

 grad1[:, 1:] += (self.w1[:, 1:] * (self.l2))

 grad2[:, 1:] += (self.w2[:, 1:] * (self.l2))

 error = self._error(y, act_out)

 return error, grad1, grad2

 #Predictions

 def predict(self, X):

 Xt = X.copy()

 net_input, net_hidden, act_hidden, net_out, act_out =

self._forward(Xt)

 return [np.argmax(ind) for ind in net_out.T]

 #Decision Making Function

 def softmax(self, inputs):

 return np.exp(inputs) / float(sum(np.exp(inputs)))

 #Class Probability Predictions

 def predict_proba(self, X):

 Xt = X.copy()

 net_input, net_hidden, act_hidden, net_out, act_out =

self._forward(Xt)

 return [self.softmax(ind) for ind in net_out.T]

 #Class with Highest Probability

 def probability(self, prediction_list, prediction_proba_list):

 proba = []

 for Index, Value in enumerate(prediction_list):

 proba.append(prediction_proba_list[Index][Value])

 return proba

 #Learn

 def fit(self, X, y):

 y = to_categorical(y, self.n_classes)

 X_data, y_data = X.copy(), y.copy()

 for epoch in range(self.epochs):

 error, grad1, grad2 = self._backprop_step(X_data, y_data)

 self.w1 -= (self.learning_rate * grad1)

 self.w2 -= (self.learning_rate * grad2)

 print('>epoch=%d, error=%.3f'%(epoch, error))

 return self

 # Score

 def score(self, X, y):

 y_hat = self.predict(X)

 return np.sum(y == y_hat, axis=0) / float(X.shape[0])

145

Algorithm 12: Support Vector Machine (SVM)

Table 8.2: Support Vector Machine class properties.

Function Name Description

1) _init_weights The initialization of the weights

2) _add_bias_unit The function to add the bias unit value

of 1 to the layers of the model.

3) _format The function that formats the output

values to float numbers.

4) _predict_proba The function that predicts the class

probability.

5) _predict The function that predicts the output of

the transaction.

6) _score The function to output the score.

7) probability The function to output the class

probabilities.

8) _train The function that allows the model to

learn from historical data

The class of the SVM method is defined as follows:

class Support_Vaector_Machine():

 #Constructor

 def __init__(self, n_classes, n_features, learning_rate=0.01,

 epochs = 100, random_seed=None):

 if random_seed:

 np.random.seed(random_seed)

 self.n_classes = n_classes

 self.n_features = n_features

 self.learning_rate = learning_rate

 self.epochs = epochs

 self.W = self._init_weights()

 #Initialize Weights

 def _init_weights(self):

 W = np.random.uniform(0.0, size = self.n_classes * (self.n_features

+ 1))

 W = W.reshape(self.n_classes, self.n_features + 1)

 return W

 #Adding Bias Terms

 def _add_bias_unit(self, X):

 X_new = np.ones((X.shape[0], X.shape[1] + 1))

 X_new[:, 1:] = X

 return X_new

 #Format Output Values to Float Numbers

 def _formatY(self, y):

 group = lambda List, num: zip(*[List[i::num] for i in range(num)])

 y = to_categorical(y, 2)

146

 y = [-1.0 if value == 0.0 else value for values in y for value in

values]

 y = [np.array(value) for value in list(group(y, 2))]

 return y

 #Probability of the Output

 def _predict_proba(self, X, y):

 net_input = self._add_bias_unit(X)

 Weighted = self.W.dot(net_input.T)

 format_y = self._formatY(y)

 X_pred = Weighted.T * format_y

 return X_pred

 #Predictions

 def _predict(self, X, y):

 proba = self._predict_proba(X, y)

 pred = [np.argmax(value) for value in proba]

 return pred

 #Score

 def _score(self, X, y):

 pred = self._predict(X, y)

 Count = 0

 for i in range(len(pred)):

 if pred[i] == list(y)[i]:

 Count += 1

 return Count/len(y)

 #Class with Highest Probability

 def probability(self, pred_list, pred_proba_list):

 proba = []

 for Index, Value in enumerate(pred_list):

 proba.append(pred_proba_list[Index][Value])

 return proba

 #Train

 def _train(self, x_train, y_train):

 for epoch in range(self.epochs):

 pred = self._predict_proba(x_train, y_train)

 for ind in range(len(pred)):

 if (pred[ind][1] >= 0):

 self.W = self.W + self.learning_rate * ((-2) *

(1/self.epochs) * self.W)

 else:

 self.W = self.W + self.learning_rate *

((np.array(y_train)[ind]

 * np.array(self._add_bias_unit(x_train))[ind])

 - (2 * (1/self.epochs) * self.W))

 return self

Algorithm 13: K-Nearest Neighbour (KNN)

Table 8.3: k-Nearest Neighbour class properties.

Function Name Description

147

1) _distance The function that calculates the

difference between the two values.

2) _euclideanDistance The function to measure the gap size

between two data observations.

3) _getNeighbors The function to get the k-neighbours.

4) _predict The function to predict the output of

each transaction.

5) _probability The function to calculate the class

probabilities of transactions.

6) _getAccuracy The function to return the accuracy of

the model.

The class of the KNN method is defined as follows:

class k_Nearest_Neighbor():

 #Constructor

 def __init__(self, row_length, neighbors, TrainDataX, TrainDataY,

random_seed=None):

 if random_seed:

 np.random.seed(random_seed)

 self.TrainDataX = TrainDataX

 self.TrainDataY = TrainDataY

 self.row_length = row_length

 self.neighbors = neighbors

 #Distance Function

 def _distance(self, row1_value, row2_value):

 Distance = pow((row1_value - row2_value), 2)

 return Distance

 #Euclidean Distance Function

 def _euclideanDistance(self, row1, row2):

 distance = 0

 for ind in range(self.row_length):

 distance += self._distance(row1[ind], row2[ind])

 return np.sqrt(distance)

 #Function to get k nearest neighbors

 def _getNeighbors(self, TestDataX):

 k_nearest_neighbors = []

 for ind in range(len(self.TrainDataX)):

 dist = self._euclideanDistance(np.array(self.TrainDataX)[ind],

TestDataX)

 k_nearest_neighbors.append((ind, dist))

 k_nearest_neighbors.sort(key = operator.itemgetter(1),

reverse=False)

 return [k_nearest_neighbors[i] for i in range(5)]

 #Function for Prediction of transaction

 def _predict(self, TestRow):

 k_nearest_neighbors = self._getNeighbors(TestRow)

 for Neighbor in k_nearest_neighbors:

148

 count0, count1 = 0, 0

 if self.TrainDataY[Neighbor[0]] == 0.0:

 count0 += 1

 elif self.TrainDataY[Neighbor[0]] == 1.0:

 count1 += 1

 if count0 > count1:

 predictions = 0.0

 else:

 predictions = 1.0

 return predictions

 #Function to get predictions

 def _getPredictions(self, TestDataX):

 count = 0

 predictions = []

 for TestRow in np.array(TestDataX):

 predictions.append(self._predict(TestRow))

 print(count)

 count += 1

 return predictions

 # Class Probability Function

 def _probability(self, TestDataX):

 Percentage = []

 for TestRow in TestDataX:

 k_nearest_neighbors = self._getNeighbors(TestRow)

 count0, count1 = 0, 0

 for Index, Neighbor in k_nearest_neighbors:

 if self.TrainDataY[Index] == 0.0:

 count0 += 1

 elif self.TrainDataY[Index] == 1.0:

 count1 += 1

 if count0 > count1:

 Percentage.append(count0/5)

 else:

 Percentage.append(count1/5)

 return Percentage

 # Function to get the Accuracy

 def _getAccuracy(self, TestDataY, predictions):

 correct = 0

 for y in range(len(np.array(TestDataY))):

 if np.array(TestDataY)[y] == predictions[y]:

 correct += 1

 return (correct/float(len(np.array(TestDataY)))) * 100.0

Algorithm 14: Naïve Bayesian (NB)

Table 8.4: Naive Bayesian class properties.

Function Name Description

1) Mean The function to calculate the mean.

2) Standard Deviation The function to calculate the Standard

Deviation.

149

3) _calculateProbability Gaussian/Normal Distribution function

that calculates the class probabilities.

4) _summaize The function that computes the

standard deviation and the mean of

features.

5) _separateByClass The function to separate transactions by

class values.

6) _summarizeByClass The function to compute the mean and

standard deviation of transactions

separated by class values.

7) _CalculateClassProbabilities The function that calculate the class

probability.

8) _predict The function to predict the output of

each transaction.

9) _getPredictions The function to get the list of predictions

10) probability The function that returns the list of

probabilities.

11) _getAccuracy The function that returns the accuracy

of the model.

The class of the Naïve Bayesian method is defined as follows:

class Naive_Bayesian():

#Constuctor

 def __init__(self, x, y, random_seed=None):

 if random_seed:

 np.random.seed(random_seed)

 self.TrainDataX = x

 self.TrainDataY = y

 #Mean Function

 def _mean(self, numbers):

 return sum(numbers)/float(len(numbers))

 #Standard Deviation Function

 def _stdev(self, numbers):

 avg = self._mean(numbers)

 variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-

1)

 return np.sqrt(variance)

 #Gaussian/Normal Distribution Function

 def _calculateProbability(self, RowValue, mean, stdev):

 exponent = np.exp(-(np.power(RowValue-

mean,2)/(2*np.power(stdev,2))))

 return (1 / (np.sqrt(2*np.pi) * stdev)) * exponent

 #Mean and standard deviation of features

 def _summarize(self,TrainData):

 summaries = [(self._mean(attribute), self._stdev(attribute))

 for attribute in zip(*np.array(TrainData))]

150

 return summaries

 #Separated Transactions by Class Values

 def _separateByClass(self):

 separated = {}

 for ind in range(len(np.array(self.TrainDataX))):

 vector = np.array(self.TrainDataX)[ind]

 if (np.array(self.TrainDataY)[ind] not in separated):

 separated[np.array(self.TrainDataY)[ind]] = []

 separated[np.array(self.TrainDataY)[ind]].append(vector)

 return separated

 #Mean and Standard Deviation of Features by class values

 def _summarizeByClass(self):

 separated = self._separateByClass()

 summaries = {}

 for classValue, instances in separated.items():

 summaries[classValue] = self._summarize(instances)

 return summaries

 #Function to Calculate Class Probabilities

 def _calculateClassProbabilities(self, TestDataInstance):

 probabilities = {}

 summaries = self._summarizeByClass()

 for classValue, classSummaries in summaries.items():

 probabilities[classValue] = 1

 for ind in range(len(classSummaries)):

 mean, stdev = classSummaries[ind]

 RowValue = TestDataInstance[ind]

 probabilities[classValue] *=

self._calculateProbability(RowValue, mean, stdev)

 return probabilities

 #Function to Predict the output of Transaction

 def _predict(self, TestDataInstance):

 probabilities = self._calculateClassProbabilities(TestDataInstance)

 bestLabel, bestProb = None, -1

 for classValue, probability in probabilities.items():

 if bestLabel is None or probability > bestProb:

 bestProb = probability

 bestLabel = classValue

 return bestLabel

 #Function to get Predictions

 def _getPredictions(self,TestDataX):

 predictions = []

 for i in range(len(np.array(TestDataX))):

 result = self._predict(np.array(TestDataX)[i])

 predictions.append(result)

 return predictions

 #Function that Returns the Probabilities

 def probability(self, TestDataX):

 probas = []

 for TestDataInstance in np.array(TestDataX):

 proba =

list(self._calculateClassProbabilities(TestDataInstance).values())

151

 probas.append(proba[np.argmax(proba)])

 return probas

 #Function to get Accuracies

 def _getAccuracy(self, TestDataY, predictions):

 correct = 0

 for ind in range(len(TestDataY)):

 if TestDataY[ind] == predictions[ind]:

 correct += 1

 return (correct/float(len(TestDataY)))*100.0

Algorithm 15: Decision Tree (DT)

Table 8.5: Decision Tree class properties.

Function Name Description

1) _train_using_entropy The function is used to train the DT

model.

2) _pred_proba The function that calculates the class

probabilities.

3) _prediction The function that returns the list of

predictions.

4) probability The function that returns the list of the

probabilities of predicted values.

5) _getAccuracy The function to return the accuracy of

the DT model.

The class of the Decision Tree method is defined as follows:

from sklearn.tree import DecisionTreeClassifier

class Decision_tree():

 def __init__(self, Gini_Criterion, Max_depth, Min_samples_leaf,

 Entropy_Criterion, random_seed=None):

 if random_seed:

 np.random.seed(random_seed)

 self.Gini_Criterion = Gini_Criterion

 self.Max_depth = Max_depth

 self.Min_samples_leaf = Min_samples_leaf

 self.Entropy_Criterion = Entropy_Criterion

 def _train_using_gini(self, X_train, y_train):

 clf_gini = DecisionTreeClassifier(criterion = self.Gini_Criterion,

 random_state = 1, max_depth = self.Max_depth,

 min_samples_leaf = self.Min_samples_leaf)

 clf_gini.fit(X_train, y_train)

 return clf_gini

 def _train_using_entropy(self, X_train, y_train):

 clf_entropy = DecisionTreeClassifier(

 criterion = self.Entropy_Criterion,

 random_state = 1,

 max_depth = self.Max_depth,

152

 min_samples_leaf = self.Min_samples_leaf)

 clf_entropy.fit(X_train, y_train)

 return clf_entropy

 def _pred_proba(self, X_test, clf_object):

 predict_prob = clf_object.predict_proba(X_test)

 return predict_prob

 def _prediction(self, X_test, clf_object):

 y_pred = clf_object.predict(X_test)

 return y_pred

 def probability(self, pred_list, pred_proba_list):

 proba = []

 for Index, Value in enumerate(pred_list):

 proba.append(pred_proba_list[Index][Value])

 return proba

 def _getAccuracy(self, yTest, predictions):

 correct = 0

 for y in range(len(yTest)):

 if yTest[y] == predictions[y]:

 correct += 1

 return (correct/float(len(yTest))) * 100.0

Algorithm 16: Stacking Ensemble Method

Table 8.6: Stacking Ensemble class properties.

Function Name Description

1) Mode_Fun The class property used for voting per

transaction.

2) Vote_Function The class property used for returning

the list of voted transactions.

3) getAccuracy The class property used for computing

the accuracy of the model.

4) Unmatched_Indexes The class property used for returning

the count of misclassified credit card

transactions.

class Voting():

 def __init__(self):

 pass

 def Mode_Fun(self, List):

 Predict, Count0, Count1 = 0,0,0

 for Value in List:

 if Value == 0.0:

 Count0 += 1

 elif Value == 1.0:

 Count1 += 1

 if Count0 > Count1:

 Predict = 0.0

153

 else:

 Predict = 1.0

 return Predict

 def Vote_func(self, Model_pred_A):

 predictions = []

 for Row in Model_pred_A:

 Mode = self.Mode_Fun(Row)

 predictions.append(Mode)

 return predictions

 def getAccuracy(self, TestDataY, predictions):

 correct = 0

 for ind in range(len(TestDataY)):

 if TestDataY[ind] == predictions[ind]:

 correct += 1

 return (correct/float(len(TestDataY)))*100.0

 def Unmatched_Indexes(self, TestDataY, predictions):

 incorrect = []

 for ind in range(len(TestDataY)):

 if TestDataY[ind] != predictions[ind]:

 incorrect.append(ind)

 return incorrect

Algorithm 17: Differential Evolution Optimization Method

class DifferentialEvolution():

 def __init__(self, TrainDataX, population_size, Scaling_Factor,

Max_Iterator, Crossover_Probability,random_seed=None):

 if random_seed:

 np.random.seed(random_seed)

 self.TrainDataX = np.array(TrainDataX)

 self.population_size = population_size

 self.Scaling_Factor = Scaling_Factor

 self.Max_Iterator = Max_Iterator

 self.Population = self.Initialize(self.population_size)

 self.Crossover_Probability = Crossover_Probability

 def Bounds(self):

 bounds = []

 for Feature in zip(*np.array(self.TrainDataX)):

 Min, Max = min(Feature), max(Feature)

 bounds.append([Min, Max])

 return bounds

 def Ensure_Bound(self, Vector, Bound):

 New_Vector = []

 for ind in range(len(Vector)):

 if Bound[ind][0] >= Vector[ind]:

 New_Vector.append(Bound[ind][0])

 if Bound[ind][1] <= Vector[ind]:

 New_Vector.append(Bound[ind][1])

 if Bound[ind][0] <= Vector[ind] and Vector[ind] <=

Bound[ind][1]:

 New_Vector.append(Vector[ind])

154

 return New_Vector

 def Cost_Func(self, x):

 sums = sum([x[i]**2 for i in range(len(x))])

 return sums

 # Target Individuals

 def Initialize(self, pop_size):

 bounds = self.Bounds()

 Population = []

 for Index in range(pop_size):

 Individual = []

 for Value1, Value2 in bounds:

 Individual.append(np.random.uniform(Value1, Value2))

 Population.append(Individual)

 return Population

 def RandomValues(self, LengthList):

 count = 0

 RandomList = []

 while count < LengthList:

 RandomNumber = np.random.randint(0, self.population_size)

 if RandomNumber not in RandomList:

 RandomList.append(RandomNumber)

 count += 1

 else:

 count += 0

 return RandomList

 def Mutation(self):

 LengthList = 3

 RandomList = self.RandomValues(LengthList)

 X1 = self.Population[RandomList[0]]

 X2 = self.Population[RandomList[1]]

 X3 = self.Population[RandomList[2]]

 diff = [x1 - x2 for x1, x2 in zip(X2, X3)]

 V_donor = [x1 + self.Scaling_Factor*diff for x1, diff in zip(X1,

diff)]

 V_donor = self.Ensure_Bound(V_donor, self.Bounds())

 return V_donor

 def Crossover(self,):

 V_Targets = self.Population

 V_donor = self.Mutation()

 V_trials = []

 for V_Target in V_Targets:

 V_trial = []

 for Index in range(len(V_Target)):

 crossover = np.random.uniform(0,1) # Check the interval

 if crossover < self.Crossover_Probability:

 V_trial.append(V_donor[Index])

 else:

 V_trial.append(V_Target[Index])

 V_trials.append(V_trial)

155

 return V_trials

 def Scores(self):

 Gen_Scores = []

 V_trials = self.Crossover()

 V_Targets = self.Population

 for i in range(1, self.Max_Iterator + 1):

 Trial_Costs = [self.Cost_Func(V_trial) for V_trial in V_trials]

 Target_Costs = [self.Cost_Func(V_Target) for V_Target in

V_Targets]

 for Index in range(len(Trial_Costs)):

 if Trial_Costs[Index] < Target_Costs[Index]:

 self.Population[Index] = V_trials[Index]

 Gen_Scores.append(Trial_Costs[Index])

 else:

 Gen_Scores.append(Target_Costs[Index])

 return Gen_Scores

 def Best_Population(self):

 Gen_Scores = self.Scores()

 Gen_min = min(Gen_Scores)

 Gen_Sol = self.Population[Gen_Scores.index(min(Gen_Scores))]

 print('Best Generation: ', Gen_min)

 print('Best Solution : ', Gen_Sol)

 return Gen_Sol

 def sigmoid(self,activation):

 return 1.0 / (1.0 + np.exp(-activation))

 def getPredictions(self, Model_Probability_df):

 List = []

 Best_Solution = self.Best_Population()

 for Observation in np.array(Model_Probability_df):

 DotProduct =

self.sigmoid(Observation.dot(np.array(Best_Solution).T))

 if DotProduct >= 0.838:

 List.append(1)

 else:

 List.append(0)

 return List

 def getAccuracy(self, TestDataY, predictions):

 correct = 0

 for ind in range(len(TestDataY)):

 if TestDataY[ind] == predictions[ind]:

 correct += 1

 return (correct/float(len(TestDataY)))*100.0

Algorithm 18: Confusion Matrix Method

def ConfusionMatrix(Model_pred_df, y_test):

 Pivot = []

 for value in Model_pred_df.columns:

 Column = Model_pred_df[value]

 TP, TN, FP, FN = 0, 0, 0, 0

156

 for ind in range(len(Column)):

 if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0:

 TP += 1

 elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0:

 FN += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0:

 FP += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0:

 TN += 1

 Pivot.append([value, TP, TN, FP, FN])

 return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN'])

Algorithm 19: Confusion Matrix Stats Method

def ConfusionMatrixStat(Model_pred_df, y_test):

 Pivot = []

 for value in Model_pred_df.columns:

 Column = Model_pred_df[value]

 TP, TN, FP, FN = 0, 0, 0, 0

 for ind in range(len(Column)):

 if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0:

 TP += 1

 elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0:

 FN += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0:

 FP += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0:

 TN += 1

 Class0, Class1 = 0,0

 for Value in np.array(y_test):

 if Value == 0.0:

 Class0 += 1

 elif Value == 1.0:

 Class1 += 1

 Pivot.append([value, TP/Class1, TN/Class0, FP/Class1, FN/Class0])

 return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN'])

Algorithm 20: Confusion Matrix for Stacking Ensemble Method

def ConfusionMatrixSE(Model_predictions, y_test):

 Pivot = []

 Column = Model_pred_df

 TP, TN, FP, FN = 0, 0, 0, 0

 for ind in range(len(Column)):

 if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0:

 TP += 1

 elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0:

 FN += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0:

 FP += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0:

 TN += 1

 Pivot.append(['Stacking Ensemble', TP, TN, FP, FN])

 return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN'])

157

Algorithm 21: Confusion Matrix Stats for Stacking Ensemble Method

def ConfusionMatrixStatSE(Model_pred_df, y_test):

 Pivot = []

 Column = Model_pred_df

 TP, TN, FP, FN = 0, 0, 0, 0

 for ind in range(len(Column)):

 if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0:

 TP += 1

 elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0:

 FN += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0:

 FP += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0:

 TN += 1

 Class0, Class1 = 0,0

 for Value in np.array(y_test):

 if Value == 0.0:

 Class0 += 1

 elif Value == 1.0:

 Class1 += 1

 Pivot.append(['Stacking Ensemble Method', TP/Class1, TN/Class0,

FP/Class1, FN/Class0])

 return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN'])

Algorithm 22: Confusion Matrix for Differential Evolution Method

def ConfusionMatrixDE(Model_pred_df, y_test):

 Pivot = []

 Column = Model_pred_df

 TP, TN, FP, FN = 0, 0, 0, 0

 for ind in range(len(Column)):

 if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0:

 TP += 1

 elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0:

 FN += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0:

 FP += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0:

 TN += 1

 Pivot.append(['Differential Evolution', TP, TN, FP, FN])

 return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN'])

Algorithm 23: Confusion Matrix Stats for Differential Evolution Method

def ConfusionMatrixStatDE(Model_pred_df, y_test):

 Pivot = []

 Column = Model_pred_df

 TP, TN, FP, FN = 0, 0, 0, 0

 for ind in range(len(Column)):

 if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0:

 TP += 1

 elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0:

 FN += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0:

158

 FP += 1

 elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0:

 TN += 1

 Class0, Class1 = 0,0

 for Value in np.array(y_test):

 if Value == 0.0:

 Class0 += 1

 elif Value == 1.0:

 Class1 += 1

 Pivot.append(['Differential Evolution', TP/Class1, TN/Class0,

FP/Class1, FN/Class0])

 return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN'])

