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SUMMARY 

Differential Evolution is an optimization technique of stochastic search for a 

population-based vector, which is powerful and efficient over a continuous space for 

solving differentiable and non-linear optimization problems. Weighted voting stacking 

ensemble method is an important technique that combines various classifier models. 

However, selecting the appropriate weights of classifier models for the correct 

classification of transactions is a problem. This research study is therefore aimed at 

exploring whether the Differential Evolution optimization method is a good approach 

for defining the weighting function. 

Manual and random selection of weights for voting credit card transactions has 

previously been carried out. However, a large number of fraudulent transactions were 

not detected by the classifier models. Which means that a technique to overcome the 

weaknesses of the classifier models is required. Thus, the problem of selecting the 

appropriate weights was viewed as the problem of weights optimization in this study. 

The dataset was downloaded from the Kaggle competition data repository. Various 

machine learning algorithms were used to weight vote a class of transaction. The 

differential evolution optimization techniques was used as a weighting function. In 

addition, the Synthetic Minority Oversampling Technique (SMOTE) and Safe Level 

Synthetic Minority Oversampling Technique (SL-SMOTE) oversampling algorithms 

were modified to preserve the definition of SMOTE while improving the performance. 

Result generated from this research study showed that the Differential Evolution 

Optimization method is a good weighting function, which can be adopted as a 

systematic weight function for weight voting stacking ensemble method of various 

classification methods. 
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1. Chapter 1: Introduction 

The need for big data analytics in the banking sector is directly related to the need for 

complexity of analytical tasks for fraud detection. That is, as the need for big data 

analytics in the banking sector is becoming more and more important for supporting 

business operations and financial transactions (Altayar & Almoqren 2016, pp. 1 - 8), 

the need for complex analytical tasks for fraud detection is also becoming crucial for 

security of business operations and financial transactions. Banks normally derive data 

for data analysis from sources such as, but not limited to, credit card activities, loan 

repayments, loan applications and account transactions (Altayar & Almoqren 2016, 

pp. 1 - 8). For this reason, this study is focused on the credit card activities in order to 

determine fraudulent activities that negatively affect the banking sector. 

The data derived from bank source systems are complex and cannot be processed by 

traditional data application systems (Altayar & Almoqren, 2016, pp. 1 - 8). Big data is 

a term that refers to a complex dataset that cannot be stored and processed using 

traditional data processing application systems (Flood, et al. 2016, pp. 1 - 20). Banks 

in South Africa are making huge investments in the adoption of big data and the move 

from data analytics to data insights (TCI 2015). Data insights refers to the use of 

advanced analytics methods that deal with complex analytical problems and are 

capable of predicting future outcomes (i.e. predictive analytics). Predictive analytics 

refers to many types of statistics and data mining methods that analyse current and 

historical facts for the classification of unknown future events (Monk 2016, pp. 1 - 3). 

The accurate and comprehensive methods used for filtering algorithms that perform 

data analysis for a given dataset of historical credit card transactions of the customers 

play a crucial role in determining the efficiency of algorithms that perform data mining 

and predictive data analysis (Mitik, et al. 2016, pp. 552 – 559; Wang, et al. 2010, pp. 

215 - 218). Identifying fraudulent factors associated with credit card transactions in the 

banking sector is one of the important tasks to perform that enables the data mining 

activity to uncover fraudulent patterns (Babu & Rajeshwari 2016, pp. 439 - 444). The 

NO-FREE-LUNCH (NFL) theory suggests that no machine learning method can 

perform well for all measures in every application (Macready & Wolpert 1996, pp. 67 - 

82). Therefore, an evaluation of algorithms is essential for the quality of machine 
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learning methods for revealing predictive data insights to prevent fraudulent 

transactions of credit cards in South Africa (SA). 

Fraud data sourced from the South African Banking Risk Information (SABRIC) 

suggest that almost 4.5 billion was lost in South Africa (SA) to credit and debit card 

fraud since the year 2010. In analysing the 2010-2016 period, a 3.5% (44.5% in 2015 

and 48.0% in 2016) was seen in credit card fraud loss in SA (Writer, 2015). Banking 

fraud in the continent is not confined to SA. For example, data released by the Nigerian 

Inter-Bank Settlement System (NIBSS) indicates that malicious transactions in the 

banking sector peaked in 2016 (John, et al. 2016, pp. 1186 - 1191). Since SA has the 

most advanced banking sector in the continent, it goes without saying that more 

complex analytical tasks for fraudulent transactions detection are required to expose 

fraudulent activities within the SA banking sector. 

1.1. Background 

According to the Legal Information Institute (LII), fraudulent credit card transactions 

are a form of identity theft whereby unauthorized users take credit card information of 

victims with the sole aim of removing funds from the accounts of the victor or to charge 

purchases to the accounts of the victims. The credit card fraud level has escalated 

from being performed by just the fraudsters to being performed by fraud rings that use 

complex and advanced strategies that take over the control of accounts and to perform 

frauds that are not noticeable (John, et al. 2016, pp. 1186 - 1191). In the world of 

effortless expenditure, this leads to an accelerated increase in online transaction fraud. 

More fraudulent transactions performed in a day in relation to more non-fraudulent 

transactions result in less skewed data distribution, which implies that the chances of 

frauds being noticeable are high. Thus, since fraudsters use advanced methods to 

commit crime in a manner that is not noticeable (John, et al. 2016, pp. 1186 - 1191), 

it implies that less fraudulent activities are performed than non-fraudulent activities, 

and in the context of big data this would result in a highly skewed distribution. Thus, 

more complex and efficient analytical tasks to handle highly skewed distribution are 

required. 

Credit card fraud has caused serious damage to both service providers and the credit 

card users, and was predicted to get worse in future (Pushpa & Malini 2017, pp. 255 - 
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258). Thus, to handle the highly skewed big data for classification or prediction of 

future credit card fraudulent transactions, more advanced machine learning 

techniques to reduce variance and biasness in data are required in order to adequately 

predict future values of credit card transactions. Given the large number of datasets 

available, development of methods for the identification of fraudulent groups and 

exploration of behavioural patterns of fraudulent groups have become very important 

for purpose of data mining (Yu, et al. 2017, pp. 1 - 6). 

Descriptive and predictive data analysis provides a complete solution for 

understanding the nature and scope of the data of financial institutions sourced from 

different systems. Descriptive data analysis is more focused on the question of “what 

has happened?” (Patwardhan 2016). Knowing what has happened without knowing 

what could happen, sets knowledge limitations and biasness of financial institutions to 

make informed decisions. On those group, the need for predictive data analysis is 

justified since it answers the question of “what could happen?” (Patwardhan 2016). 

When building a classification data model to solve the problems of descriptive and 

predictive data analysis with a dataset that is highly skewed, the best-fit line that 

separates the classes of data would try to balance the dataset by drawing a line that 

represents the average of the dataset of the class of the minority data observations 

and the class of the majority data observations. However, given a lower number of 

fraudulent transactions relative to non-fraudulent transactions, the average dataset 

would be in favour of the non-fraudulent transaction class. Therefore, to control the 

best-fit line to the right position that equally represent both classes, an oversampling 

of minority class to generate new synthetic instances is required. 

Synthetic Minority Oversampling Technique (SMOTE) is a sampling method that 

oversamples the minority class by computing median features vectors between 

nominal features sample and its potential nearest neighbours through Euclidean 

distance of standard deviations (Chawla, et al. 2002, pp. 321 - 357). Duplicating 

minority training samples to reduce biasness of data distribution introduces high 

variance of data distribution. Therefore, SMOTE is an important over-sampling method 

that reduces variance of data distribution. The synthetic instances generated influence 

a decision-making model to create small and less specific decision regions.  
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With that said, positive influence can be learned far better in general regions than 

positive instance subsumed around negative instance. This means that the SMOTE 

method suffers from a problem of generalization whereby the region of a majority class 

is blindly generalized without considering the minority class (Bunkhumpornpat, et al. 

2009, pp. 475 - 482; Meidianingsih, et al. 2017, pp. 1167 - 1171). The generalization 

challenge associated with the SMOTE method is normally visible in places of highly 

skewed class distribution since the class of the minority data observations is thinly 

scattered in relation to the class of the majority data observations. As a result, the 

probability of class mixture is very high. To keep the SMOTE method efficient and 

effective, an improvement of the algorithm is required. 

Borderline-SMOTE is an oversampling technique designed to improve the 

performance of SMOTE oversampling method (Bunkhumpornpat, et al. 2009, pp. 475 

- 482; Gosain & Sardana 2017, pp. 79 - 85). The performance is improved by 

separating the positive instances into three regions namely borderline (
1

2
𝐾 ≤ 𝑛𝑢𝑚 <

𝐾), noise (𝑛𝑢𝑚 = 𝐾), and safe (0 ≤ 𝑛𝑢𝑚 <
1

2
𝐾) (Bunkhumpornpat, et al. 2009, pp. 

475 - 482; Gosain & Sardana 2017, pp. 79 - 85). The three regions are separated 

while considering the instances that are negative in the k-Nearest Neighbours. The 

borderline SMOTE uses the same oversampling method as SMOTE.  

However, borderline SMOTE oversamples only the borderline data observations of the 

minority class rather than oversampling the entire data observations of the minority 

class. Logically, the two consecutive data observations are obviously not different are 

instead separated into two regions (borderline and noise) whereby the first data 

observation is selected for oversampling and the other data observation is declined 

oversampling. 

That being so, the Safe-Level-SMOTE method is the SMOTE method that creates 

safe-level synthesis of minority class (Bunkhumpornpat, et al. 2009, p. 475 - 482; 

Meidianingsih, et al. 2017, pp. 1167 - 1171; Gosain & Sardana 2017, pp. 79 - 85). The 

synthetic instances are placed closer to the safe level; this means that the safe level 

closer to K is nearly noise. The safe level is the number of positive data observations 

within k-Nearest Neighbour but not equal to k-Nearest Neighbour (Bunkhumpornpat, 

et al. 2009, pp. 475 - 482). 
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The Safe-Level SMOTE is a promising algorithm for achieving a positive impact. For 

this reason, this algorithm will be used in this study to oversample the data 

observations of the minority class of the dataset and thus control the best fit line to an 

optimum place that equally represent malicious transactions and non-malicious 

transactions. A dataset with equal representation of malicious transactions and non-

malicious transactions makes it easier for a classification model to learn data of the 

two classes well.  

Stacking is an ensemble method that uses different machine learning algorithms to 

generate new dataset that is used in a combiner machine learning method (Smolyakov 

2017). The combiner machine learning voting method is computed to predict the 

output. Majority voting is when every model makes a prediction of a transaction and 

the class value with more votes is produced as final output. Weighted voting is voting 

that is undertaken by counting the predictions of better models to predict the output of 

each transaction. In this study, it is suggested that weighting voting of the classification 

models requires an optimization of weights to produce good results. 

Differential Evolution algorithm is a subset of evolution programming designed for 

continuous domain optimization problems (Brest, et al. 2006, pp. 646 - 657; Srinivas, 

et al. 2018, pp. 216 - 217; Madathil, et al. 2017, pp. 1 - 5). Since it is normal for the 

base models of the stacking ensemble method to have weak classifiers, Differential 

Evolution is used in this study to learn the weak classifiers in each evolution stage and 

correct the weights (Madathil, et al. 2017, pp. 1 - 5). Differential Evolution has an 

advantage over genetic algorithms because it is fast, robust, easy to use, and simple 

in structure (Brest, et al. 2006, pp. 646 - 657; Srinivas, et al. 2018, pp. 216 - 217; 

Madathil, et al. 2017, pp. 1 - 5).  

Genetic algorithms use selection mechanisms to produce a sequence of population, 

and thereafter use mutation and crossover as search mechanism. Unlike Genetic 

algorithms, the only search mechanism of Differential Evolution is mutation, and the 

search is guided towards the prospective regions inside a feasible region through the 

use of selection (Kalajac, et al. 2018, pp. 883 - 886). The main difference between 

Differential Evolution and Genetic algorithms is that whereas Genetic algorithms are 

more dependent on a mechanism of probabilistic, a crossover, and an exchange of 
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information in solutions to better locate solutions, Differential Evolution strategies are 

dependent more on mutation as a mechanism for the primary search. 

When features of customer’s data on historical credit card transactions that are 

relevant for data mining are available, the explanatory data analysis plays a crucial 

role when determining the efficiency of the dataset in the data mining and the 

predictive data analysis (Todd & Harvey 2015, pp. 474 – 489; Liu & Dash 1997, pp. 

131 – 156; Chezian & Devi. 2016, pp. 161 - 165). That being so, feature selection and 

dimension reduction are important for minimizing the complexity of the predictive data 

analysis models to improve the classification speed. 

Fraud detection refers to the process of detecting fraudulent activities where no prior 

tendency of fraud exists (John, et al. 2016, pp. 1186 - 1191). To improve the 

performance of predictive data analysis methods, more advanced performance 

optimization methods for boosting performance while retaining low variance and low 

biasness of data are required for the detection of credit card fraudulent activities and 

thus exposing of hidden fraudulent transactions. The performance optimization 

methods that can adequately optimize parameters of predictive data analysis methods 

in massive data are becoming more important than ever due to the amount of data 

being produced in the current era. 

The most challenging part of fraud detection involves uncovering fraudulent activities 

in a complex dataset that has a high number of non-fraudulent transactions and a low 

number of fraudulent transactions (Pushpa & Malini 2017, pp. 255 - 258). The dataset 

complexity in an environment of rapidly growing data introduces inefficiency in fraud 

detection systems, and the inefficiency acts as an agent that motivates and 

accelerates the rate of increase of fraudulent transactions in the banking sector. Hence 

the banking sector must make a huge investment in complex and efficient analytical 

systems that detect fraud activities to prevent losses. 

1.2. Problem Statement 

According to the Trade Conferences International (TCI 2015), SA banks are making 

huge investments in big data adoption and are intended on moving from data analytics 

to data insights by 2020. Notwithstanding available data analytics models for the 

detection of fraudulent transactions, the rate at which fraudsters continue to commit 
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fraud is growing continuously. This implies an existence of means that there is an 

unknown gap between knowledge of customers and techniques that fraudsters take 

advantage of when committing fraud. 

Currently available systems of fraud detection are capable of uncovering fraudulent 

activities after one, two or more fraudulent transactions have been performed (Wang, 

et al. 2015, pp. 354 - 359). This suggests that the advanced analytics techniques 

require strategies that overcome the weaknesses of classifier models. Stacking is an 

ensemble method that uses a variety of base models to predict the output of each 

transaction (Smolyakov 2017).   

The stacking ensemble method is an important technique that combines various 

classifier models such that a weak classifier model for a particular instance is assisted 

by strong classifier models through weighted voting of a class value (Zirpe & Joglekar 

2017, pp. 1 – 5; Verma & Mehta 2017, pp. 155 – 158; Cheng, et al. 2012, pp. 755 - 

759). The weights for classifier models per transaction must be high for a class that 

performs well, and low for a class that does not perform well. Reasoning from this fact, 

the selecting of the appropriate weights of votes for each class per classifier is very 

important. On this basis, the problem of selecting the appropriate weights for voting 

the correct output class of each transaction is viewed as the problem of weights 

optimization in this research study. 

For detection systems, the standard machine learning algorithms that achieve high 

accuracy tend to classify a higher percentage for the class with the majority of data 

observations compared to a percentage of the class with the minority of data 

observations (Mitik, et al. 2016, pp. 552 – 559; Dehghan, et al. 2017, pp. 124 - 134). 

This means there are overlapping data points between the class with minority data 

observations and the class with majority data observations. Oversampling the minority 

class by duplicating the minority class data observations when there are overlapping 

data observations may not solve the problem of high skewedness of class distribution. 

Using SMOTE oversampling method to create the synthetic observations of the class 

with minority data observations when there are overlapping data points of the class 

with majority data observations result in synthetic instance generated from a fraudulent 

transaction and non-fraudulent transaction. Therefore, a need exists for the 
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development of an oversampling method that generates synthetic instances at the 

safe level of the minority class. 

1.3. Research Questions 

Since the South African banking sector is migrating from data analytics to data 

insights, this research study intends to explore the following main research question:  

Is the differential evolution optimization method a good approach for 

defining the weighting function to predict the outcome of future credit 

card fraudulent transactions? 

The sub research questions that support the main research question of this research 

study are as follows. 

1. Does the Safe-Level-SMOTE oversampling method (on the minority 

classes) when used in combination with an under-sampling method 

eliminates duplicate data samples of the majority class have a positive 

impact on reducing the high skewedness of the class distribution than the 

SMOTE oversampling method (on the minority classes) when used in 

combination with the under-sampling method (also eliminates duplicate data 

samples on the majority class)? 

 

2. Does Safe-Level-SMOTE oversampling method and the under-sampling 

method (that eliminates duplicate data samples of the class with majority 

data observations) reduce or eliminate the problem of overlapping data 

samples between fraudulent and non-fraudulent classes? 

 

3. Does manual stacking of feature selection methods that are diverse on the 

Principal Component Analysis (PCA) transformed features to hide the actual 

feature names, select enough good features to solve the problem than just 

selecting a feature engineering technique?  

 

4. Does the stacking of supervised base models have an impact on predictive 

accuracy given the under-sampling technique to remove the duplicate data 
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observations on the majority class, and the Safe-Level-SMOTE 

oversampling method?  

 

5. Will the proposed data model for fraud detection efficiently detect credit card 

fraudulent activities? 

 

1.4. Research Aim 

This study aims to develop and optimize a detection method for credit card fraudulent 

transactions that is efficient and effective in the detection of malicious behaviours 

within the minimum number of attempts or the first time the fraudster attempts to 

commit fraud. The developed model is also expected to overcome the weaknesses of 

the classifier models that fraudsters take advantage of when committing credit card 

fraud. 

The continuation of credit card fraud results in monetary losses for customers, 

merchant stores, investors, the banking sector and various other parties. Therefore, it 

is envisaged that the development of such a model will add value to the knowledge 

economy of SA and the banking sector through successful implementation of data 

insights. Furthermore, the development of an efficient and effective method for the 

detection of credit card fraud will serve to discourage the continuation of activities 

association with malicious credit card crime. In particular, this research study will have 

an impact on the successful implementation of data insights.  

1.5. Research Objectives 

The main research objective is to obtain optimum data analytics algorithms that 

perform data insights to reveal fraudulent data patterns in order to prevent future 

fraudulent transactions. The sub objectives are: 

1. To determine whether if Safe-Level SMOTE oversampling method when 

used in combination with under-sampling method has a positive impact on 

reducing the high skewedness of the class distribution than the SMOTE 

oversampling method when used in combination with the under-sampling 

method. This objective will be implemented by running a SMOTE algorithm 
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and a Safe-Level SMOTE algorithm on the class of minority data 

observations, and a down-sampling algorithm on the class of majority data 

observations. 

 

2. To investigate whether the Safe-Level SMOTE oversampling technique and 

the under-sampling technique reduce or eliminate the problem of 

overlapping data observations of fraudulent and non-fraudulent classes. 

This objective will be implemented by running a Safe-Level SMOTE on the 

class of minority data observations and an under-sampling algorithm on the 

class of majority data observations. 

 

3. To determine whether manual stacking of diverse feature selection methods 

on the PCA transformed features to solve the problem than feature selection 

method. This objective will be implemented by running univariate selection 

algorithm, recursive feature elimination algorithm, and feature importance 

algorithm on the entire dataset. 

 

4. To investigate how the stacking of supervised machine learning algorithms 

have an impact on predictive accuracy, considering the down-sampling 

technique that eliminate duplicate data samples on the class of majority data 

observations, and the SMOTE oversampling method. This objective will be 

implemented by running both the differential evolution optimization and 

stacking algorithms on the classifier models. 

 

5. To determine the efficiency of the proposed data model for fraud detection 

in the detection of activities relating to credit card fraud. This objective will 

be implemented by running both the differential evolution optimization and 

the stacking algorithm on the classifier models. 

 

1.6. Limitation 

The limitation of this research study is the inability of the researcher to use a largely 

sized data sample drawn from the population of credit card users in SA banks. The 

inability of the researcher to use a dataset implies that large data cannot be applied in 
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this research study. For confidentiality and security reasons in the SA banking sector, 

this research study is unable to get credit card dataset from any bank in the country 

for experimental purposes. However, the study will use the credit card dataset 

designed for experimental purposes, which is obtained from the Kaggle machine 

learning data repository (kaggle 2018). 

Due to field names having been transformed for hiding the actual field name of the 

dataset, the data mining of new knowledge and for uncovering the unknowns becomes 

challenging. Although correlation among different fields can be performed and the 

findings can be interpreted, the findings cannot be understood for further data analysis 

due to hidden field names. On that premise, the explanatory data analysis section 

presented in this study, which is of interesting to this research study, is rudimentary 

and cannot therefore be analysed further to derive meaningful interpretation of the 

data. However, the dataset is stable enough to achieve the desired research 

objectives. 

Due to different cultures found in SA banks and the approach adopted by the 

researcher for conducting the research, the applied techniques may produce different 

results when experimenting with credit card dataset obtained from Kaggle machine 

learning data repository. However, traditional data mining algorithms for uncovering 

new knowledge and predictive data analytics algorithms for predicting future outcomes 

are more likely to remain the same if they are used appropriately. Consequently, the 

data model proposed in this research study must be edited appropriately to produce 

the desired outcomes. 

1.7. Ethics Considerations 

Considering the pertinent banking sector rules, regulations, and norms that govern the 

industry, the data mining and prediction data model in the banking sector may raise 

ethical and legal questions. This research study is therefore focused on computational 

analysis of credit card dataset designed for experimental purpose from the Kaggle 

machine learning data repository, and would therefore not breach any research ethics 

for the banking industry and its customers.  

Although this research study does not involve experimentation using humans and 

animal subjects, ethical approval for the undertaking of this research study was 
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nevertheless requested in writing from the Research Ethics Committee of the 

University of South Africa (UNISA). To get the gist of the approach adopted by the 

researcher for executing this research study, the reader is referred to sub-sections 1.4 

and 5.1 relating to research aims and methodological approach and experimental 

design respectively. The dataset used for this experiment is credit card data that was 

anonymised by Principal Component Analysis (PCA) method for hiding the private and 

confidential information of the bank users.  

1.8. Significance of the Research 

The findings of in this study contribute to the knowledge economy of South Africa and 

the banking sector in general. Safe-Level SMOTE for the detection of malicious 

activities relating to credit card fraud is significant in a case of overlapping class data 

because oversampling of the minority class in a highly skewed distribution with 

overlapping class data does not achieve 50:50 binary class distribution. That is to say, 

one problem is being solved by introducing another problem. 

A method for ensemble feature selection for unknown features that are transformed to 

hide the original meaning is significant to guide conclusion in terms of features 

selected, which are suggested by this study. 

An ensemble data model with diverse base models that is based on weighted voting 

method is significant since a weak base model cannot be given the same weighting 

as a strong base model. The optimization of the weighted voting method of base model 

is also significant since an improvement of predictive accuracy needs to be 

undertaken. The optimization of the weighted voting method is performed by using the 

differential evolution algorithm. 

The biasness reduction of data distribution within a class and a class distribution plays 

a significant role since duplicate data samples are eliminated while information about 

the dataset is preserved as much as possible. 

1.9. Layout of the Dissertation 

The remainder of the dissertation presents a review of the relevant literature in Chapter 

2. This is followed by Chapter 3, which discusses the research methodology adopted 

for the execution of this research study. Therefore, Chapter 4 provides details of the 
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algorithm design for this research study. In Chapter 5 data is analysed ending with 

Chapter 6, which presents the conclusion of the study. Following an analysis of the 

relevant data, the dissertation ends with chapter 6, whereby the conclusion of the 

study is presented. 
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2. Chapter 2: Literature Review 

In this section, literature relevant to the research study is reviewed. The section starts 

by giving background information on big data, and how big data is defined in the 

current era. Thereafter, reference is made to different types of credit card fraud 

experienced on a daily basis by the banking industry. In addition, the information and 

personal data security as an enforcement in Section 14 of the Constitution of South 

Africa (1996) is discussed. Finally, the state-of-the-art credit card fraud detection 

techniques for preventing fraudulent transactions are also chronicled before 

discussing the challenges associated with credit card fraud detection techniques. 

2.1. Background on Big Data 

Big data described as large amount of data depending on who is discussing it. The 

type of data regarded by the likes of Google or Amazon as being huge may be totally 

different from the huge data of a small or medium sized organization. The history of 

big data does as far as 1663 when John Graunt dealt with huge amounts of data when 

studying the bubonic plague (Keith 2017). To describe and understand big data in this 

study, four V’s (namely Velocity, Volume, Variety and Veracity) are used.  

2.1.1. Volume 

The volume describes the size of dataset (Nyikes & Rajnai 2015, pp. 217 – 222; 

Trelewicz 2017, pp. 1 - 3). For big data, volume describes the large sized data 

collected for uncovering the unknown factors that will enable business questions to be 

answered. In the world of effortless expenditures, the high number of credit card users 

translates into a higher number of daily translations. As a result, the concomitant 

reporting and data analysis of the daily data credit card transactions tallied over a 

period of a month is also high. 

Since banks in South Africa have been operating for years, the amount of credit card 

data collected over the years is just too complex to be handled by traditional data 

processing applications. Therefore, complex data analytical tools are required for the 

processing of the processing of this type of data. 
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2.1.2. Velocity 

The velocity is mostly associated with the rate at which data is generated, accumulated 

or must be processed (Nyikes & Rajnai 2015, pp. 217 – 222; Trelewicz 2017, pp. 1 - 

3). Given the high number of credit card users, it is realistic to think that a substantial 

majority of these users have mobile phones. The high usage and advancement of 

mobile banking applications to support the daily banking transactions has led to an 

insanely high rate of generation of data motivated by effortless expenditure. This 

suggests that complex analytical tasks are therefore needed for daily credit card data 

analysis and reporting. 

2.1.3. Variety 

The variety is mostly associated with the format in which data is stored (Nyikes & 

Rajnai 2015, pp. 217 – 222; Trelewicz 2017, pp. 1 - 3). Data can be stored in multiple 

traditional formats such as excel, databases, and comma-separated values (csv), 

among others. Data is not always stored in traditional formats; instead, it can also be 

stored in other formats such as video, PDF, SMS, MMS, email and others. However, 

in this research study, the same format is used for the credit card data that was 

collected. This is because data in the same format is easy to rearrange. It should 

however be noted that real-world data is not always in the same format. Complex 

analytical tasks are required for the analysis of data stored in an unstructured format. 

2.1.4. Veracity 

The veracity is mostly associated with the trustworthiness of the data (Nyikes & Rajnai 

2015, pp. 217 - 222). The quality and the usability of data is highly dependent on the 

source system. Therefore, not all data is good for analysis. The accumulated data that 

is mined to uncover the meanings and unknowns in the data must be meaningful to 

the problem to be analysed. 

In consideration of the four V’s, big data can be defined as a complex and fast-growing 

data composed of different data formats that cannot be processed by traditional data 

management applications to maintain the security and the integrity of data. In the 

section that follows, credit card fraudulent activities that negatively affect the banking 

industry are discussed. 
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2.2. Credit Card Fraud Trends 

When credit card holders make online or offline payments, fraudsters use 

sophisticated methods to capture credit card details of card holders that are ignorant 

of suspicious activities. Fraudsters take advantage of the ignorance of the card holder 

by making as many clean transactions as possible. Fraudsters can either commit 

online or offline credit card fraud.  

2.2.1. Online Credit Card Fraud 

Online credit card fraud regarded as Card Not Present (CNP) fraud whereby credit 

card details are stolen without stealing the physical credit card (Hsu & Chao 2007, pp. 

1 – 4; Babu & Rajeshwari 2016, pp. 439 - 444). The information in the stolen credit 

card such as card number, expiry date and card verification value (CVV) allows the 

card to be used even when it is not physically present (e.g. in internet purchases). 

Online credit card fraud such as CNP continues to grow globally due to advanced data 

analytics strategies used by credit card fraudsters. In this study, it is argued that 

fraudsters are innovative experts using sophisticated strategies that utilize 

weaknesses of standard machine learning strategies. In a nutshell, fraudsters take 

advantage of weak classifier models. To deploy a successful online credit card fraud 

solution, a technique that overcomes the weaknesses of classifier models is required. 

 The other types of online credit card frauds are as follows. 

 Site Cloning 

Site cloning arises when a legal and official website is cloned by fraudsters to 

mislead clients into placing an order with them (Babu & Rajeshwari 2016, pp. 

439 – 444; Rajak & Mathai 2015, pp. 1 - 4). The cloned website looks similar to 

legal and official website, and unaware clients would normally enter their credit 

card details on the cloned website to complete the online purchase. Upon 

receipt of the credit card details of the client, the fraudsters can make 

unauthorised fraudulent purchases until the customers and/or the bank 

becomes aware of the fraudulent credit card activities. 
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 False Merchant Sites 

This type of fraud is committed through websites that require customers to 

confirm their personal information by using credit card information (Babu & 

Rajeshwari 2016, pp. 439 – 444; Rajak & Mathai 2015, pp. 1 - 4). Such website 

owners can commit credit card fraud by themselves or by selling information of 

credit card-holders to fraudsters who will then commit the credit card fraud. 

 

 Phishing 

This is the fraud through which fraudsters send out misleading e-mails to users 

in order to gain access to their personal information (Babu & Rajeshwari 2016, 

pp. 439 - 444). Fraudsters use very intelligent and legitimate methods to 

convince users into believing these e-mails. Example of such methods include 

providing users with links to websites asking these users to enter their personal 

information. 

 

 Friendly Fraud 

This is when the fraudster is the credit cardholder that uses the card for offline 

purchases at actual stores or online purchases and later report the card as 

stolen or lost in order to claim for reimbursement from the bank (Babu & 

Rajeshwari 2016, pp. 439 - 444).  

A successful implementation of the proposed model that overcomes the weaknesses 

of weak classifier models will reduce the level of online credit card fraud is committed. 

The stacking ensemble method, which combines two or more classification models, is 

used to vote an output of each transaction. The vote of an output is based on weights 

of classification model per transaction. This means that a classification model that 

predicts an output of a transaction badly would have a vote with lesser weight for 

predicting the final output of a transaction. Therefore, weak classifier models that 

fraudsters take advantage of would not contribute much in the prediction of the final 

output of a transaction. The next subsection provides a detailed discussion of offline 

credit card fraud. 
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2.2.2. Offline Credit Card Fraud 

Offline credit card fraud is the type of fraud through which a physical card is stolen to 

make purchases at the actual physical stores (Babu & Rajeshwari 2016, pp. 439 – 

444; Rajak & Mathai 2015, pp. 1 - 4). Offline credit card fraud is less common since 

there is a higher possibility of failure, and fraudsters normally prefer clean moves 

where stolen credit card is used to commit fraud without the fraudster being caught. In 

a case of credit card being stolen and not reported, some banks hold credit 

cardholders responsible for the losses suffered should illegal transactions occur. 

An advanced solution for offline credit card fraud could be the usage of biometric 

systems for authorizations of credit card transactions. However, the biometric 

solutions are outside the scope of this study. In this study, the deployment of a 

successful offline credit card fraud solution is directed towards addressing a need for 

a technique that overcomes the weaknesses of classifier models. Classes of offline 

credit card are as follows. 

 Card Skimming 

Fraudsters normally use special skimmer devices to capture credit card 

information stored in the magnetic stripes of the physical credit card (Hsu & 

Chao 2007, pp. 1 – 4; Babu & Rajeshwari 2016, pp. 439 - 444). Fraudsters can 

use captured credit card information to make duplicate copies of physical credit 

cards in order to make purchases either offline at the actual stores or online.  

 

At the ATM machine, fraudsters can place skimmer devices and micro-cameras 

to record the entered card pins when transaction are performed (Hoffman 

2017). Card skimming can also be performed by corrupt employees that swipe 

customers’ cards on skimmer devices during payments at merchant stores 

(Writer 2015). 

 

 Credit Card Generators 

This is a type of fraud through which automated programs that use bank 

algorithms to generate credit card numbers arbitrarily and apply try and error 

techniques and other methods to research generated credit card numbers that 
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correspond to real credit card accounts from the actual banks (Rajak & Mathai 

2015, pp. 1 - 4). 

Since there is a high likelihood of failure for offline credit card fraud, a successful 

implementation of the proposed model that overcomes the weaknesses of weak 

classifier models will discourage fraudsters from attempting to perform offline credit 

card fraud. Thus, the rate at which online credit card fraudulent activities are performed 

will reduce. A stacking ensemble method that combines two or more classification 

models to vote an output of each transaction. The vote of an output is based on 

weights of classification model per transaction. On that premise, a classification model 

that predicts an output of a transaction badly would have a vote with lesser weight to 

predict the final output of a transaction. As a result, weak classifier models that 

fraudsters take advantage of would not significantly contribute to the prediction of the 

final output of a transaction. In the next sub-section, a detailed discussion on credit 

card application fraud is presented. 

2.2.3. Credit Card Application Fraud 

Credit card application fraud refers to when false information is used by fraudsters to 

apply for a credit card at the bank. The application fraud of credit card is associated 

with identity theft and chain of trust fraud. This type of fraud occurs very rarely since 

fraudulent behaviour can be detected during the application process when checking 

or verifying personal information. 

An advanced solution for credit card application fraud could be the use of biometric 

systems to verify the personal information through genetic information such as finger 

prints, voice pattern, and eyes pattern. However, biometric solutions are outside the 

scope of this study. In this regards, data analytics methods for anomaly detection can 

only be used to prevent the continuity of credit card application fraud. Below is the 

discussion of offline credit card fraud, which can be eliminated by successful 

implementation of data analytics methods for anomaly detection. An aspect of credit 

card fraud that can be eliminated by successful implementation of data analytics for 

anomaly detection is identity theft, which is defined as follows: 

 Identity Theft 
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Identity theft involves fraudsters obtaining personal information such as, but not 

limited to, identity number, gender, e-mails and address from other people in 

order to open new accounts or to access existing accounts with the aim of 

committing fraud (Babu & Rajeshwari 2016, pp. 439 - 444). This is the type of 

fraud through which a fraudster commits credit card application fraud by using 

an identity that is not real or by stealing other people’s identity with intensions 

of committing secondary fraud (Hsu & Chao 2007, p. 1 – 4; Babu & Rajeshwari 

2016, pp. 439 - 444). 

 

A fraudster that uses false identity and manages to get the credit card from the bank 

would normally use the credit card and later not pay the bill at a great loss to the bank. 

In a case whereby a fraudster uses the identity details of a real person and thereafter 

manages to get a credit card from the bank, the real person is liable for the payment 

of the bill unless the real person is able to provide proof of identity theft to the bank. 

Since application fraud behaviour can be detected during the application process 

when checking or verifying personal information, the chances of failure are high. The 

successful implementation of the stacking ensemble method will discourage 

fraudsters from attempting to commit credit card application fraud. 

2.3. Information and Data Security 

2.3.1. Data Protection 

Section 14 of the constitution of South Africa (1996) is designed to protect the privacy 

of the citizens of South Africa through limited rights to privacy. The Protection of 

Personal Information Act (POPI) Act was enacted to regulate access and use of 

personal information. The eight POPI principles are defined to govern lawful use of 

personal information (Government 2013). 

2.3.2. Access to Data 

Public sector agencies in South Africa normally have access to important and useful 

information about citizens (Chase 2018). The personal data from trusted public sector 

agencies can be used by South African banks to verify information of applicants for 

loans. Section 14 of the constitution of South Africa and the POPI Act limits banks 
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from having complete access to individual’s personal data, which on the other hand 

motivates a rapid growth of identity theft related fraud (Eurofinas & ACCIS 2011). 

2.3.3. Consent and Disclosure of Sensitive Information 

When an applicant applies for a credit card at the bank, an applicant’s provided 

information must be verified by the bank. For verification of applicant’s information, 

banks must define a clear and a transparent privacy policy for handling sensitive 

information, and a consent in writing that shows the data subject that specify the 

intended usage of the data. The collection of sensitive information from public or 

private sectors (that of the same level of data protection as the bank under the privacy 

rules) must be lawful, it must be collected for lawful purpose, and it must be collected 

for only the intended purpose for which it has been collected for (Ahluwalia & Mahajan 

2011). 

When banks require sensitive information about credit card applicants, a lawful 

contract that permits disclosure of sensitive information must be present before 

disclosing of any sensitive information by private or public sector to any bank, unless 

such disclosure is required by the law (Ahluwalia & Mahajan 2011). 

2.3.4. Cross Border Data Transfer 

Sensitive information of international applicants in South Africa can be verified by 

South African banks. According to (Ahluwalia & Mahajan 2011), banks normally 

transfer sensitive information across the border if the entity to receive the information 

ensures the following: 

 The same level of data protection as the bank under the privacy rules.  

 The transfer is under a lawful contract between bank and the data subject. 

 A person has signed a consent that gives an authority to transfer their sensitive 

information across the border.  

An advanced analytics strategy for complex data analysis and verification of 

information of the credit card applicants in banks include machine learning, which is 

discussed in the next section. 
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2.4. Machine Learning Historical Foundation 

Previously, computers were primarily used for searching information in large 

databases (Woodford 2017) while complex mathematical calculations were performed 

using calculators (Ball & Flamm 1996). The computer storage and capabilities were 

increased to accommodate an increase in the size of industrial data (Woodford 2017). 

For decision making, the increase in data needed to be analysed to support industrial 

processes.  

The tools used for data analysis were used for regular tasks (Woodford 2017) and not 

for automatic classification of information or other machine intelligence tasks. The 

introduction of machine intelligence algorithms that can make decisions without 

intervention of humans became important for the management of complex 

computation. Hence, machine learning became a strategy for allowing machines to 

learn and act from data without being explicitly programmed (Andrew 2017). 

Knowledge discovery and classification and prediction are two fundamental areas of 

machine intelligence (Zaza & Al-Emran 2015, pp. 275 - 279). A decision support 

system caters for possible decisions based on the patterns that are found in data. To 

this end, data mining is the machine intelligence that identifies the important patterns 

for prediction. One of the types of learning for data models is supervised learning; and 

it is discussed below. 

2.4.1. Supervised Learning 

This is the machine learning type in which the learning of models is guided by the class 

values (Brownlee 2016). The class values are either 0 for legal transactions or 1 for 

illegal transactions. A supervised machine learning data model must be supplied with 

credit card historical data that it must learn from in order to be in a good position to 

predict the outcomes of future transactions. The prediction labels of future transactions 

are done through the classification process by using machine learning classification 

algorithms. The classification is discussed in the next section.  

2.5. Classification 

This is one of the most widely used functionality category methods in machine 

learning. The application of classification methods includes fraud detection analysis, 
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medical diagnosis analysis, spam detection analysis, and risk assessment analysis. 

The main goal of classification methods is to classify an output (y) into a category 

given some values of x (Peng, et al. 2017, pp. 1 – 7; Cui, et al. 2018, pp. 1 -  11). That 

is to say, based on prediction of attributes for prediction, a classification method 

assigns variable to the target category. For the prediction of attributes, the 

classification method uses some statistical, mathematical and computational 

algorithms such as, but not limited to, Artificial Neural Network, Regression, Nearest 

Neighbour, Decision Trees, and Support Vector Machine (Cui, et al. 2018, pp. 1 – 11; 

Liu, et al. 2018, pp. 1 - 13). 

This research study involves classification, whereby data analytics algorithms are 

trained to separate credit card fraudulent transactions from non-fraudulent 

transactions. Fraudulent transactions are grouped together as one class by labelling 

predicted output as 1, and non-fraudulent transaction are grouped together as another 

class by labelling predicted output as 0. In the next sub-section, the types of data 

analytics are discussed. 

2.6. Types of Data Analytics 

2.6.1. Descriptive Analytics (What’s happening?) 

This is an analytic that provides insight into the data by describing the past (Gomes, 

et al. 2016, pp. 1 – 5; Haneem, et al. 2017, pp. 1 - 6). The past in this case may refer 

to an occurrence of an event that is one minute ago, a week ago, or a year ago. 

Descriptive data analysis is important and useful for enabling people to understand 

and learn from past behaviours in order to understand how future outcomes might be 

influenced.  

Mathematical and statistical methods such as, but not limited to, averages, sums, and 

percentages are normally used for performing aggregations of filtered columns of data 

to generate information such as year over year changes in an organization and total 

stock, average money spent by each customer. Common examples of descriptive 

analytics provide historical insight on the company’s data such as production, 

operations, customers, sales, and financial figures. 
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2.6.2. Predictive Analytics (What is likely to happen?) 

Predictive analytics are statistical and machine learning algorithms that dig into the 

historical data obtained from systems such as customer relation management (CRM), 

enterprise resource planning (ERP), human resource (HR), re-organise the data and 

categorize the data to perform the forecasting of the insights about the future based 

on the collected data (Queiroz, et al. 2016, pp. 1 – 6; Toporek, et al. 2011, pp. 1 – 4; 

Li, et al. 2017, pp. 1 - 6). Predictive analytics provide the financial industry with 

actionable insights based on collected data.  

Predictive analytics can be used in the banking industry to forecast purchasing 

patterns, customer behaviours, and to produce credit score. Predictive analytics is 

based on probabilities to estimate the likelihood of future outcomes. Probability is the 

subset of statistics; hence, statistical algorithms cannot predict the future outcomes 

with 100% certainty. Predictive analytics is, therefore, an analytical method that 

answers the question of what is likely to happen in the future. Challenges associated 

with detection techniques are discussed in the next section. 

2.7. Stacking Algorithm 

There is no machine learning method that performs well for all measures in every given 

application according to the NO FREE LUNCH (NFL) theory (Macready & Wolpert 

1996, pp. 67 - 82). Stacking is an ensemble method that uses various machine 

learning algorithms to construct a model that is used to generate new dataset that is 

used in a combiner machine learning algorithm (Smolyakov 2017). In the context of 

classification stacking models, different classifier models are trained with the dataset 

and produce an output that is either 0 or 1.  

The output column (dependent variable) of base classifier models are used as features 

of the stacking model. The stacking ensemble technique is used to generate the output 

value based on the voting method. For each data observation, the stacking model 

uses either the majority voting method or the weighted voting method for the prediction 

of the final output value. Majority voting refers to when all base models vote a 

prediction class of each transaction. On the other hand, weighted voting involves the 

voting carried out by counting the predictions of better models to predict the output of 
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each transaction. In this research, the weighted voting has been adopted for use in 

the stacking ensemble model for the classification of the output of each transaction. 

2.7.1. Weighted Voting Method 

It is assumed 𝛿1, 𝛿2, 𝛿3, … , 𝛿𝑛 is be the weight of transaction, and β1, β2, β3, … , β𝑛 is the 

output values of transactions, where β is the output of transaction, 𝛿 is the weight of 

transaction, and 1,2,3, … , 𝑛 is the transaction number from 1 until transaction n. The 

term “non-fraudulent” is the opposite of fraudulent. Mathematically, the term “opposite” 

can be represented by the negation. If the fraudulent transaction is represented by 1, 

the non-fraudulent transaction can therefore be represented by -1.  

For weighted voting, the study replaces the output 0 of base models with -1 since 

direction is important. If the output value of Weight_Voting is positive then the 

transaction is fraudulent, and if the output value of Weight_Voting is negative then the 

transaction is non-fraudulent. The formula for Weight_Voting is defined as follows: 

Weight_Voting = β1𝛿1 +  β2𝛿2  +  β3𝛿3 +  … + β𝑛𝛿𝑛 

 

(2.1) 

Furthermore, in this study, it is proposed that weighted voting for the classification 

models require an optimization of weights to produce good results. Thus, differential 

evolution algorithm is a stochastic method to be used for optimization of the weights 

of transactions in this research study. Differential evolution method is discussed in the 

next sub-section. 

2.8. Differential Evolution Algorithm 

This is an optimization technique of stochastic search for a population-based vector, 

and it is powerful and efficient over a continuous space for solving differentiable and 

non-linear problems. This algorithm was introduced in 1996 by Storn and Price. The 

algorithm is an evolutionary method composed of five sequential stages, namely: 

population initialization, mutation, recombination, selection, and termination criteria. If 

the data observation does not meet the termination criteria, the data observation 

evolves to the next generation where the weight is readjusted. If the data observation 

meets the termination criteria, the data observation is an optimal solution. 
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Consider the optimization problem f(x) where X = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐷], and D is the number 

of variables. For the population size N and a generation G, the population matrix is 

defined as 𝑥𝑛,𝑖
𝐺 =  𝑥𝑛,1

𝐺 , 𝑥𝑛,2
𝐺 , 𝑥𝑛,3

𝐺 , … , 𝑥𝑛,𝐷
𝐺 . 

The five sequential stages of the evolutionary method are discussed in the following 

sub-sections. 

2.8.1. Initial Population 

The random generation of the initial population between lower bound and upper bound 

is defined by the following equation: 

𝑥𝑛,𝑖 =  𝑥𝑛,𝑖
𝐿 + 𝑟𝑎𝑛𝑑() ∗ (𝑥𝑛,𝑖

𝑈 −  𝑥𝑛,𝑖
𝐿 ), 𝑖 = 1,2,3, … , 𝐷 𝑎𝑛𝑑 𝑛 = 1,2,3, … , 𝑁  

 

(2.2) 

where 𝑥𝑖
𝐿  is the lower bound of the variable 𝑥𝑖, and 𝑥𝑖

𝑈  is the upper bound of the 

variable 𝑥𝑖. 

2.8.2. Mutation 

For each parameter vector, three other vectors 𝑥𝑟1𝑛
𝐺 , 𝑥𝑟2𝑛

𝐺  𝑎𝑛𝑑 𝑥𝑟3𝑛
𝐺  are selected 

randomly and the weighted difference of two of the vectors is added to the third 

𝑥𝑛
𝐺+1 =  𝑥𝑟1𝑛

𝐺 + 𝐹(𝑥𝑟2𝑛
𝐺 −  𝑥𝑟3𝑛

𝐺 ) (2.3) 

where n = 1,2,3, …, N. 𝑥𝑛
𝐺+1 is called a donor vector and F is a user supplied value 

that is taken between 0 and 1. 

2.8.3. Recombination 

The trial vector 𝑈𝑛,𝑖
𝐺+1 is derived from the donor vector 𝑉𝑛,𝑖

𝐺+1 and the target vector 𝑥𝑛,𝑖
𝐺  

in accordance with the following equation. 

𝑈𝑛,𝑖
𝐺+1 =  {

𝑈𝑛,𝑖
𝐺+1      𝑖𝑓 𝑟𝑎𝑛𝑑( ) ≤ 𝐶𝑝 𝑜𝑟 𝑖 = 𝐼𝑟𝑎𝑛𝑑

𝑥𝑛,𝑖
𝐺        𝑖𝑓 𝑟𝑎𝑛𝑑( ) > 𝐶𝑝 𝑎𝑛𝑑 𝑖 = 𝐼𝑟𝑎𝑛𝑑

 

 

(2.4) 

𝑖 = 1,2,3, … , 𝐷 𝑎𝑛𝑑 𝑛 = 1,2,3, … , 𝑁 

where 𝐼𝑟𝑎𝑛𝑑 is an integer random number between I and D, and Cp is the 

recombination probability that is chosen randomly between the value of 0 and 1. 
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2.8.4. Selection 

The trial vector 𝑈𝑛,𝑖
𝐺+1 in the equation 2.11 is compared with the target vector 𝑥𝑛,𝑖

𝐺 , and 

the one with the lowest function value is selected for next generation. 

𝑥𝑛
𝐺+1 =  {

𝑈𝑛,𝑖
𝐺+1      𝑖𝑓 𝑓(𝑈𝑛

𝐺+1) > 𝑓(𝑥𝑛
𝐺  )

𝑥𝑛
𝐺                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(2.5) 

𝑛 = 1,2,3, … , 𝑁 

The differential evolution method is a stochastic method that is used to optimize the 

weights of voting the output of transactions. The next sub-section discusses 

challenges associated with detection techniques. 

2.9. Challenges Associated with Detection Techniques 

2.9.1. Skewed Distribution 

The skewed distribution is also known as the unbalanced class distribution (Godase 

& Attar 2012, pp. 1 – 6; Somasundaram & Reddy 2017, pp. 1 – 6; Kho & Vea 2017, 

pp. 1 - 5). Therefore, in the event of a need to build a classification supervised learning 

model to classify new samples as to whether they belong to class A or class B, the 

labelled training data observations is required. The skewed distribution is a result of 

many labelled training samples in class B than in class A or vice-versa (Godase & 

Attar 2012, pp. 1 – 6; Somasundaram & Reddy 2017, pp. 1 - 6).  

In a skewed class distribution, the standard machine learning algorithms that achieve 

high accuracy tend to classify all credit card transaction as the class with the majority 

data observations which is always the non-fraudulent class (Zeager, et al. 2017, pp. 

112 - 116). The classification of all transactions as non-fraudulent implies poor 

predictive accuracy of fraudulent transactions. The skewed distribution causes the 

model to know less about the class with less labelled training samples and to know 

more about the class with many labelled training samples. The issue of skewed 

distribution is common in the context of credit card fraud detection since the number 

of legal observations are greater than the number of illegal observations (Pushpa & 

Malini 2017, pp. 255 - 258). Therefore, fraud detection model developers have to 

design ways to overcome the challenge when constructing a fraud detection system.  
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One possible solution to consider for balancing the class distribution is under-sampling 

and SMOTE oversampling. From the issue of unbalanced data in credit card 

transactions, it is realistic to assume that the many transactions from the class of the 

majority data observations are redundant. Therefore, random elimination of the 

redundant transactions would not change the structure of the dataset significantly. 

However, random removal of redundant transactions has risks, since the removal of 

redundant transactions is not done in an unsupervised manner.  

In practice, sampling is the method of reducing the class of the majority data 

observations using the subset of the class to represent the entire population of the 

class. Several binary classifiers have shown better performance when they are trained 

with balanced class distribution (Gosain & Sardana 2017, pp. 79 - 85). However, in 

this research study it is not implied that the classifier models cannot learn and predict 

output from unbalanced class distribution. Zeager, et al. (2017, pp. 112 - 116) have 

shown that the use of sampling techniques for balancing the class distribution does 

not improve performance of some of their classifiers. Thus, in order to establish if 

sampling techniques enhance the performance of the classification models, some 

simulations have to be run. 

The simulations must also include different ratios of class distribution to establish the 

optimum ratio. In a highly skewed class distribution, the SMOTE oversampling method 

of the minority class to have a 50:50 ratio against the minority class improves the 

intersection between the two classes. Having a model with high percentage of 

accuracy does not necessarily mean the model is doing well to solve the problem.  

In a case where there are 100 transactions, and 95 of those transactions are legal and 

5 transactions are illegal, and the model accuracy is 95%. If the classification model 

predicts all 100 transactions to be legitimate, the model has a higher accuracy 

percentage yet the model is substandard. The model is regarded as being of poor 

quality because it is only knowledgeable about a single class.  

However, if 90 transactions are classified as legitimate when 80 transactions are in 

fact legitimate, and 10 transactions are classified as fraudulent when 4 transactions 

are in fact fraudulent, the accuracy percentage in this case is 80%. The model is good 

because both classes are equally or nearly equally represented. To this end, the true 

accuracy of the model can be achieved by calculating the F-score or confusion matrix. 
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The true accuracy of the classifier is achieved by having the F-score or confusion 

matrix values that represent both classes. 

The poor performance of the classification model is not only caused by a smaller 

number of illegal transactions in the class of the minority data observation in relation 

to higher number of legal transactions in the class of the majority data observation, but 

also by the overlapping of between two classes of transactions. Additionally, the 

performance of the transaction classifier in unbalanced binary data distribution is 

affected by the availability of noise in transactions. The noise is discussed in the next 

subsection. 

2.9.2. Noise 

Noise refers to the possible errors that are associated with data (Lita, et al. 2007, pp. 

1 – 5; Somasundaram & Reddy 2017, pp. 1 – 6; Li, et al. 2018, pp. 1 - 10). Examples 

of errors that might be found in data include missing values and incorrect dates. An 

error in data can result in an erroneous model construction (Somasundaram & Reddy 

2017, pp. 1 – 6; Li, et al. 2018, pp. 1 - 10), and a model with errors can result in 

prediction accuracy of poor quality. Another challenge associated with detection 

techniques, which is discussed in the next section, is overlapping data. 

2.9.3. Overlapping Data 

Overlapping data poses a challenge to the supervised learning methods. The 

challenge of overlapping data points is as a result of a legal transaction looking nearly 

the same as the illegal transaction or vice versa (Somasundaram & Reddy 2017, pp. 

1 – 6; Mak, et al. 2011, pp. 1 - 6). This is a serious problem since an erroneous model 

constructed will detect transactions as fraudulent when they are in fact not fraudulent 

or allow fraudulent transactions to go undetected since they are mistakenly treated as 

legal transactions (Zhou, et al. 2014, pp. 1 - 6). The challenge of detection techniques 

is choosing parameters is discussed in the following sub-section. 

2.9.4. Choosing Parameters 

Most of machine learning algorithms require several parameters and thresholds values 

defined to pre-set by the users (Silva & Wunsch 2017, pp. 1 – 8; Basha, et al. 2017, 

pp. 1 - 6). Different parameters in machine learning algorithms normally produce 

different results (Silva & Wunsch 2017, pp. 1 - 8). Hence, various parameters can lead 
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to a model with totally changed performance. A model with completely different 

performance will increase the complexity of model construction. The challenge of 

detection techniques that is in line for a discussion is feature selection. 

2.9.5. Feature Selection 

Feature selection is the method of picking the subset of features relevant to the 

problem from the total number of given features related to the problem domain (Singh, 

et al. 2015, pp. 388 – 393; Todd & Harvey 2015, pp. 474 – 489; Kamal, et al. 2009, 

pp. 1 - 6). For all features excluding a labelled feature, a subset of features is achieved 

by eliminating one of two related features that shows a strong correlation because they 

have the same impact on the data model. Thus, elimination of one of two related 

features reduces the complexity of the data model while preserving the variety of 

features. Given a variety in the features of the dataset, it is not always necessary to 

perform feature reduction because the data model might lose useful information. 

Knowing which relevant features to use when constructing a predictive model is a 

challenge that needs deep understanding of the problem domain (Chezian & Devi. 

2016, pp. 161 – 165; West & Bhattacharya 2016, pp. 1734 – 1744; Mei & Jiang 2016, 

pp. 301 - 305).  

Feature Engineering is a necessary step of data preparation to reduce computational 

time and complexity and to avoid overfitting of the data model (Drotár & Gazda 2016, 

pp. 1 – 5; Qiu, et al. 2018, pp. 1 – 4; Tran & Li 2009, pp. 1 – 4). The feature engineering 

methods discussed in this research study are Univariate Feature Selection Method, 

Recursive Feature Elimination Method and Feature Importance. The first feature 

engineering method to discuss is Univariate Feature Selection Method and it is 

discussed in the subsection below. 

 Univariate Feature Selection Method 

This method seeks to analyse the relationship between each feature of the input 

dataset and the output feature of the dataset. Univariate statistical test is 

conducted to test whether there is any statistically significant relationship 

between each input feature of the dataset. The Univariate Feature Selection 

Method was implemented successfully by (Drotár & Gazda 2016, pp. 1 – 5; 

Curtis & Kon 2015, pp. 1 – 4; Subho, et al. 2019, 1 – 6). The next feature 

engineering method to discuss is Recursive Feature Elimination Method. 
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 Recursive Feature Elimination Method 

This model select features of the input dataset by recursively selecting smaller 

subset of the input features. The initial subset of the input features was used to 

train the estimator. The estimator is used to estimate the feature importance. 

The least important features are pruned from the subset of the input features. 

The Recursive Feature Elimination Method was implemented successfully by 

(Tran & Li 2009, pp. 1 – 4; Lv, et al. 2014, pp. 1 – 4; Zeng, et al. 2009, pp. 1 - 

4). The next feature engineering method to discuss is Feature Importance. 

 Feature Importance Method 

This method assigns scores to the input features of the dataset based on how 

useful the input features are classifying the output feature. The feature 

importance scores are obtained by computing the correlation between each 

input feature and the output feature. The feature important scores can provide 

an insight into the dataset, model and the classification model. The Feature 

Importance Method was implemented successfully by (Chu, et al. 2019, pp. 1 

– 3; Qiu, et al. 2018, pp. 1 – 4; Dutta, et al. 2018, 1 – 5) 

This section highlighted some of the practical issues when solving a machine learning 

problem with a skewed class distribution. Generally, classification data models are not 

designed to work well with skewed data distribution. Therefore, various data pre-

processing actions are taken to clean and shape datasets such that the classification 

process of credit card data can be adequately performed to produce high predictive 

accuracy of both fraudulent and non-fraudulent transactions without introducing any 

biasness or high variance in the data model. Works of other researchers that are 

related to this research study are discussed in the next section. 

2.10. State-of-the-Art and Background Theory 

In this section, the theoretical background of the state-of-the-art detection techniques 

for credit card fraud are discussed. Well analysed data produce good results that 

enhance the quality of decision making by organizations. The daily losses suffered by 

banks which result from credit card fraud indicate lack of complex analytical tasks to 

prevent fraudulent activities related to credit card. The state-of-the-art models are 

discussed below. 
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2.10.1. Logistic Regression (LR) 

The LR in this research study is focused on the binary classification of transactions 

where the predicted value y can only take the value of 1 for the class of fraudulent 

transactions or the value of 0 for class non-fraudulent transactions. Thus, y∈{0,1}. The 

corresponding 𝑦(𝑖) of 𝑥(𝑖) is called the label for the training sample (Liu, et al. 2017, 

pp. 1 – 6; Pavlyshenko 2016, pp. 1 – 5; Ding, et al. 2017, pp. 1 - 6). Hypothesis for 

logistic regression is logistic function or sigmoid function (Pushpa & Malini 2017, pp. 

255 – 258; Andropov, et al. 2017, pp. 1 – 6; Srivastava, et al. 2016, pp. 1 – 4; Liu, et 

al. 2017, pp. 1 – 6; Pavlyshenko 2016, pp. 1 - 5); and it is defined as follows:  ℎ𝜃(𝑥) =

𝑔(𝑧), where z = 𝜃𝑇𝑥. Thus, 𝑔(𝑧) =  
1

1+𝑒−𝑧
 .  

A pictorial representation of LR is captured in figure 2.1. 

 

Figure 2.1: A depiction of the Logistic Regression. 

The sigmoid function is used to map any real number to the interval between 0 and 1. 

Thus, the function ℎ𝜃(𝑥) must satisfy 0≤ ℎ𝜃(𝑥) ≤ 1. The function will give out the 

probability that an output is 0 or 1 (Y.Liu, et al., 2017; Ding, et al., 2017). Any probability 

greater or equal to 0.50 suggests an output of 1 (ℎ𝜃(𝑥) ≥ 0.5 → 𝑦 = 1), and any 

probability that is less than 0.50 suggests an output of 0 (ℎ𝜃(𝑥) < 0.5 → 𝑦 = 0). The 

cost function for logistic regression is defined as: 𝐽(𝜃) =  
1

𝑚
∑ 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖))𝑚

𝑖=1  

where 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = -log (ℎ𝜃(𝑥)) if the output value y = 1 or 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) 

= -log (1 − ℎ𝜃(𝑥)) if the output value y = 0. The simplified cost function that 

accommodates both values of y = 1 and y = 0 is defined as follows: 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) 
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= -(y) log (ℎ𝜃(𝑥)) – (1-y) log (1-ℎ𝜃(𝑥)). Notice that both (y) and (1-y) are added to the 

equation such that if y = 0 then: 

𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = -(y) log (ℎ𝜃(𝑥)) – (1-y) log (1-ℎ𝜃(𝑥)) 

                                       = -(0) log (ℎ𝜃(𝑥)) – (1-0) log (1-ℎ𝜃(𝑥)) 

                                       = -log (1 − ℎ𝜃(𝑥))  

And if y = 1 then: 𝑐𝑜𝑠𝑡(ℎ𝜃(𝑥(𝑖)), 𝑦(𝑖)) = -(y) log (ℎ𝜃(𝑥)) – (1-y) log (1-ℎ𝜃(𝑥)) 

                                       = -(1) log (ℎ𝜃(𝑥)) – (1-1) log (1-ℎ𝜃(𝑥)) 

                                       = -log (ℎ𝜃(𝑥)) 

Thus, the addition of (y) and (1-y) to the simplified cost function equation of logistic 

regression would not affect the results. The simplified cost function of logistic 

regression is therefore defined as: 

 𝐽(𝜃) =  
−1

𝑚
∑ [(𝑦(𝑖))log (ℎ𝜃(𝑥(𝑖))) +  (1 − 𝑦(𝑖)) log (1 −𝑚

𝑖=1

ℎ𝜃(𝑥(𝑖)))]. 

(2.6) 

The logistic regression in this study is used as one of the base models of stacking 

ensemble method. The logistic regression model learns the training dataset. The next 

subsection discusses the support vector machine model. 

2.10.2. Support Vector Machine (SVM) 

The logic behind SVM is derived from logistic regression and sigmoid function to 

classify the output as either 1 or 0. To explain the support vector machine cost function, 

the logistic regression cost function formula and sigmoid function formula, which are 

explained in detailed from logistic regression section, are tackled first (Pushpa & Malini 

2017, pp. 255 – 258; Andropov, et al. 2017, pp. 1 – 6; Srivastava, et al. 2016, pp. 1 – 

4; Liu, et al. 2017, pp. 1 – 6; Pavlyshenko 2016, pp. 1 - 5). The sigmoid function is 

defined as follows: ℎ𝜃(𝑥) = 𝑔(𝑧), where z = 𝜃𝑇𝑥. Thus, 𝑔(𝑧) =  
1

1+𝑒−𝑧. 

SVM is illustrated pictorially if Figure 2.2. 
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Figure 2.2: An illustration of Support Vector Machine. 

The LR loss function is defined as follows: 

 𝐽(𝜃) =  −[(𝑦)log (ℎ𝜃(𝑥)) + (1 − 𝑦) log (1 − ℎ𝜃(𝑥)]  

           = −(𝑦)log (ℎ𝜃(𝑥)) −  (1 − 𝑦) log (1 − ℎ𝜃(𝑥)] 

If the output value is y = 1, then the cost function is −ylog(ℎ𝜃(𝑥)), the goal is for 𝜃𝑇𝑥 

to be much greater than 0 (𝜃𝑇𝑥 >> 0). If the output value is y = 0, then the cost function 

is −ylog(1 −  ℎ𝜃(𝑥)), The goal for 𝜃𝑇𝑥 to be much lesser than 0 (𝜃𝑇𝑥 << 0). (𝜃𝑇𝑥 >>

0) is the cost of z when y = 1 and it is denoted as 𝐶𝑜𝑠𝑡1(𝑧), and (𝜃𝑇𝑥 << 0) is the cost 

of z when y=0 and it is denoted by 𝐶𝑜𝑠𝑡0(𝑧). From logistic regression, −log(ℎ𝜃(𝑥𝑖)) 

will be replaced with 𝐶𝑜𝑠𝑡1(𝜃𝑇𝑥(𝑖)) and −ylog(1 −  ℎ𝜃(𝑥(𝑖))) with 𝐶𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖)). If C = 

1

⋋
 and both m’s cancel each other, then the simplified minimum cost function for 

support vector machine is:  

 𝐽(𝜃) = C∑ [𝑦(𝑖)𝐶𝑜𝑠𝑡1(𝜃𝑇𝑥(𝑖))  + (1 − 𝑦(𝑖))𝐶𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖)) ]  +𝑚
𝑖=1

 
1

2
∑ 𝜃𝑗

2𝑛
𝑖=1    

(2.7) 

In this study, the support vector machine is used as one of the base models of stacking 

ensemble method. The support vector machine model will learn the training dataset. 

The artificial neural network model is discussed in the section that follows. 

2.10.3. Artificial Neural Networks (ANN) 

The ANN algorithm is designed to imitate the functionality of the human brain where 

the input values are called dendrites and the output values are called are called axons 

(Rout, et al. 2017, pp. 1 – 6; Miholca & Onicaş 2017, pp. 1 - 8). The dendrites represent 

the input features 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 of the problem (Basheer & Hajmeer 2000). The 
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hypothesis for ANN uses logistic function (Pushpa & Malini 2017, pp. 255 – 258; 

Andropov, et al. 2017, pp. 1 – 6; Srivastava, et al. 2016, pp. 1 – 4; Liu, et al. 2017, pp. 

1 – 6; Pavlyshenko 2016, pp. 1 - 5); and it is defined as follows: ℎ𝜃(𝑥) = 𝑔(𝑧), where 

z = 𝜃𝑇𝑥. Thus, 𝑔(𝑧) =  
1

1+𝑒−𝑧
. 

Sometimes the dendrites include the input node 𝑥0, which is also known as bias unit, 

and is always equal to 1. The ANN hypothesis is composed of input layer, intermediate 

layer or layers also known as hidden layers, and the output layer (Andropov, et al. 

2017, pp. 1 - 6). The hidden layers of the ANN nodes are denoted by 𝛼𝑖
(𝑗)

, where “i” 

represents the unit number and “j” represent the layer number. 

The regularised cost function is defined as follows: 

 
𝐽(𝜃) =  

−1

𝑚
∑ ∑[(𝑦𝑘

(𝑖)
) log (ℎ𝜃(𝑥(𝑖)))

𝑘
+  (1 − 𝑦𝑘

(𝑖)
) log (1

𝐾

𝑘=1

𝑚

𝑖=1

− log (ℎ𝜃(𝑥(𝑖)))
𝑘

)]  +
−1

𝑚
 ∑ ∑ ∑ (𝜃𝑗,𝑖

(𝑙)
)2

𝑆𝐿+1

𝑗

𝑆𝐿

𝑖

𝐿−1

𝐿
 

(2.8) 

where K = is the number of axons (output). 

             L = is the total number of layers in the ANN; and 

            𝑆𝐿 = is the number of units in layer 1 excluding the bias unit (𝑥0). 

The Figure 2.3 is pictorial representation of ANN. 

 

Figure 2.3: A depiction of Artificial Neural Network 

The ANN cost function is actually the logistic regression cost function with the double 

summation to simply add up the cost calculated for each cell in the output layer. In this 

research study, the ANN is used as one of the base models of stacking ensemble 

method. The ANN model learns the training dataset. The k-nearest neighbour model 

is discussed in the following section. 



36 
 

2.10.4. K-Nearest Neighbour (KNN) 

The KNN algorithm involves determining the relationship between x and y when given 

data with training sample (x, y) (Pushpa & Malini 2017, pp. 255 – 258; Vipani, et al. 

2017, pp. 1 - 5). The aim is to learn the algorithm such that when given an unseen 

value of x the algorithm can confidently predict the output y value that corresponds to 

the x value. k-NN is essentially designed to classify the unseen value of x by 

calculating the distance of the nearest class (Pushpa & Malini 2017, pp. 255 – 258; 

Vipani, et al. 2017, pp. 1 - 5).  Measures such as Manhattan, harming, Chebyshev, 

Euclidean distance are used to compute the distance. The most widely used measure 

is the Euclidean distance (Pushpa & Malini 2017, pp. 255 – 258; Vipani, et al. 2017, 

pp. 1 - 5). The following equation is a definition of the Euclidian distance function: 

 d(x,𝑥 ,) = √(𝑥1 − 𝑥1
, )2 + (𝑥2 − 𝑥2

, )2 + ⋯ +  (𝑥𝑛 − 𝑥𝑛
, )2 (2.9) 

the k-NN classifier is performed using two steps (i.e. positive integer k and a similarity 

metric d) when given unseen value of x. The algorithm runs through the dataset 

capturing the similarity metric d between each training sample (x, y) and the input 

value of x. The k points of the training sample that are closer to input value x are stored 

in a separate container (e.g. set A). The conditional probability is predicted for each 

class with an indicator function 𝐼(𝑥), which predicts the output value y = 1 if the 

transaction is fraudulent or y = 0 if the transaction is not fraudulent. The conditional 

probability for each class with an indicator function 𝐼(𝑥) is defined as: 

 
𝑃(𝑦 = 𝑗| 𝑋 = 𝑥) =  

1

𝑘
∑ 𝐼(𝑦(𝑖) = 𝑗)

𝑖∈𝐴

 
(2.10) 

The KNN technique pictorially is illustrated in figure 2.4. 
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Figure 2.4: An illustration of the K-Nearest Neighbour technique. 

In this study, the KNN is used as one of the base models of stacking ensemble method. 

The KNN model will learn the training dataset. The Naïve Bayesian model is discussed 

in the sub-section that follows. 

2.10.5. Decision Tree (DT) 

The DT is a data mining modelling technique for partitioning data into subsets based 

on the categories of input variables (Manjaramkar & Kokare 2017, pp. 1 – 4; Chaaya 

& Maalouf 2017, pp. 1 – 7; Zakerian, et al. 2017, pp. 1 - 6). This is a modelling 

technique presented in a tree-like structure which plays a crucial role that assists in 

the understanding of the path taken by decision makers when making an informed 

decision. After using historical data to learn the DT model, ways in which the model 

decides the class of the credit card transaction can be derived. The DT model is used 

as a classifier model to predict the output class of future credit card transactions. The 

Figure 2.5 is a pictorial representation of the DT model. 

 

Figure 1.5: A depiction of the Decision Tree. 
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The DT model analyses the given data with the hope of finding the one variable that 

divides data into different logical groups (Manjaramkar & Kokare 2017, pp. 1 - 4). The 

decision tree models are widely used because they are easy to understand and 

interpret. DT model are known for handling missing values well (Chaaya & Maalouf 

2017, pp. 1 – 7; Zakerian, et al. 2017, pp. 1- 6). Therefore, if a dataset contains missing 

values and people are interested in a quick and easily interpretable and 

understandable answer, it is important to use a DT. The next detection technique 

discussed is the Naïve Bayesian. 

2.10.6. Naïve Bayesian (NB) 

The NB classifier is based on the Bayes theorem (Han, et al. 2015, pp. 1 – 4; Katkar 

& Kulkarni 2013, pp. 1 - 6). Bayes theorem is named after Thomas Bayes and it is 

based on conditional probability (Meiping 2009, pp. 1 - 4). Conditional probability is 

the probability that predicts the outcome, given some conditions or events that have 

occurred (Han, et al. 2015, p. 1 – 4; Katkar & Kulkarni 2013, pp. 1 - 6). The function of 

the conditional probability as follows: 𝑃(𝐴\𝐵) =  
𝑃(𝐵\𝐴)×𝑃(𝐴)

𝑃(𝐵)
, where 

P(A) is the likelihood of the hypothesis A being correct; P(B) is the likelihood of events 

that have occurred; P(B\A) is the likelihood of the hypothesis given an event that has 

occurred; and P(A\B) is the likelihood of the hypothesis given an event that has 

occurred. The Naïve Bayesian technique is depicted if Figure 2.6. 

 

Figure 2.2: A depiction of the Naïve Bayesian technique. 

Since the naïve Bayes classifier uses the Bayes theorem, the classification model 

predicts the likelihood of an input data record belonging to a particular class. The input 

records are likely to belong to a class with the highest likelihood value. The naïve 
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Bayesian classifier is used as one of the base models of stacking ensemble method. 

The naïve Bayesian classifier model will learn the training dataset.  

In this research study, the stacking ensemble method uses the various state-of-the-

art algorithms for covering a variety of credit card transaction. The stacking ensemble 

method improves the predictive capabilities of the data model by voting the class of 

each transaction using the state-of-the-art techniques. The stacking ensemble 

technique is used to generate new dataset from model that poorly predict the output 

of credit card transactions. The weights of new generated dataset are adjusted to 

improve the predictive capability of the model. The next section provides details works 

related to fraud prevention technologies. 

2.11. Related Works in Fraud Prevention Technologies 

Credit card fraud is a criminal activity that financially benefits an individual or group of 

individuals. It is deliberately carried out by individuals working against the law. Fraud 

prevention technologies have been used in the banking industry for a long time to 

prevent fraudulent transactions. However, since fraud masters are adaptive, they 

normally find a way around credit card prevention technologies.  

Credit card fraud detection within the banking industry is an evolving discipline for 

detecting non-preventable fraudulent transactions. Machine learning and statistics are 

two broad fields that have demonstrated their effectiveness in fraud detection. 

Common state-of-the-art statistical and machine learning techniques for classification 

problems utilized for the fraud detection of the credit card transactions include 

techniques such as LR, ANN, SVM, decision tree, k-NN and outlier detection (Malini 

& Pushpa 2017, pp. 1 – 4; Ganji 2012, pp. 1 – 5; Das, et al. 2017, pp. 1 – 4; 

Manjaramkar & Kokare 2017, pp. 1 – 4; Liu, et al. 2017, pp. 1 – 6; Mao, et al. 2017, 

pp. 1 - 8). 

Given a dataset, some classification techniques are more successful at detecting 

future credit card fraudulent transactions than others. These classification techniques 

need historical data for the effective prevention of future credit card transactions. 

However, historical data is usually accompanied by challenges associated with 

imbalanced data, whereby the percentage of illegal transactions is far lower than the 
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percentage of legal transactions (Gosain & Sardana 2017, pp. 79 – 85; Matsuda & 

Murase 2016, pp. 349 – 354; Pengfei, et al. 2014, pp. 217 - 222). 

To address the issue of imbalanced data, techniques such as oversampling of the 

class of minority data observations and under-sampling of the class of majority data 

observations are used. In this research study, oversampling techniques such as safe-

level Synthetic Minority Oversampling Technique (SL-SMOTE) and Synthetic Minority 

Oversampling Technique (SMOTE) are used to generate synthetic data observations 

between the two data observations of the minority class. SMOTE and SL-SMOTE are 

sampling methods which oversample the minority class by computing median features 

vectors between nominal features sample and its potential nearest neighbours through 

Euclidean distance of standard deviations (Chawla, et al. 2002, pp. 321 - 357). 

However, SL-SMOTE generates synthetic data observations between the two data 

observations at the safe level of the minority class. The use of SL-SMOTE and SMOTE 

have been successful (Bunkhumpornpat & Subpaiboonkit 2013, pp. 570 – 575; Gosain 

& Sardana 2017, pp. 79 – 85; Bunkhumpornpat, et al. 2011, pp. 1 – 4; Meidianingsil, 

et al. 2017, pp. 1167 – 1171). 

The concept of the stacking ensemble method is the specialization of machine learning 

that takes different machine learning techniques and allows them to vote for an output. 

The stacking ensemble method has previously been implemented for voting the output 

using weighted voting and majority voting (Ali, et al. 2015, pp. 211 – 216; Li & Wang 

2017, pp. 73 – 77; Dalvi & Vernekar 2016, pp. 1747 - 1751). However, this research 

study is against the usage of majority voting for a binary classification problem on the 

bases that a model with 10% predictive accuracy percentage cannot be treated 

similarly with a model with 90% predictive accurate predictive accuracy percentage 

when voting the output. For this reason, weighted voting is used for final voting of 

transactions in this research study. The usage of weighted voting is widespread (Ali, 

et al. 2015, pp. 211 – 216; Mu, et al. 2005, pp. 2661 – 2666; Li & Wang 2017, pp. 73 

- 77). 

The weights for classifier models per transaction must be high for a class that performs 

well, and low for a class that does not perform well. This means that selection of the 

appropriate weights of votes for each class per classifier is very important. To select 

the appropriate weights of classifier models, Differential Evolution (DE) method is used 
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to search for optimum weights is used in this research study. DE is a stochastic method 

for optimization that is simple in structure but efficient for global numerical optimization 

(Funaki & Takagi 2011, pp. 287 - 290). Literature evidence on the successful 

application of DE is plentiful (Bouteldja & Batouche 2017, pp. 1 – 8; Domingo, et al. 

2013, pp. 105 – 111; Hui & Suganthan 2013, pp. 135 – 142; Funaki & Takagi 2011, 

pp. 287 - 290; Goudos, et al. 2016, pp. 1 - 4). 

Once the prediction of transaction is made, the model must be evaluated. Various 

studies have used accuracy score for computing the accuracy of the classifiers (Zaza 

& Al-Emran 2015, pp. 275 – 279; Nizar, et al. 2008, pp. 1 – 8; Mei & Jiang 2016, pp. 

301 – 305; Singh, et al. 2015, pp. 388 - 393). The model accuracy score is the count 

of correctly predicted transactions over the total count of transactions (Singh, et al. 

2015, pp. 388 - 393). In simple terms, the number of fraudulent transactions classified 

correctly and the number of non-fraudulent transactions classified correctly cannot be 

derived from the accuracy score.  

The actual accuracy score of the model is obtained through the correct prediction of 

the balance between the percentage of fraudulent and non-fraudulent transactions. 

The aim is to build a classification model that equally represents both fraudulent and 

non-fraudulent classes. Accordingly, to evaluate the classification model, this research 

study computes the confusion matrix evaluation method on the values of fraudulent 

and non-fraudulent classes. The confusion matrix shows the number of true positives 

(TP), true negatives (TN), false positives (FP) and false negatives (FN) predicted 

transactions (Rajak & Mathai 2015, pp. 1 - 4).  

The number of true positive (TP) transactions is the number of output transactions that 

the base classifier has predicted as being fraudulent when they were in fact fraudulent. 

Similarly, the count of true negative (TN) transactions is the count of output 

transactions that the base classifier has predicted as being non-fraudulent when they 

were in fact non-fraudulent, the count of false positive (FP) transactions is the count 

of output transactions that the base classifier has predicted as being fraudulent when 

they are non-fraudulent, and the count of false negative (FN) transactions is the count 

of output transactions that the base classifier has predicted as being non-fraudulent 

when they are in fact fraudulent.The confusion matrix evaluation method has been 
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applied successfully by (Rajak & Mathai 2015, pp. 1 – 4; West & Bhattacharya 2016, 

pp. 1796 - 1801). 

2.12. Summary 

The rate at which fraudsters continue to commit fraudulent transactions given 

advanced data analytics models to detect fraudulent transactions is growing 

continuously. This conveys the existence of an unknown gap between the knowledge 

of customers and the techniques of fraudsters, which fraudsters diligently exploit in 

order continue to committing fraudulent transactions. 

The standard machine learning algorithms that achieve higher accuracies tend to 

classify all transactions as the majority class that is always non-fraudulent transactions 

especially when data is huge and fraudulent transactions are low in terms of numbers. 

This implies poor predictive accuracy of fraudulent transactions (which is the subject 

of this research study) since the two classes of transactions are overlapping. 

Consequently, the need for elimination of high variance and biasness of data 

distribution, tuning of the data models, and combining predictive capabilities of data 

analytics methods to improve predictive accuracy was identified as a research gap 

that can be addressed by this research study. The research design and methodology 

to address the research gap is explained in Chapter 3 of this research study.  
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3. Chapter 3: Research Methodology 

The methodology section describes the procedures that were followed to fulfil the 

research objectives of this study. After defining the data source systems and collecting 

data from the source systems, pre-processing of the data, which involved data 

preparation, missing data values, normalization, feature selection, and imbalance of 

data distribution sections were undertaken. Lastly, explanatory data analysis for data 

understanding and for data mining to uncover the unknowns was undertaken prior to 

data modelling involving base models, weighted voting stacking ensemble method, 

and differential evolution optimization methods.  

The key word algorithm and method are used interchangeably throughout the research 

study. In the next section, the data source system of the study is discussed. 

3.1. Data Source 

This research is designed as one possible solutions to big data challenges faced by 

South African banks. Several e-mails sent to South African banks requesting the 

dataset. (Pushpa & Malini 2017) have highlighted that banks do not encourage the 

sharing of the data for experimental purposes due to the confidentiality of credit cards 

information. 

To model, evaluate and deploy the approach proposed in this research study, the 

Kaggle machine learning competition data repository (Kaggle 2018) was used as a 

source system through which dataset to achieve research objectives were collected. 

The dataset was chosen because it is the credit card dataset and the dataset contains 

the actual transactions performed by credit card users. The link to the Kaggle machine 

learning competition data repository dataset is as follows:  

https://www.kaggle.com/mlg-ulb/creditcardfraud 

The Kaggle machine learning competition data repository dataset available for 

experimental purpose was transformed to hide credit card users’ private information. 

However, the time and the amount were not transformed. The time and the amount 

features correlate with the South African banking sector’s dataset such that the slip of 

each and every transaction shows the time and the transaction amount. However, the 

time and the transaction amount may not be sufficient enough to correlate the dataset 

https://www.kaggle.com/mlg-ulb/creditcardfraud
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from the Kaggle machine learning competition data repository and the dataset 

generated by the South African banks.In the next section, data preparation for this 

research study is discussed. 

3.2. Data Preparation 

The first step involved importing the dataset in csv file format. To import the csv file, a 

pandas package was used with pd as its alias. When a pandas package was imported, 

the defined function shown below was used for importing the dataset into Jupyter 

notebook editor, and the class feature values of the dataset were thereafter separated 

from the rest of the features. 

def Import (): 

    read = pd.read_csv('creditcard.csv', sep = ',') 

    Class = read['Class'] 

    Data = read.loc[:, read.columns != 'Class'] 

    return Data, Class 

 

The Data and Class of Import function was used to separate the dataset into a testing 

data and a training data. The function shown below demonstrates how the Data and 

Class data was used to split the dataset, normalized the Time and the Amount in the 

dataset, and combined the features of the training dataset with the training dataset 

class values and called it a Training_data. 

def split_data(Data, Class): 

X_train, X_test, y_train, y_test = train_test_split(Data, Class,  

test_size=0.3) 

X_train['Time'] = 

StandardScaler().fit_transform(pd.DataFrame(X_train[['Time']])) 

X_train['Amount'] = 

StandardScaler().fit_transform(pd.DataFrame(X_train[['Amount']])) 

    Training_data = pd.DataFrame(X_train) 

    Training_data['Class'] = y_train 

    return X_train, X_test, y_train, y_test, Training_data 

Since the class distribution was highly skewed, the training dataset was balanced such 

that there was an equal representation of both classes on the dataset. The 

Training_data from the above function was used for balancing of the dataset. To 

balance the dataset, the data observations were separated according to their class 

values. The function _separator shown below was used to separate the data 

observations. Whereas the Training_data0 represented the non-fraudulent 

transactions, which were the majority class data observations, the Training_data1 

represented fraudulent transactions which were the minority class data observations. 
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def _separator(Training_data): 

    Training_data0 = [] 

    Training_data1 = [] 

    for ind in range(len(Training_data)): 

        if Training_data.iloc[ind][-1] == 0.0: 

            Training_data0.append(Training_data.iloc[ind]) 

        else: 

            Training_data1.append(Training_data.iloc[ind]) 

    return Training_data0, Training_data1 

The credit card data contains transactions that were made in September 2013 by the 

European cardholders. This dataset is made up of 492 fraudulent transactions out of 

a total of 284 807 transactions that were made in two days. This means that this 

dataset is highly unbalanced with 0.17% of fraudulent transactions and 99.83% of non-

fraudulent transactions. The Training_data0, which constitutes the majority class, was 

used for down-sampling the data observations while the Training_data1 (i.e. the 

minority class) was used for oversampling the data observations. 

Due to confidentiality of the customers’ private information, this dataset was 

transformed using Principal Component Analysis (PCA) method to contain only 

numerical input values in order to hide the background information and the features of 

the dataset. This dataset consists of 28 principal components (V_1, V_2, …, V_28) 

which are the results of PCA transformation, and the feature Time and Amount that 

were not transformed. 

The dataset consisted of an additional feature called Class, which is the response 

variable of each transaction made by the customers. The response variable 1 denotes 

an illegal transaction; on the other hand, the variable response 0 denotes a legal 

transaction. The two features that were initially not transformed were transformed 

using the PCA method to normalise all variables of the dataset. 

3.3. Missing Values 

For the purposes of data quality checking, the dataset was tested for null values and 

the missing values in this study. The test results from the dataset showed that there 

were null values or missing values in the data; this is regarded as important for the 

data analysis. The dataset with no missing values says a lot about the legitimacy of 

the source systems. Since the dataset is cleaned and pre-transformed, it was not 

possible to make any conclusions regarding the legitimacy of the source systems. 

3.4. Data Normalization 



46 
 

Since some variables have small variance than others, the normalization of data is 

required to scale variables to have values of between 0 and 1. That being said, the 

dataset to achieve the research objectives consists of 28 principal component features 

that were transformed using PCA method, and two features that were not transformed. 

Thus, the two features which were not transformed were transformed with the PCA 

method to normalise the entire variables of the dataset. 

3.5. Feature Selection 

Since the data set is at this stage transformed with PCA and the original feature names 

of 28 vectors are unknown, the study performed a manual stacking ensemble method 

on 3 feature selection methods to select the relevant features that improves the results 

of the data model. The 3 methods of feature selection are univariate selection, 

recursive feature elimination, and feature importance. The similar features that were 

obtained by Univariate selection, feature importance, and recursive feature elimination 

were tested by a logistic regression classification model and evaluated by confusion 

matrix method.  

3.6. Imbalanced data 

The dataset was transformed by normalizing all feature vectors such that they have a 

scale of between 0 and 1. The normalization was undertaken to deal with the issue of 

feature vectors having different feature scales for solving a single problem. Feature 

vectors having different feature scales causes the data model to perform poorly. 

The data samples from the majority class that have similar variance introduce 

duplication of data sample. Thus, too many duplicates were eliminated from the 

dataset. Having too many duplicates of the data sample introduces data model 

learning one data sample more than the other data samples. The issue of data model 

learning one data sample many times other data samples introduce skewed learning 

of data samples. This means that the data model had more knowledge of highly 

duplicated data sample since their learning was repeated many times. Thus, the 

duplicate transactions were eliminated to have equal representation of each legal 

transaction.  
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To address the issue of skewed distribution: the under-sampling of majority class to 

eliminate skewed learning (which is formally known as biasness) and preserve as 

much knowledge as possible was computed together with the Safe-Level SMOTE 

oversampling method. The Safe-Level SMOTE is an important oversampling of 

minority class because it does not duplicate minority training samples; it instead 

introduced new possibilities of the minority class. That is to say, Safe-Level SMOTE 

introduced new possibilities of the minority class. SMOTE introduced new possibilities 

of abnormal behaviours of credit card fraudsters. 

 

The dataset with low biasness and low variance eliminates issues such as overfitting 

the data model, under-fitting the data model, and overlapping data samples. Safe-

Level SMOTE oversampling method was implemented as follows: 

 

 The standard deviation median of the continuous features of the class of 

minority data observations, which in this case were fraudulent transactions, 

were computed. For nominal features, the median was computed by finding the 

Euclidean distance between a data observation and its potential nearest 

neighbours. 

 The nearest neighbour between the feature vector and other feature vectors in 

the class of minority data observations in the continuous feature space was 

computed. That is to say, for every vector, a median of the standard deviation 

between a feature vector and its potential nearest neighbour was included. 

3.7. Visualisation 

PCA is a feature reduction technique that compresses dataset using a linear algebra 

method. PCA reduction technique is transformed by choosing the number of 

dimensional vector spaces or principal components in the transformed results. In this 

study, 2 was selected as the number of components in order to visualize the logistic 

regression classifier into 2-dimensional vector space. The logistic regression was 

visualised on balanced class distribution based on features selected from a manual 

stacked ensemble method. 
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3.8. Explanatory Data Analysis 

This is an important section of the study, which describes an approach to data 

analysis. The Amount and Time were the only known features of the dataset. V1, V2, 

…, V28 were the additional features of the dataset that were transformed using PCA 

method to hide the origin of the dataset. The scatter plot visual illustrated in Figure 3.1 

is the correlation between the transaction amount and Time spent on transaction. 

 

Figure 3.1: Correlation between the transaction amount and Time 

 

The Time vs Amount scatter plot visual reflected the sophistication of credit card 

fraudsters. The green data points are non-fraudulent transactions, and the red data 

points are fraudulent transactions. The time spent performing a fraudulent transaction 

was in the same domain as the time spent performing a non-fraudulent transaction, 

and the amount spent on fraudulent transaction was in the same domain as the 

amount spent on non-fraudulent transaction. As observed in Figure 3.1, many of the 

data points are at y = 0 in relation to time; this suggests that the time feature was not 

in the transactions performed. 

The heat-map of feature correlation (see Figure 3.2) indicates strongly correlated 

features. The selected features are strongly related and have a correlation value that 

is greater than 0.4 and -0.4. Using the heat-map, the features found to be strongly 

correlated were identified as Time & V3, which possess a correlation value of -0.53. 
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The pictorial presentation of the correlated features provided insight on how fraudulent 

transaction could be separated from non-fraudulent transaction. 

 

Figure 3.2: Heatmap of Feature Correlation. 

The correlation between the amount and the transformed feature V2, which is 

illustrated in Figure 3.3, shows how some of fraudulent transactions can be separated 

from non-fraudulent transactions. Whereas the green data points are non-fraudulent 

transactions, and the red data points are regarded as fraudulent transactions. The 

positive side of V2 showed more fraudulent transaction, and the negative of V2 

showed more non-fraudulent transactions. However, many of the fraudulent data 

points were at y = 0, suggesting that the fraudulent transactions have less to do with 

the transaction amount. 
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Figure 3.3: Correlation between the transaction amount and V2. 

The correlation between the Time and the transformed feature V3, which displayed in 

Figure 3.4 also paints a picture of how some of fraudulent transaction can be 

separated from non-fraudulent transactions. As in the Figure 3.3, the green and red 

data points are non-fraudulent and fraudulent transaction respectively. In addition, 

while the positive side of V3 showed more non-fraudulent transactions, the negative 

side of V3 showed a near balance between fraudulent transactions and non-fraudulent 

transactions. However, a V3 of -5 and -32 and a Time of between 5000s and 3000s 

and 90000 and 100000 indicated a high number of outliers relating to fraudulent 

transactions than those of non-fraudulent transactions. 

 

Figure 3.4: Correlation between the V3 and Time. 
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According to Figure 3.5, which shows a series of correlations between an Amount and 

all other features of the dataset, indicate a generally linear relationship. Interestingly, 

a lot of data points were observed at y = 0 and x = 0 indicating the absence of the 

features. A decision was taken to eliminate the data points that do not add any value 

to the correlation visuals. However, for the sake of preserving as much information as 

possible about the transactions, a decision was taken not to eliminate data points at x 

= 0 and y = 0, since the dataset contains many unknown features. 

 

 

 



52 
 

 

 

Figure 3.5: Scatter plot correlations between Amount and all other features. 

3.9. Data Model Selection and Training 

The individual base model classifiers for the stacking model should be powerful and 

as diverse as possible in order to cover the scope of the problem and as many 

anomalies as possible within the problem domain. The ANN, SVM, KNN, and the 

decision tree were chosen to represent the diversity of base models in this study in 

order to covers the problem domain. The algorithms were chosen because they are 

popular, powerful, widely used, and vary in performance. The first algorithm that is up 

for discussion is artificial neural network.  

3.9.1. Artificial Neural Network (ANN) Method 

The training process adopted for this study used a training sample of size N [(𝑥1, 𝑦1,), 

(𝑥2, 𝑦2), …, ( 𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by 

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the 

customers (the class labels are either fraudulent or non-fraudulent).  

The main technical challenge associated with ANN was to find the number of hidden 

layers and the training parameters that produces a good performing model. The 
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number of ANN’s hidden layers and training parameters for the best average accuracy 

was accomplished by running a nested loop that loops through the number of hidden 

layers and the number of epochs; the best performing number of epochs and hidden 

layers were chosen to train the ANN model using the entire training dataset. 

After training the ANN model with the training dataset, the testing data was used to 

test how well the classifier could separate fraudulent transactions from non-fraudulent 

transactions. 

3.9.2. Support Vector Machine (SVM) Method 

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,), 

(𝑥2, 𝑦2), …, ( 𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by 

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the 

customers (the class labels are either fraudulent or non-fraudulent). The main 

technical challenge encountered with the support vector machine was to find the best 

training parameters that produce very good performing support vector machine model.  

The grid search method to search for optimal parameters was adopted for this 

research study. The optimal parameters are C and gamma for best training the model 

looking at the nature of the credit card dataset. Gamma is a free parameter of RBF 

(Radial Basis Function) kernel function, and C is a parameter regularization for a soft 

margin of a cost function. The optimal SVM parameters were used to train the SVM 

model with the entire training dataset. 

After training the SVM model, the testing dataset were used to establish how well the 

model can separate fraudulent transactions from non-fraudulent transactions. 

3.9.3. Decision Tree (DT) Method 

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,), 

(𝑥2, 𝑦2), …, ( 𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by 

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the 

customers (the class labels are either fraudulent or non-fraudulent).  

The main technical challenge encountered with training the decision tree model was 

to find the training parameters that produce a good performing model. For decision 

tree parameter settings, random search and grid search were used, and the search 
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method that produces good results in a lesser period of time was used to train the 

entire training dataset. 

After the decision tree model was trained with the training data, the testing data was 

used to establish how well the model could separate fraudulent transactions from non-

fraudulent transactions. 

3.9.4. k-Nearest Neighbour (KNN) Method 

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,), 

(𝑥2, 𝑦2), …, ( 𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by 

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the 

customers (the class labels are either fraudulent or non-fraudulent). The main 

technical challenge with KNN was to find the value of K that produces a good 

performing KNN model.  

A manual selection of K value from 1 up until the value of 7 was performed, and the 

best performing K value was selected to train the KNN model using the training data. 

The Testing data was used to test how well the KNN method can separate fraudulent 

transactions from non-fraudulent transactions. 

3.9.5. Naïve Bayesian (NB) Method 

The training process of the research study used the training sample of size N [(𝑥1, 𝑦1,), 

(𝑥2, 𝑦2), …, ( 𝑥𝑁 , 𝑦𝑁)], where 𝑥(1,..,𝑁) denotes credit card transaction performed by 

customers, and 𝑦(1,..,𝑁) denotes the class labels for each transaction performed by the 

customers (the class labels are either fraudulent or non-fraudulent). The main 

technical challenge with the Naïve Bayesian method was to find the statistical data 

distribution method for estimating the probability distribution of the input values when 

given the training dataset output values. 

The normal (gaussian) data distribution method was used for estimating the probability 

distribution of the input value from the training data output values. The Testing data 

was used to test how well the NB model could can separate fraudulent transactions 

from non-fraudulent transactions. 



55 
 

3.9.6.  Stacking Model 

Stacking ensemble method is a technique that takes the output values of machine 

learning algorithms defined in subsections 3.9.1 - 3.9.5 to vote the final output of each 

credit card transaction. In this research study, the voting method used in the stacking 

ensemble method is the weighted voting. 

Weighted voting is a voting system in which different base models are given different 

weighting for decision making purposes (Smolyakov, 2017). Basically, some base 

models have more influence than others. For example, one base model may have 

57% score for predicting the outcome of a particular dataset, and another base model 

has achieved a score of 90% for predicting the outcome of the same dataset.  

When using a majority voting system, it is realistic to say this will cause conflict in 

many cases whereby the first base model incorrectly classified a data sample and the 

second base model correctly classified a data sample. Thus, the majority voting 

system is not significant when using two base models. In a case where there is a 

conflict, a third base model is added and it becomes the decider. The higher the 

predicting score of the decider model the better the chance of the classifier adding 

value to the decision making of the stacking model. 

Majority voting is a voting in which all the base model classifiers have equal voting 

regardless of their weighting (Smolyakov, 2017). According to the majority voting, a 

base model with a predictive score of 10% should have equal voting rights as the base 

model with a predictive score of 98%, which logically does not make sense because 

the difference between 98% and 10% is 88%, and not 50% used for assigning the 

weight of the voting. 

Unlike the majority voting, every model of weighted voting plays a role in making the 

final decision on the classification of a data sample. The weighting voting applied in 

this research study was based on predictive score of each base model. Although the 

predictive score was used to assign weights of votes per classifier for the binary 

classes, appropriate selection of the weights of votes for the binary classes was 

considered important. Thus, appropriate weighting of votes was deemed an 

optimization issue. The choice of the optimizer was regarded as being important 

because the chosen optimizer was expected to be able to correct the incorrect weights 
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of votes for the binary classes. In this research study, differential evolution method 

was chosen as the optimizer for correcting the incorrect weights of votes. 

Differential evolution is a stochastic method of optimization that is simple in structure 

but efficient for global numerical optimization. Differential evolution optimizes a 

problem of incorrectly weighting of votes by maintaining a population of candidates 

with optimal weighting of votes and creates a new candidate with the best score on 

the optimization of incorrectly weighting of votes (Brest, et al. 2006, pp. 646 - 657; 

Srinivas, et al. 2018, pp. 216 - 217; Madathil, et al. 2017, pp. 1 - 5). It is expected that 

the stacking classifier model of the study will make predictions based on weighted 

voting on unknown credit card transactions. 

3.10. Evaluation of Data Models 

A good binary classification data model represents both the fraudulent class and the 

non-fraudulent class equally or nearly equal without any bias. Thus, the true accuracy 

of the classification data model will be achieved by computing the confusion matrix of 

fraudulent and non-fraudulent classes. When the true positive value of the confusion 

matrix of the fraudulent and non-fraudulent transaction classes are equal or close to 

each other, the accuracy percentage achieved by the model will be regarded as the 

true accuracy of the model.  

The machine learning algorithms discussed in subsections 3.9.1 - 3.9.5 are base 

models for stacking ensemble method. Each base model was coded from scratch and 

was computed with optimum hyper-parameter values using the training dataset. The 

testing dataset was used to assess the performance of each base model. 

To assess the performance of the base models, the accuracy function was designed 

by counting the correctly classified credit card transactions against the total number of 

transactions. However, the accuracy of the base models does not say much about the 

equal representation of correctly classified class values. The equal representation of 

correctly classified class values was achieved by computing the confusion matrix 

function. 

The confusion matrix output had four values, namely the true positive (TP) 

transactions, the false positive (FP) transactions, the false negative (FN) transactions, 
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and true negative (TN) transactions. The true positive (TP) transactions arose from 

the count of output transactions that was predicted by the base classifier as being 

fraudulent when they were in fact fraudulent. The false positive (FP) transactions are 

the number of output transactions that was predicted by the base classifier as being 

fraudulent when they were in fact non-fraudulent. The false negative (FN) transactions 

are the number of output transactions that was predicted by the base classifier as 

being non-fraudulent when they are in fact fraudulent. Lastly, the false positive (FP) 

transactions refers to the number of output transactions that was predicted by the base 

classifier as being fraudulent when they were in fact non-fraudulent. 

The evaluation of base models was based on the base models’ higher accuracy 

percentage while the true negatives (TP) and true positives (TN) were well 

represented in each base model. The higher percentage of TP and TN that were closer 

to each other when the false negative (FN) and false positive (FP) percentages were 

low symbolizes a well performing base model that was not biased. The well performing 

base models were used to vote the final prediction of each credit card transaction.  

The weighted voting method of the stacking ensemble method was used to vote the 

final output class values. The appropriate weights of the base models were achieved 

by computing a differential evolution stochastic optimizer method which converges to 

the optimum solution while searching the search space. The optimum solution were 

the appropriate weights of the base models. The appropriate weights of the base 

models were multiplied with the probabilities of each transaction of the base models 

and a logistic function was used to class the transactions. 

A confusion matrix was computed for the weighted voting stacking ensemble method 

with differential evolution stochastic optimizer method with a view to evaluate how well 

the class values were represented. The higher percentage of TP and TN that were 

closer to each other when the false negative (FN) and false positive (FP) percentages 

were low, thus symbolizing a well performing weighted voting stacking ensemble 

method with differential evolution stochastic optimizer method that was not biased. 

The base models of the stacking ensemble method outlined in subsections 3.9.1 - 

3.9.5 was designed from scratch using the object-oriented programming (OOP) data 

structure. In this research study, the weighted voting stacking ensemble method and 



58 
 

differential evolution stochastic optimization method were also designed from scratch. 

Thus, the design and documentation of all algorithms was required. The design of all 

algorithms is well documented in chapter 4. 

3.11. Tool Selection 

An open source tool called Python was used in this research study for performing data 

analysis and predicting future outcomes. Tools for data analysis include:  

 The computer system/ laptop with enough storage system for installing the 

requisite programming software and packages for achieving the objectives of 

this research study. The computer system/laptop was also used for storing and 

processing the dataset. 

 Internet connectivity has proven to be important for downloading and installing 

all the necessary requisite software and packages for accomplishing the study 

objectives of this research study. Internet connectivity also proved to be 

important when downloading the dataset required for computing the research 

study objectives. 

 Internet browser was used for accessing the repository in which the dataset to 

accomplish the objectives of this study was located. The internet browser was 

also used for running the Jupyter notebook (i.e. the editor for the python code). 

 The Anaconda setup was installed on the laptop. The Anaconda contains the 

Jupyter notebook, which is the editor through which the python 3 programming 

language was coded. 

 Other relevant packages such as NumPy, pandas, matplotlib, seaborn were 

installed on the laptop and were used for importing the dataset and for 

performing mathematical operations and data modelling, data manipulation and 

data visualization. 

3.12. The Final Model 

The Figure 3.6 below shows a flow of how the research objectives of this research 

study are carried out. The shaded dot indicates the begin of the flow chart, the arrows 

indicate the direction, the circle and square shapes indicate the activities, and the 

shaded dot with circle around indicates the end of the flow chart. 
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Figure 3.6: Credit card fraud model 

3.13. Summary 

In this chapter, a detailed description of the research design and methodology have 

been given. The experimental dataset from Kaggle machine learning competition data 

repository was used to fulfil the research objectives of this research. This chapter was 

ended off with the flow chart of how the research objectives of this research are carried 

out. The experimental algorithms to fulfil the research objectives are discussed in 

chapter 4 of this research study. 
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4. Chapter 4: Algorithm Design 

An algorithm represents a set of instructions that tell a computer system what to do. 

In this study, a set of instructions to fulfil the research objectives of this study were 

defined by the Jupyter notebook editor. The Jupyter notebook file and the dataset were 

stored in the same folder in order to avoid specifying the path to where the dataset 

was stored. 

Save for the decision tree algorithm, algorithms such as ANN, SVM, KNN, DT and NB 

were defined from scratch. The algorithms were used as base models of the weighted 

voting stacking ensemble method. The weighted voting stacking ensemble method 

was also defined from scratch to vote the final output of each transaction. The 

weighted voting of the final output for each transaction was computed using the 

differential evolution stochastic technique. The differential evolution stochastic 

technique was also defined from scratch with a view to obtain the optimum weights of 

the base models. 

The algorithms were defined to analyse the credit card dataset with the aim of 

overcoming the challenges of the classifier models. Challenges associated with 

machine learning classifiers include an inability to classify the fraudulent transaction 

correctly. Whereas some machine learning classifiers are good for classifying specific 

portions of the dataset, other machine learning algorithms are good for classifying 

other portions of the credit card dataset. Thus, weighted voting stacking ensemble 

method with differential evolution stochastic optimization method was designed to 

mainly overcome the challenges of the machine learning algorithms for detecting 

illegal credit card transactions. 

In the first section of this chapter, the data balancing methods were discussed. 

Balancing the dataset for binary classification problem means that two classes of the 

dataset must have equal representation so as to avoid biasness in the dataset. The 

data balancing method for down-sampling the majority dataset was for removing the 

duplicate data observation and randomly sample the data observations. The data 

balancing method for oversampling the minority class is selected from among SMOTE, 

SL-SMOTE, Modified SMOTE, and Modified SL-SMOTE. The Modified SMOTE and 

Modified SL-SMOTE are the algorithms designed in this study for modifying the 
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performance of the existing SMOTE and SL-SMOTE. The oversampling method with 

a superior performance was chosen to oversample the minority class of the credit card 

dataset when balancing the class distribution. 

The balancing of the dataset was followed by a feature engineering process. The 

feature engineering process is a process through which important features for decision 

making are selected for data modelling. Feature selection was followed by the 

construction of the weighted voting stacking ensemble model for weight voting the final 

output transactions. The weighted voting stacking ensemble model was followed by 

differential evolution method for the optimization of the weights of the stacking 

ensemble method. In the next sub-section, the balancing of class distribution of the 

dataset is discussed. 

4.1. Balancing the Dataset 

This section is focussed on how the class distribution was balanced. To balance the 

class distribution, the down-sampling of majority class was performed in order to 

decrease the number of data observation from the class of the majority data 

observations. The oversampling of data observation from the class of the minority data 

observations was performed to increase the data observations. 

To down-sample the class of the majority data observations, duplicate data 

observations were removed, and random sampling of the data observations was 

performed. The algorithm 1 in section 8.4 was used to remove duplicate data 

observations, and store data observations without duplicates in Training_data0_df. 

The pseudo-code below is the highlight of the algorithm 1 in section 8.4. 

Algorithm 1: Remove Duplicates in the Training Dataset 

Input: Training Dataset 

Output: Training Dataset without duplicates 

Begin 

1. Select the training dataset 

2. Get the size of duplicates 

3. Remove the duplicates 

4. Return the size of the duplicates and the training data without duplicates 

End of the function 
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The Training_data0_df was used for random sampling of data observations. The 

algorithm 2 in section 8.4 was used to demonstrate how the random data sampling is 

carried out. The 700 refers to the number of minority class data observations multiplied 

by two, since the minority class is also be oversampled. The pseudo-code below is the 

highlight of the algorithm 2 in section 8.4. 

Algorithm 2: Random Sampling 

Input: Training Dataset 

Output: Random Sample 

Begin 

Initial: reduced = [], index = [] 

1. For i = 1 to 700 do 

2.        ind = random integer value between 0 and the size of the training dataset 

3.        IF ind not in index 

4.             Then append ind into index 

5.                      Append training dataset row at ind into reduced 

6.        End IF 

7.        Else  
8.                i = i – 1 

9.        End Else 

10. Return reduced 

End of the function 

The randomly chosen data observations from Training_data_df were combined with 

the minority class. The algorithm 3 in section 8.4 was used to show how the 

Training_data_df and training_data (i.e. the minority class) are combined. The pseudo-

code below is the highlight of the algorithm 3 in section 8.4. 

Algorithm 3: Combine Training Dataset without Duplicates with Random Sample Dataset 

Input: Training Dataset without Duplicates, Random Sample Dataset 

Output: Combined Dataset 

Begin 

1. Combined Dataset = Random Sample Dataset 

2. Append Training Dataset without Duplicates into Combined Dataset 

3. Return Combined Dataset 

End of the function 

The recombination from the algorithm 3 in section 8.4 involves a combination of 

Training_data (i.e. the down-sampled dataset) and Training_data1 (i.e. the minority 

class of data observation). To balance the dataset, the minority class were 
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oversampled using Safe-Level-SMOTE, which introduced new minority class data 

observations.  

The SL-SMOTE method used the Euclidean-distance to compute the five nearest 

neighbours of the minority class and called it k. One of the five nearest neighbours 

was chosen at random, and was used to compute its five nearest neighbours and 

assigned them to n_neighbors. From k, the Safe-Level-SMOTE counted the number 

of positive instances and called it SLp. From n_neighbor, the Safe-Level-SMOTE also 

counted the number of positive instances and called it SLn.  

If SLn is not equal to 0, the Safe-Level ratio was computed by dividing SLp by SLn; 

instances where SLn equalled 0 the Safe-Level ratio were defined as infinity. If Safe 

Level ratio was not equal to infinity and SLp was not equal to 0, Safe-Level-SMOTE 

generates feature values for new data observation such that if Safe Level ratio was 

equal to infinity and SLp was not equal to 0 then feature value gap was equal to 0. If 

Safe Level ratio was equal to 1, the feature value gap was the randomly chosen value 

that was located between the value of 0 and 1, and if Safe Level ratio was found to be 

greater than 1 then the feature value gap was the randomly chosen value that was 

located between 0 and 1 / (Safe Level ratio). If Safe Level ratio was found to be less 

than 1, the feature value gap was the randomly chosen value that was located between 

(1 – Safe Level ratio) and 1.  

The feature value n_neighbor at index is i plus (gap multiplied by the difference 

between the k feature value at index i and n_neighbor feature value at index I) for all 

features. Feature values are appended to a list called feature, and feature represents 

a newly generated data observation and is appended to New_data list as a new 

instance of the minority class. The algorithm 4 in section 8.4 was computed to generate 

synthetic instances of the Safe Level SMOTE method. The pseudo-code below 

demonstrates the flow of the Safe Level SMOTE algorithm in section 8.4. 

Algorithm 4: Safe Level SMOTE 
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Input: Minority data observations-T, Size of new instance in percentage-N, 

Size of the nearest neighbours-K 

Output: I=(N/100)*count(T) – is the newly generated minority class instances of  

               size I – Synthetic-instances. 

Begin 

1. No-of-minority = count(T) 

2. No-new-Instances = I 

3. No-of-attributes = count(T[0] – 1 

4. Minority-instances = T 

5. Synthetic-instances= [] 

6. For each positive-instance in positive-instances: 

7.     Compute 5 neighbours of positive-instance and call it K. 

8.     Compute 5 neighbours of positive-instance and call it N. 

9.     Count number of positive instances in K and call it SLp. 

10.     Count number of positive instances in N and call it SLn. 

11.     If SLp != 0: 

12.         SL-ratio = SLp/SLn 

13.     Else: 

14.         SL-ratio = np.inf 

15.     If SL-ratio == np.inf AND SLp ==0: 

16.         Continue. 

17.     Else: 

18.         Feature = [] 

19.         For index in range(len(np.array(T)[0])): 

20.              If SL-ratio == np.inf AND SLp != 0: 

21.                  Gap = 0 

22.              Elseif SL-ratio == 1: 

23.                  Gap = np.random.uniform(0,1) 

24.              Elseif SL-ratio > 1: 

25.                  Gap = np.random.uniform(0,1 / SL-ratio) 

26.              Elseif SL-ratio < 1: 

27.                  Gap = np.random.uniform(1 - SL-ratio , 1) 

28.            difference = nnarray[nn][attribute] –  positive instance[attribute]. 

29.            Gap = generate random value between 0 and 1. 

30.            Synthetic-instances.append(positive - instance[attribute]+ difference * gap) 

31.  Append minority class value to Synthetic-instance. 

End of the function 

 

The oversampled minority class data observations were combined with the down-

sampled data observations from the majority class to form a balanced class 

distribution. However, the objective of SMOTE algorithm was violated by how the 

algorithm was designed. The design of SMOTE and Safe-Level-SMOTE algorithms, 

and the algorithms are rectified to meet their objectives are discussed in the next 

section. 

4.1.1. SMOTE vs Safe-Level-SMOTE 

The objective of SMOTE (Synthetic Minority Over-sampling Technique) is to create a 

new data observation between the two existing data observations of the minority class. 
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Instead of creating new data observation anywhere in the class of the minority data 

observations, a safe-level smote oversampling technique argues that the new data 

observation must be created between the two minority class data observations at the 

safe level. 

The SMOTE, SL-SMOTE, modified SMOTE, and the modified SL-SMOTE were used 

to oversample the data observations of the minority class of the dataset in combination 

with down-sampling method. Through the down-sampling method, the duplicates were 

removed and a non-duplicate data sample was randomly chosen from the class of the 

majority data observations in order to control the best-fit line to an optimum place that 

equally represents illegal transactions and legal transactions. A dataset with an equal 

representation of legal transactions and illegal transactions makes it easier for a 

classification model to thoroughly learn the data of the two classes.  

Thus, the SMOTE, SL-SMOTE, modified SMOTE, and the modified SL-SMOTE were 

tested by running ANN, SVM, NB and KNN algorithms. Whereas the SMOTE method 

is compared with the Modified SMOTE method in this section, the SL-SMOTE method 

is also compared with the corresponding Modified SL-SMOTE method. Thereafter, the 

Modified SMOTE method is compared with the Modified SL-SMOTE method.  

The objective of SMOTE algorithm is to create a new data observation between two 

existing data observations of the minority class (Chawla, et al. 2002, pp. 321 - 357). 

In this research study, it is argued that the logic used for generating new data instances 

using the SMOTE and Safe-Level SMOTE does not always generate a new data 

instance between two given data instances. 

The synthetic instance is generated by finding the difference between the attribute 

values of between the data instance of interest and its chosen nearest neighbour. The 

difference is multiplied by the gap consisting of a random value chosen between 0 and 

1. The multiplication of the difference and the gap is then added to the data instance 

of interest. 

Although this method works well, there are limitations associated with its objective. On 

the basis of the logic behind the mathematics of the discussed attribute loop of Safe-

Level SMOTE method, it is suggested in this study that if two data instances have 

values of opposite signs then the Safe-Level SMOTE algorithm would not generate a 
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new data instance that is between the two data instances, which violates the objective 

of SMOTE algorithm. The mathematical difference operation for the attribute loop of 

Safe-Level SMOTE changes to the addition operation when the values of the two data 

instances assume opposite signs. 

The Modified SMOTE algorithm shown below is a demonstration of the above claim 

using the attribute loop of SMOTE. The attribute loop of SMOTE is where the new data 

instance is generated between two data points. The algorithm 5 in section 8.4 was 

computed to generate synthetic instances of the SMOTE method. The pseudo-code 

below demonstrates the flow of the SMOTE algorithm in section 8.4. 

Algorithm 5: SMOTE 

Input: Minority data observations-T, Size of new instance in percentage-N, 

Size of the nearest neighbours-K 

Output: I=(N/100)*count(T) – is the newly generated minority class instances of  

               size I – Synthetic-instances. 

Begin 

1. No-of-minority = count(T) 

2. No-new-Instances = I 

3. No-of-attributes = count(T[0] – 1 

4. Minority-instances = T 

5. Synthetic-instances= [] 

6.  

7. For positive-instance in positive-instances: 

8.       Compute 5 neighbours of positive-instance and call it nnarray. 

9.       For index in No-new-instances: 

10.             Choose a random number between 0 and number of neighbours and call it nn. 

11.             For attribute in attributes: 

12.                   difference = nnarray[nn][attribute] –positive-instance[attribute]. 

13.                   Gap = generate random value between 0 and 1. 

14.                   Synthetic-instances.append(positive-instance[attribute]+ difference * gap) 

15. Append minority class value to Synthetic-instance 

End of the function 

 

 

4.1.2. Modified SMOTE Algorithm 

In this study, a random generation of values between the value of data observation 1 

and data observation 2 as a way of ensuring that the newly generated values lie within 

the boundary of data observations 1 and 2 is proposed. The modified function of the 

attribute loop of smote is represented by the algorithm 6 in section 8.4. The pseudo-

code below demonstrates the flow of the Modified SMOTE algorithm in section 8.4. 
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Algorithm 6: Modified SMOTE 

Input: Minority data observations-T, Size of new instance in percentage-N, 

Size of the nearest neighbours-K 

Output: I=(N/100)*count(T) – is the newly generated minority class instances of  

               size I – Synthetic-instances. 

Begin 

1. No-of-minority = count(T) 

2. No-new-Instances = I 

3. No-of-attributes = count(T[0] – 1 

4. Minority-instances = T 

5. Synthetic-instances= [] 

6.  

7. For positive-instance in positive-instances: 

8.       Compute 5 neighbours of positive-instance and call it nnarray. 

9.       For index in No-new-instances: 

10.             Choose a random number between 0 and number of neighbours and call it nn. 

11.             For attribute in attributes: 

12.                   row.append(np.random.uniform(instances[0][attr], instances[1][attr]) 

13. Append minority class value to Synthetic-instance 

End of the function 

 

 

4.1.3. Modified Safe-Level-SMOTE Algorithm 

By generating data instances within the boundaries of data instances 1 and 2, the 

objective of the original smote method was achieved and thus gave merit to a 

comparison of the smote and safe-level smote algorithms. The function definition of 

the Modified safe-level SMOTE algorithm is defined in algorithm 7 of section 8.4. The 

pseudo-code below demonstrates the flow of the Modified safe-level SMOTE 

algorithm in section 8.4. 

 

Algorithm 7: Modified Safe Level SMOTE 

Input: Minority data observations-T, Size of new instance in percentage-N, 

Size of the nearest neighbours-K 

Output: I=(N/100)*count(T) – is the newly generated minority class instances of  

               size I – Synthetic-instances. 

Begin 

1. No-of-minority = count(T) 

2. No-new-Instances = I 

3. No-of-attributes = count(T[0] – 1 

4. Minority-instances = T 
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5. Synthetic-instances= [] 

6. For positive-instance in positive-instances: 

7.     Compute 5 neighbours of positive-instance and call it K. 

8.     Compute 5 neighbours of positive-instance and call it N. 

9.     Count number of positive instances in K and call it SLp. 

10.     Count number of positive instances in N and call it SLn. 

11.     If SLp != 0: 

12.         SL-ratio = SLp/SLn 

13.     Else: 

14.         SL-ratio = np.inf 

15.     If SL-ratio == np.inf AND SLp ==0: 

16.         Continue. 

17.     Else: 

18.         Attribute = [] 

19.         For index in range(len(np.array(T)[0])): 

20.              If SL-ratio == np.inf AND SLp != 0: 

21.                    Gap = 0 

22.              Elseif SL-ratio == 1: 

23.                    Gap = np.random.uniform(0,1) 

24.              Elseif SL-ratio > 1: 

25.                    Gap = np.random.uniform(0,1 / SL-ratio) 

26.              Elseif SL-ratio < 1: 

27.                    Gap = np.random.uniform(1 - SL-ratio , 1) 

28.              Attribute.append(np.random.uniform(nnarray[nn][attribute],positiveinstances[attribute]) 

29.              Attribute.append[-1] = 1.0 

30.              Synthetic-instance.append(Attribute) 

31.  Append minority class value to Synthetic-instance. 

End of the function 

From the algorithm described above, it can be seen that the new data instances that 

are generated follow the same logic as the above-mentioned smote method, except 

the fact that the newly generated data values in this case are generated at the safe 

level of SMOTE. In addition, to preserve the primary objective of the SMOTE 

algorithm, the new data values Safe-Level SMOTE must be generated between the 

data instances at the safe-level of SMOTE. The use of the modified Safe-Level 

SMOTE algorithm in combination with the down-sampling method that removes 

duplicates and randomly chooses non-duplicate data sample from the majority class, 

were used to generate a balanced class distribution. A balanced class distribution was 

used for feature selection process. In the section that follows, the manner in which the 

feature selection process is being performed is discussed. 

4.2. Feature Selection Method 

The balanced class distribution dataset is used for feature selection. The feature 

selection is performed using the manual stacking ensemble method of Univariate 

Selection, Recursive Feature Elimination, and Feature Importance. The three feature 
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selection algorithms were computed, and the Time column of the dataset appeared 

not to add any positive value to the decision making of base models. The Time column 

was eliminated from the data and the performance of the base classifiers of stacking 

ensemble method was improved significantly. Other features of the dataset were 

removed individually, and the performance of base models did not improve 

significantly. The three feature selection methods, namely Univariate Selection, 

Recursive Feature Elimination and Feature Importance, are discussed in the sub-

sections that follows. 

4.2.1. Univariate Selection Method 

The Univariate Selection Method is performed using the selectKbest method to select 

the best features based on the f_classification method. The value of k (i.e. the number 

of features) was set at 30 since there were 30 features of the dataset. The fit.scores 

was used to get scores for each feature of the dataset. The scores in relation to 

features were sorted in order to rank the features according their importance. The 

function definition of the Univariate Selection Method is defined in algorithm 8 of 

section 8.4. The following pseudo-code shows the flow of how the Univariate Selection 

Method was defined in section 8.4. 

Algorithm 8: Univariate Selection Method 

Input: Features, Class 

Output: Univariate Scores 

Begin 

1. Test = pass score function as f_classif and number of input features to SelectKBest 

2. Fit = fit the input features and class values  

3. Scores = get scores 

4. Append sorted scores in descending order into Univeriate_Scores  

5. Return Univeriate_Scores 

End of the function 

 

4.2.2. Recursive Feature Elimination Method 

In this research study, the Recursive Feature Elimination Method was used in 

combination with the logistic regression binary classification method since the 

balanced class distribution dataset was separable. The function definition of the 

Recursive Feature Elimination Method is defined in algorithm 9 of section 8.4. The 
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following pseudo-code shows the flow of how the Recursive Feature Elimination 

Method was defined in section 8.4. 

 

Algorithm 9: Recursive Feature Elimination Method 

Input: Features, Class 

Output: Recursive Scores 

Begin 

1. Model = Logistic Regression 

2. RFE = pass the model to Recursive Feature Elimination Method 

3. Fit = fit the input features and class values to the RFE 

4. Ranking = rank the scores 

5. Append sorted scores in descending order into Recursive_Scores 

6. Return Recursive_Scores 

End of the function 

 

4.2.3. Feature Importance Method 

The third feature selection method is Feature Importance. In this research study, the 

Feature Importance was used in combination with the ExtraTreeClassifier method. 

The ExtraTreeClassifier is used for binary classification, and the features of the 

dataset were ranked according their importance. The function definition of the feature 

importance Method is defined in algorithm 10 of section 8.4. The following pseudo-

code shows the flow of how the feature importance Method was defined in section 8.4. 

Algorithm 10: Feature Importance Method 

Input: Features, Class 

Output: Recursive Scores 

Begin 

1. Model = Extract Tree Classifier 

2. Fit = fit the input features and class values to the Model 

3. Scores = generate feature importance 

4. Append sorted scores in descending order into Importance_Scores 

5. Return Importance_Scores 

End of the function 

In this research study, the dataset of the selected features was used for the 

construction of the data models for binary classification. The weighted stacking 

ensemble method of classifiers is proposed in this research study as the data model 
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for the detection of malicious activities. The construction of the weighted stacking 

ensemble method is discussed in the next section. 

4.3. Weighted Stacking Ensemble Method of Classifiers 

The stacking ensemble method adopted for this study was performed by voting the 

output of a data instance through the use of various classification methods such as 

ANN, SVM, KNN, NB and DT for the prediction of the output class of a given data 

instance. The stacking ensemble method uses the weighted voting method for 

decision making. The weights of base models were generated by the differential 

evolution technique. Differential evolution is an optimization technique for finding 

optimum weights of base models; and it is discussed in detailed later in this chapter. 

The definition of the various classification methods such as Artificial Neural Network 

(ANN), Support Vector Machine (SVM), k-Nearest Neighbours (KNN), Naïve Bayesian 

(NB), and Decision Tree (DT) methods are outlined in detail in the section that follows. 

4.3.1. Artificial Neural Network (ANN) Method 

 

The ANN method is illustrated using a data structure called class. The class name for 

the ANN method is NNClassifier, which contains a constructor to initialize values. The 

Table 8.1 in section 8 shows the names and descriptions of the class properties of the 

NNClassifier class. The class definition of the ANN Method is defined in algorithm 11 

of section 8.4. The following pseudo-code shows the flow of how the ANN Method was 

defined in section 8.4. 

Algorithm 11: Artificial Neural Network (ANN) 

Input: Number of Features, Number of Classes, Number of Hidden Units, L1 regularization, L2 

regularization, Number of Epochs, Learning Rate, Number of Batches, Random Seed 

Output: Predicted Output 

Begin 

1. Function for random initialisation of weights (input layers (W1) and inner layer (W2)) 

2. Function for adding the bias unit (value = 1) 

3. Function to define the sigmoid/logistic function: 
1

1+ 𝑒−(𝑤𝑇𝑥)
 

4. Forward feed on the network.  

Input: input features. 

Net_input = add bias unit to the first layer of the network 

Net_hidden = dot product of input layer and Net_input (𝑤1𝑇𝑥) 

Act_hidden = apply sigmoid function to Net_hidden 

Act_hidden = add bias unit to Act_hidden 
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Net_out = dot product of inner layer (w2) and Act_hidden 

Act_out = apply sigmoid function to Net_out 

Return Net_input, Net_hidden, Act_hidden, Net_out, Act_out 

5. Function for defining the derivative of Sigmoid function:  
1

1+ 𝑒−(𝑤𝑇𝑥)
(1 +  

1

1+ 𝑒−(𝑤𝑇𝑥)
) 

6. Backpropagation of the network.  

Input: Net_input, Net_hidden, Act_hidden, Net_out, Act_out, Class values (y) 

Sigma3 = Act_out – y 

Net_hidden = add bias unit to the Net_hidden 

sigma2 = (𝑤2𝑇sigma3) * sigmoid_prime(net_hidden) 

grad1 = dot product of sigma2 and Net_input 

grad2 = dot product of sigma3 and Act_hidden 

Return grad1, grad2 

7. L2 Regularization function:  

Input: lambda, w1, w2, length (m) 

Return (∑ √𝑤1
𝑛

𝑘=0
+  ∑ √𝑤2

𝑛

𝑘=0
) /

𝜆

2m
 

8. Function for defining the Loss/Cost function. 
Input: predicted values (output), actual output values (y) 

For i=0 to length of class values (y) 

      if y = 1.0 

          sumEntropy += (-log(output[i])) 

      else 

          sumEntropy += (-log(1 - output[i])) 

Return sumEntropy 

9. Function for error rate 
Input: predicted values (output), actual output values (y) 

L2_term = L2 Regularization function 

Error = Cross_entropy(output, y) + L2_term 

Return 0.5 * mean(Error) 

10. Backpropagation to update the weights 

Input: predicted values (output), actual output values (y) 

Net_input, Net_hidden, Act_hidden, Net_out, Act_out = forward feed function(output) 

grad1, grad2 = self._backward(net_input, net_hidden, act_hidden, act_out, y) 

grad1 += w1 + L2 

grad2 += w2 + L2 

Error = Error(y, Act_out) 

Return Error, grad1, grad2 

11. Function for predictions 

Input: input features. 

Net_input, Net_hidden, Act_hidden, Net_out, Act_out = forward feed function(output) 

Return Maximum Likelihood Estimator on Net_out 

12. Decision Making Function (Softmax) 

Input: inputs 

Return 
𝑒(𝑖𝑛𝑝𝑢𝑡𝑠)

 ∑ 𝑒(𝑖𝑛𝑝𝑢𝑡𝑠)𝑛

𝑘=0

 

13. Class probability prediction function 

Input: input features. 

Net_input, Net_hidden, Act_hidden, Net_out, Act_out = forward feed function(output) 

Return [softmax(i) for i = 0 to length(net_out)] 

14. Function to fit the model 
Input: input features(x) and output values (y) 

y = apply function to_categorical to y 

for i = 0 to the number of epochs 

      error, grad1, grad2 = backpropagation to update the weights(x, y) 
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      w1 -= learning rate * grad1 

     w2 -= learning rate * grad2 

     print('>epoch=%d, error=%.3f'%(epoch, error)) 

15. Function to display the score 

Input: input features(x) and output values (y) 

y_hat = predict (x) 

Return sum(y == y_hat) / length(x) 

End of the Class 

 

4.3.2. Support Vector Machine (SVM) Method 

In this research study, the SVM method is illustrated using a data structure called 

class. The class name for the SVM method is Support_Vector_Machine, and contains 

a constructor to initialize values. The Table 8.2 in section 8 shows the names and 

descriptions of the class properties of the Support_Vector_Machine class. The class 

definition of the SVM Method is defined in algorithm 12 of section 8.4. The following 

pseudo-code shows the flow of how the SVM Method was defined in section 8.4. 

Algorithm 12: Support Vector Machine (SVM) 

Input: Number of Features, Number of Classes, Number of Epochs, Learning Rate, Random Seed 

Output: Predicted Output 

Begin 

1. Function for random initialisation of weights (input layers (W1) and inner layer (W2)) 

2. Function for adding the bias unit (value = 1) 

3. Function for formatting class values to float number (format_y) 

4. Function for predicting the probability (predict_proba) 

Input: input features(x) and output values (y) 

Net_input = add bias unit to the input features 

Weighted = dot product of weights (w) with Net_input 

Format_y = format_y(y) 

X_pred = dot product of weights (w) with format_y 

Return X_pred 

5. Function for prediction 

Input: input features(x) and output values (y) 

Proba = predict_proba(x, y) 

Pred = [maximum likelihood estimator (value) for value in Proba] 

Return Pred 

6. Function for calculating the score 
Input: input features(x) and output values (y) 

Pred = predict(x, y) 

Count = 0 

For i = 0 to length of Pred 

       If pred[i] == list(y)[i] 

             Count += 1 

Return Count / length of y 

7. Function to calculate highest class probability 

Input: Predicted list (pred_list) and Predicted probability list (pred_proba_list) 
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Proba = [] 

For each Index and value in pred_list 

      Append pred_proba_list[Index][value] into Proba 

Return Proba 

8. Function to train the dataset 
Input:x_train, y_train 

For each epoch in epochs 

      Pred = predict_proba(x_train, y_train) 

      For ind = 0 to length of Pred: 

            If Pred[ind][1] >= 0 

                W = w + learning rate * (-2 * 
1

 epochs
 * w) 

           Else 

                W = w + learning rate * y_train[ind] *(x_train[ind]) - (-2 * 
1

 epochs
 * w) 

Return self 

End of the Class 

 

4.3.3. k-Nearest Neighbours (KNN) Method 

In this study, the KNN method is illustrated using a data structure called class. The 

class name for the KNN method is k_Nearest_Neighbors, and contains a constructor 

to initialize values. The Table 8.3 in section 8 shows the names and descriptions of 

the class properties of the k_Nearest_Neighbors class. The class definition of the KNN 

Method is defined in algorithm 13 of section 8.4. The following pseudo-code shows 

the flow of how the KNN Method was defined in section 8.4. 

Algorithm 13: K-Nearest Neighbour (KNN) 

Input: Row length, neighbours, TrainDataX, TrainDataY, Random Seed 

Output: Predicted Output 

Begin 

1. Function for calculating the distance: (𝑟𝑜𝑤1_𝑣𝑎𝑙𝑢𝑒 − 𝑟𝑜𝑤2_𝑣𝑎𝑙𝑢𝑒)2 

2. Function for calculating the Euclidean distance: 

Input: row1, row2 

Distance = 0 

For ind = 0 to length of the row 

      Distance += distance(row1, row2) 

Return the square root of the Distance 

3. Function to calculate the nearest neighbours (getNeighbors) 

Input:TrainDataX 

k-nearest_neighbour = [] 

for ind = 0 to length of TrainDataX 

      dist = Euclidean_Distance(row1[ind], row2[ind]) 

      Append (ind, dist) into k-nearest_neighbour 

Sort the dist in the k-nearest_neighbour 

Return top 5 nearest distances 

4. Function for predicting the transactions 

Input:TestRow 
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k-nearest_neighbours = getNeighbors(TestRow) 

for each neighbour in k-nearest_neighbours: 

      count0, count1 = 0, 0 

      if TrainDataY[Neighbor[0]] = 0: 

           count0 += 1 

      elif TrainDataY[Neighbor[0]] = 1: 

           count1 += 1 

if count0 > count1: 

      predictions = 0 

else 

      predictions = 1 

Return predictions 

5. Function to get the predictions 

Input: TestDataX 

Predictions = [] 

For each  TestRow in TestDataX 

      Append predicted values into Predictions 

Return Predictions 

6. Function to return the Class probability 

Input: TestDataX 

Percentage = [] 

For each TestRow in TestDataX 

       k-nearest_neighbours = getNeighbors(TestRow) 

       count0, count1 = 0, 0 

       for each Index and Neighbour in k-nearest_neighbours 

              if  TrainDataY[Index] = 0.0: 

                   count0 += 1 

              elif TrainDataY[Index] = 0.0: 

        count1 += 1 

   if count0 > count1: 

             Percentage.append(count0/5) 

   Else 

      Percentage.append(count1/5) 

Return Percentage 

7. Function to get an Accuracy 

Input: TestDataY, predictions 

Correct = 0 

For y = 0 to length of TestDataY 

       If TestDataY[y] = predictions[y] 

           Correct += 1 

Return (Correct / length of TestDataY) * 100 

End of the Class 

 

4.3.4. Naïve Bayesian (NB) Method 

In this research study, the NB method is illustrated using a data structure called class. 

The class name for the NB method is Naïve_Bayesian, and it contains a constructor 

to initialize values. The Table 8.4 in section 8 shows the names and descriptions of 

the class properties of the Naïve_Bayesian class. The class definition of the NB 
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Method is defined in algorithm 14 of section 8.4. The following pseudo-code shows 

the flow of how the NB Method was defined in section 8.4. 

Algorithm 14: Naïve Bayesian (NB) 

Input: TrainDataX, TrainDataY, Random Seed 

Output: Predicted Output 

Begin 

1. Function to calculate the mean: sum(numbers) / length of numbers 

2. Function to calculate the standard deviation: ∑
(𝑥−𝑚𝑒𝑎𝑛)2

𝑛

𝑛

𝑘=0
 

3. Function to calculate the Gaussian Distribution (CalculateProbability):  

Input: RowValue, mean, standard deviation 

Exponent = 
(𝑅𝑜𝑤𝑉𝑎𝑙𝑢𝑒−𝑚𝑒𝑎𝑛)2

2(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)2  

Return 
1

√2∗𝑝𝑖
 𝑒𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 

4. Function to summarise the input data: 

Input: TrainData 

Summary = mean(TrainData), standard deviation(TrainData) 

Return Summary 

5. Function to separate Transaction by class values (seperateByClass): 

Input: TrainDataX 

Seperated = {} 

For i = 0 to length of TrainDataX 

       Vector = TrainDataX[i] 

        If TrainDataX[i] not in Seperated 

                  Separated[TrainDataY[i]] = [] 

         Append vector into Seperated 

Return Seperated 

6. Function to summarise values by class (SummarizeByClass): 

Separated = seperateByClass() 

Summaries = [] 

For each classvalue and instances in Seperated 

       Summaries[classValue] = summarise(instances) 

Return Summaries 

7. Function to calculate the class probability: 

Input: TestDataInstance 

Probabilities = [] 

Summaries = summarizeByClass() 

For each classValue, classSummaries in Summaries 

       Probabilities[classValue] = 1 

       For ind = 0 to length of classSummaries: 

              Mean, standard deviation = classSummaries[ind] 

              RowValue = TestDataInstance[ind] 

              Probabilities[classValue] *= CalculateProbability() 

Return Probabilities 

8. Function to predict the output of the transaction: 

Input: TestDataInstance 

Probabilities = calculateClassProbabilities(TestDataInstance) 

bestLabel, bestProb = None, -1 

for each classValue, probability in probabilities() 

      if bestLabel is none or probability > bestProb 
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            bestProb = probability 

            bestLabel = classValue 

Return bestLabel 

9. Function to get Predictions 
Input: TestDataX 

Predictions = [] 

For i = 0 to length of TestDataX 

       Result = predict(TestDataX[i]) 

       Append Result in predictions 

Return Predictions 

10. Function to return probabilities 
Input: TestDataX 

Probas = [] 

For each TestDataInstance in TestDataX 

       Proba = CalculateClassProbability(TestDataInstance) 

       Proba = maximum likelihood estimator (Proba) 

       Append Proba in Probas 

Return Probas 

11. Function to get an Accuracy 

Input: TestDataY, predictions 

Correct = 0 

For y = 0 to length of TestDataY 

       If TestDataY[y] = predictions[y] 

           Correct += 1 

Return (Correct / length of TestDataY) * 100 

End of the Class 
 

4.3.5. Decision Tree (DT) Method 

The last and the final base model of stacking ensemble, the DT method, is illustrated 

using a data structure called class. The class name for the DT method is 

Decision_tree, and contains a constructor to initialize values. The Table 8.5 in section 

8 shows the names and descriptions of the class properties of the Decision_tree class. 

The class definition of the DT Method is defined in algorithm 15 of section 8.4. The 

following pseudo-code shows the flow of how the DT Method was defined in section 

8.4. 

Algorithm 15: Decision Tree (DT) 
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Input: Gini_Criterion, Max_depth, Min_samples_leaf, Entropy_Criterion, Random Seed 

Output: Predicted Output 

Begin 

1. Function to train the dataset using Gini 

Input: criterion, random state, max depth, min sample leaf, TrainX, TrainY 

Clf_gini = decisionTreeClassifier(Input) 

Fit Clf_gini model with TrainX and TrainY 

Return Clf_gini 

2. Function to train the dataset using Entropy 

Input: criterion, random state, max depth, min sample leaf, TrainX, TrainY 

Clf_entropy = decisionTreeClassifier(Input) 

Fit Clf_entropy model with TrainX and TrainY 

Return Clf_entropy 

3. Function to predict the probability 

Input: TestX, clf_object 

Predict_prob = clf_object.predict(TestX) 

Return Predict_prob 

4. Function to make predictions 

Input: TestX, clf_object 

Y_pred = clf_object.predict(TestX) 

Return Y_pred 

5. Function to calculate the probability 

Input: pred_list, pred_proba_list 

Proba = [] 

For each index and value in pred_list 

       Append pred_proba_list[index][value] into Proba 

Return Proba 

6. Function to get an Accuracy 

Input: TestDataY, predictions 

Correct = 0 

For y = 0 to length of TestDataY 

       If TestDataY[y] = predictions[y] 

           Correct += 1 

Return (Correct / length of TestDataY) * 100 

End of the Class 

 

The weighted stacking ensemble method of the above defined base models was 

performed by voting out the output of any given credit card transaction as to whether 

the transaction is illegal or not. The output of the base models was used to generate 

a new dataset. The new dataset was stored in a data dictionary consisting of columns 

as names of base models, and rows as the predicted output of base models. The data 

dictionary of the new dataset is discussed in the next section. 

4.4. Predictions Data Dictionary 

The weighted voting Stacking Ensemble method was achieved by creating the data 

dictionary of base models that contain predicted values of each credit card transaction, 
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and the new feature names as the name of base models. The data dictionary is named 

Model_predictions and is defined as follows: 

 

Model_predictions = {'ANN':nn.predict(X_test) 

                     'SVM':nnSVM._predict(X_test, y_test) 

                     'KNN':nnKNN._getPredictions(np.array(X_test)) 

                     'DT':nnDT._prediction(X_test, clf_object) 

                     'NB':nnNB._getPredictions(X_test)} 

The nn, nnSVM, nnKNN, nnDT, and nnNB are the class objects of the base models, 

which are defined in section 4.4. The predict, _predict, _getPredictions, and 

_prediction are the property of the class objects. The testing dataset was supplied to 

the prediction class properties of base models in order to get the predicted values. 

Once all the base models had generated the predicted values per credit card 

transaction, the voting method was required to generate the final prediction output. 

The voting method used in the stacking Ensemble method of the base data models is 

discussed in the next section. 

4.5. Stacking Ensemble of Base Models 

 

The voting class named Voting, which is defined below, allows base models to vote 

the final output of each transaction of credit card data. The final output value of each 

transaction can either be classified as 1 to denote a fraudulent transaction or 0 to 

denote a non-fraudulent transaction. The voting method that has been adopted for this 

study is based on the principle of majority rule, which means that the class with the 

majority of votes in respect of base models is the final classification of the transaction. 

 

The Table 8.6 in section 8 shows the names and descriptions of the class properties 

of the Voting class. The class definition of the Voting Method is defined in algorithm 

16 of section 8.4. The following pseudo-code shows the flow of how the Voting Method 

was defined in section 8.4. 

Algorithm 16: Stacking Ensemble Method 
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Input:  

Output: Predicted Output 

Begin 

1. Function to return voted class (Mode_Fun) 

Input: List 

Predict, Count0, Count1 = 0, 0, 0 

For each value in the List 

       If value = 0 

             Count0 += 1 

      Esif value = 1 

              Count += 1 

If Count0 > Count1 

      Predict = 0 

Else 

      Predict = 1 

Return Predict 

2. Function to return list of predicted values 
Input: List of Base model predicted values (Model_pred_A) 

Predictions = [] 

For each Row in Model_pred_A 

      Mode =  Mode_fun(Row) 

      Append Mode into Predictions 

Return Predictions 

3. Function to get an Accuracy 

Input: TestDataY, predictions 

Correct = 0 

For y = 0 to length of TestDataY 

       If TestDataY[y] = predictions[y] 

           Correct += 1 

Return (Correct / length of TestDataY) * 100 

4. Function to return unmatched Indexes 

Input: TestDataY, Predictions 

Incorrect = [] 

For ind = 0 to length of TestDataY 

      If TestDataY[ind] is not equal to Predictions[ind] 

            Append ind into Incorrect 

Return Incorrect 

End of the Class 
 

To enhance the performance of the voting method, the weighted voting technique is 

required. In this study, the weighted voting method was performed using the predicted 

class probabilities of output values generated by the base models. Probability is known 

to be the number between 0 and 1 indicating the likelihood of an event occurring, and 

class value is the number that represents the class in which the probability value is 

closer to. This means that, in this study, the predicted class probability of an output 

class was used for weighted voting method. 
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For performing weighted voting method, a data dictionary of predicted class 

probabilities of each base model is required. The data dictionary of predicted 

probabilities of base models defined in sub-section 4.4, is discussed in this next 

section. 

4.6. Probability Data Dictionary 

The use of the Stacking Ensemble method in combination with weighted voting of the 

base data models involves creating a new data dictionary of base models that is 

composed of class probability of the predicted value of each credit card transaction. 

The data dictionary name is Model_Probability and is defined as follows: 

 

Ann_pred = nn.predict(X_test) 

Ann_pred_Avg = nn.predict_proba(X_test) 

ANNProbability = nn.probability(Ann_pred, Ann_pred_Avg) 

 

SVM_pred_Avg = nnSVM._predict_proba(X_test, y_test) 

SVM_pred = nnSVM._predict(X_test, y_test) 

SVMProbability = nnSVM.probability(SVM_pred, SVM_pred_Avg) 

 

KNNProbability = nnKNN._probability(np.array(X_test)) 

 

clf_object = nnDT._train_using_entropy(Xs, Ys) 

DT_pred_proba = nnDT._pred_proba(X_test, clf_object) 

DT_pred = nnDT._prediction(X_test, clf_object) 

DT_pred = [1 if i == 1.0 else 0 for i in DT_pred] 

DTProbability = nnDT.probability(DT_pred, DT_pred_proba) 

 

NBProbability = nnNB.probability(X_test) 

 

Model_Probability= {'ANN':ANNProbability, 

                     'SVM':SVMProbability,  

                     'KNN':KNNProbability, 

                     'DT' :DTProbability, 

                     'NB' :NBProbability } 

The nn, nnSVM, nnKNN, nnDT, and nnNB are the class objects of the base models 

defined in section 4.4. The Model_Probability is the new data dictionary that is 

composed of predicted class probability and base model names. 

The Differential Evolution Optimization technique is used for generating the optimum 

weights for base model algorithms in decision making, and it is discussed in the next 

section.  
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4.7. Differential Evolution Optimization Method 

The weight voting of the stacking ensemble method is optimised using the Differential 

Evolution technique. Differential Evolution is a stochastic technique that is powerful 

and efficient over a continuous space for solving differentiable and non-linear 

optimization problems. In this research study, the Differential Evolution method in this 

study was used for searching for global optimum weights from a defined search space. 

The class definition of the Differential Evolution Method is defined in algorithm 17 of 

section 8.4. The following pseudo-code shows the flow of how the Differential 

Evolution Method was defined in section 8.4. 

Algorithm 17: Differential Evolution Optimization Method 

Input: TrainDataX, population_size, Scaling_Factor, Max_Iterator, Crossover_Probability, 

random_seed 

Output: Predicted Output 

Begin 

1. Function to define the bounding of the search space (Bounds) 

Input: TrainDataX 

Bounds = [] 

min = minimum values of all input features 

max = maximum values of all input features 

Append min and max into Bounds 

Return Bounds 

2. Function to ensure the bounds of the search space 

Input: vector, bound 

New_vector = [] 

For ind = 0 to length of vector 

       If lower bound[ind] >= vector[ind] 

              Append lower bound[ind] into New_vector 

      If upper bound[ind] <= vector[ind] 

              Append upper bound[ind] into New_vector 

      If lower bound[ind] <= vector[ind] and upper bound[ind] >= vector[ind] 

              Append vector[ind] into New_vector 

Return New_vector 

3. Function to define the cost function 

Input: input(x) 

Sums = sum([𝑥𝑖
2  for i=0 to length of x]) 

Return Sums 

4. Function to select a sample population size 

Input: population size (pop_size) 

Bounds = Bounds() 

Population = [] 

For Index=0 to length of pop_size 

       Individual = [] 

       For each value1 and value2 in Bounds 
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               Append random value between value1 and value2 into Individual 

       Append Individual into Population 

Return Population 

5. Function to select random values 

Input: lengthList 

Count, RandomList = 0, [] 

While count < LengthList 

       RandomNumber = Random value between 0 and Population size 

       If RandomNumber not in RandomList 

            Append RandomNumber into RandomList 

            Count += 1 

       Else  

            Count += 0 

Return RandomList 

6. Function to define Mutation 

LengthList = 3 

RandomList = 3 random integer values between 0 and the length of the population 

𝑋1 = Population value associated with the integer value 1 

𝑋2 = Population value associated with the integer value 2 

𝑋3 = Population value associated with the integer value 3 

Diff =  𝑋1 -  𝑋2 

V_donor = 𝑋1 + Scaling_Factor * Diff 

V_donor = Apply Ensure bound function on V_donor 

Return V_donor 

7. Function to define Crossover 

V_Targets = Population() 

V_donor = Mutation() 

V_trials = [] 

For V_Target in V_Targets: 

       V_trial = [] 

       For Index = 1 to length of the V_Target 

              Crossover = random value between 0 and 1 

              If crossover < Crossover_Probability 

                   Append V_donor[Index] into V_trial 

              Else 

                   Append V_Target[Index] into V_trial 

       Append V_trial into V_trials 

Return V_trials 

8. Function to return Scores 

Gen_Scores = [] 

V_trials = Crossover() 

V_Targets = Population() 

For i=0 to Max_Iterator 

      Trial_Costs = Cost_Func of V_trials 

      Target_Cost = Cost_Func of V_target 

      For Index = 1 to length of Trail_Costs 

            If Trial_Costs[Index] < Target_Costs[Index] 

                 Population[Index] = V_trials[Index] 

                 Append Trial_Costs[Index] into Gen_Scores 

            Else 

                 Append Target_Costs[Index] into Gen_Scores 

Return Gen_Scores 

9. Function to define best population 

Gen_Scores = Scores() 
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Gen_min = min(Gen_Scores) 

Gen_Sol = get population value associated with the minimum score(Gen_min) 

Print(‘Best Generation: ’, Gen_min) 

Print(‘Best Solution: ’, Gen_Sol) 

Return Gen_Sol  

10. Function to define Logistic/Sigmoid function: 
1

1+ 𝑒−(𝑤𝑇𝑥)
 

11. Function to get predictions 

List = [] 

Best_Solution = Best_Population() 

For each observation in model_probability 

      DotProduct = sigmoid of dot product of observation and Best_Solution 

            If DotProduct >= 0.838 

                   Append 1 into List 

            Else 

                  Append 0 into List 

Return List 

12. Function to get model Accuracy 

Input: TestDataY, predictions 

Correct = 0 

For y = 0 to length of TestDataY 

       If TestDataY[y] = predictions[y] 

           Correct += 1 

Return (Correct / length of TestDataY) * 100 

End of the Class 

The Differential Evolution method searches the search space that is defined by the 

lower and the upper bound values of each feature of the dataset, and thereafter 

generates new members of the population. A For-loop was created to loop through the 

algorithm and find the best performing number of population members. Another loop 

was created for learning the search space. The mutation method used was (X1 + 

Scaling factor * (X2 – X3)), where X1, X2 and X3 are the population members and 

Scaling factor is a random number between 0 and 2. The crossover method was 

performed on a mutation vector and the given population vector, and the cost was 

calculated.  

A vector that achieves minimum cost was chosen as an optimum solution for the 

problem. An optimum solution vector is a set of weights. A set of weights were 

multiplied with predicted class probabilities, and a logistic function was used. The 

results of all algorithms defined in this chapter are analysed in detail in the next 

chapter. The next chapter discusses the data analysis. 

4.8. Summary 

This chapter discussed the algorithms that were used to carry out the research study. 

Various machine learning algorithms were defined and optimised to fulfil the research 
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objectives of this research study. The findings are explained in chapter 5 and 6 of this 

research study. 

5. Chapter 5: Data Analysis 

This chapter discusses the findings of this study. The overall objective of this research 

study is to develop an optimized credit card fraud detection model that can efficiently 

and effectively detect fraudulent transactions within a minimum number of attempts or 

the first time the fraudster attempts to commit fraud. Simply put, the model must 

overcome the weaknesses of the classifier models which fraudsters take advantage 

of in order to commit credit card fraud.  

To satisfy the research objective, the base models of this study are executed and the 

output of each base model is observed. The output of each base model involves the 

overall accuracy, the predicted output values, and the probabilities of the predicted 

output values.  

The data dictionary named Model_predictions defined in chapter 4 was used to store 

the predicted output values of all base models of the stacking ensemble method, and 

the data dictionary named Model_Probability defined in chapter 4 was used to store 

the probabilities of the predicted output values. The accuracy of base models, 

Model_predictions and Model_Probability with optimized weights of Differential 

Evolution were compared to evaluate the overall performance.  

The violation of SMOTE and SL-SMOTE oversampling method definitions was noted 

in section 4.2. The SMOTE and SL-SMOTE are oversampling methods for balancing 

the class distribution of the dataset. The study seeks to demonstrate the claim that 

new data instance is not always generated between two existing data instances of the 

minority class of SMOTE. The demonstration of SMOTE and SL-SMOTE, and the 

modification of SMOTE and SL-SMOTE algorithms to always meet the main objective 

is shown in the section that follows. 

5.1. SMOTE vs Safe-Level-SMOTE 

This section of the research study seeks to demonstrate that SMOTE and SL-SMOTE 

algorithms do not always generate a new data instance between two existing data 

instances. In this study, the SMOTE and SL-SMOTE algorithms were modified such 
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that they always meet the main research objective defined in section 4.2. For 

demonstration purposes, the new random values of two data instances were 

generated. 

The following random values of instances were chosen to test the claim made in this 

study: instances = [[-10, -21, -4, 45, -66, -93, 1], [10, 21, 4, 45, 66, 93, 1]]. For a pictorial 

display of the output, the x-axis values were required. The standard numbering system 

from 1 to 7 was used for visualization and demonstration purposes. The SMOTE and 

the modified SMOTE are demonstrated in the following sub-section. 

5.1.1. SMOTE vs New SMOTE 

The values of instances and standard numbering system were used in this sub-section 

to demonstrate the SMOTE and the modified SMOTE. The different colours were used 

to differentiate between the randomly generated values of instances and the new 

generated instance. The blue data points are randomly generated instances and the 

red data points are new data instance, respectively. The blue and red colouring system 

of the data points is adopted throughout the dissertation for the scatter plot. The 

pictorial representation of SMOTE method is shown in Figure 5.1. 

 
Figure 5.1: Original Data Instances VS Original SMOTE Instances.  

According to Figure 5.1, the SMOTE instance was not generated between data 

instance1 and data instance 2. This means that the claim made in this research study 

about the SMOTE method is correct. The larger the space between the values of data 

instance 2 and data instance 1, the larger the space between generated data value 

and the values of data instance 2 and data instance 1.  
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To solve the problem of the SMOTE instances that are generated outside the 

boundaries of data instances 1 and 2, the difference variable in the attribute loop of 

SMOTE method outlined in section 4.2 must be modified to handle the issue of 

opposite signs. To this end, the Modified SMOTE algorithm outlined in section 4.2 is 

defined to handle the issue of opposite signs. A pictorial representation of the Modified 

SMOTE method is shown in Figure 5.2. 

 

Figure 5.2: Original Data Instances VS New SMOTE Instances.  

With respect to Figure 5.2, the SMOTE instance was generated within the boundaries 

of data instances 1 and 2. This suggests that the claim made about the SMOTE 

method in this research study is absolutely correct. A demonstration of the Safe-Level 

SMOTE and New SL-SMOTE algorithms is discussed in the following sub-section. 

5.1.2. SL-SMOTE vs New SL-SMOTE 

In this sub-section, the random values of instances and standard numbering system 

were also used to demonstrate the SL-SMOTE and the modified SL-SMOTE 

algorithms.  

The same testing method used for SMOTE algorithm was used for the Safe_Level 

SMOTE algorithm because the manner in which a new data point is generated for the 

SMOTE and Safe_Level SMOTE algorithms is the same.  Consequently, the visual 

depictions of both the SMOTE and the Safe_Level SMOTE algorithms are the same. 

The Safe-Level SMOTE method is presented pictorially in Figure 5.3. 
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Figure 5.3: Original Data Instances VS Original Safe-Level SMOTE Instances. 

The Safe-Level-SMOTE instance was generated outside the boundaries of data 

instances 1 and 2 in Figure 5.3 thus suggesting the correctness of the claim made 

about the Safe-Level SMOTE method.  

To solve the problem of the Safe-Level SMOTE instance that are generated outside 

the boundaries of data instances 1 and 2, the difference variable in the attribute loop 

of Safe-Level SMOTE method listed in section 4.2 had to be modified to handle the 

opposite signs factor. In section 4.2, the Modified Safe-Level SMOTE algorithm is 

defined to handle the issue of opposite signs. 

The same testing method used for the New SMOTE algorithm was also used for the 

New Safe_Level SMOTE because the manner in which a new data point is generated 

for the algorithm is the same for both algorithms. To this end, a visual depiction of the 

two algorithms (i.e. New SMOTE and New Safe_Level SMOTE) appears to be similar. 

As stated before, the blue data points are randomly generated instances, and the red 

data points are new data instance. A pictorial representation of Modified Safe-Level 

SMOTE method is shown in Figure 5.4. 
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Figure 5.4: Original Data Instances VS Original New Safe-Level SMOTE Instances. 

According to Figure 5.4, the SL-SMOTE instance was generated within the boundaries 

of data instances 1 and 2 thus suggesting that the claim made in this study about the 

SL-SMOTE method being correct. 

The performance of the SMOTE, SL-SMOTE, modified SMOTE, and the modified SL-

SMOTE methods were tested by computing the ANN, SVM, NB, DT and KNN 

algorithms defined in section 4.4. The four SMOTE methods were carried out in 

combination with the down-sampling of majority class data instances by removing 

duplicate data instances and by performing random sampling (see section 4.2). A 

grouped bar chart showing the performance of SMOTE algorithms against the chosen 

machine learning algorithms is shown in Figure 5.5. 



90 
 

 

Figure 5.5: Scores by SMOTE groups 

Although it is evident from Figure 5.5 that both the SMOTE and the Safe-Level SMOTE 

algorithms perform well. The two algorithms do not always generate a new data 

instance between two given data instances. This means that the two algorithms violate 

the objective of the smote algorithm. In this research study, the SMOTE and the Safe-

Level SMOTE algorithms were re-designed such that they always met the objectives 

of the SMOTE algorithm while at the same time preserving and improving the 

capabilities of the algorithms. The re-designed Safe-Level SMOTE algorithm was 

therefore used to fulfil the objectives of this research study. 

As discussed in the methodology chapter, the last step of the data engineering process 

involved balancing of the class distribution. The data engineering was followed by the 

data modelling, which was followed by defining the class objects of stacking ensemble 

base models defined in section 4.4. In this section that follows, the stacking ensemble 

class objects of the base model as well as the hyperparameters that are passed to the 

class definition of the base models during the creation of class objects are defined. 

5.2. Stacking Ensemble Base Models 

In this section, the class objects and the hyper-parameter values that are passed to 

class definition of the base models during the creation class objects are discussed. 

The hyper-parameter values are required for running the base model algorithms. 

Although, optimum parameter values are important for achieving the optimum 
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performance of the algorithms, the first base model for defining its class object and the 

hyper-parameter values involves the ANN method. 

5.2.1. Artificial Neural Network (ANN) Method 

 

To run the class code of ANN method defined in chapter 4, an object that contains 

class definition must be defined. The class object of ANN method was defined as nn, 

and nn contains the set of hyperparameter values below, which are passed to the 

class definition. A nested loop that loops through the number of hidden units and 

epochs is used to obtain optimum hyperparameter values. The code shown below 

illustrates the manner in which hyper-parameter values are passed to the class 

definition in order to create a class object. 

 

N_CLASSES = 2 

N_FEATURES = 29 

RANDOM_SEED = 25 

nn = NNClassifier(n_classes=N_CLASSES,  

                  n_features=N_FEATURES, 

                  n_hidden_units=123, 

                  l2=0.5, 

                  epochs=199, 

                  learning_rate=0.001, 

                  n_batches=25, 

                  random_seed=RANDOM_SEED) 

 

The second base model to define its class object and the hyperparameter values is 

the SVM method. The class object and the hyper-parameter values of the SVM 

method are defined in the sub-section that follows. 

5.2.2. Support Vector Machine (SVM) Method 

To run the class code of SVM method defined in chapter 4, an object that contains 

class definition must be defined. The object of SVM method in this study is defined as 

nnSVM, and nnSVM contains the set of hyperparameter values below are passed to 

the class definition. A loop to loops through the number of epochs was used to search 

for optimum number of epochs. The code shown below shows the manner in which 

the set of hyperparameter values are passed to the class. 

 

N_CLASSES = 2 

N_FEATURES = 29 

RANDOM_SEED = 25 

nnSVM = Support_Vaector_Machine(n_classes=N_CLASSES,  

                  n_features=N_FEATURES, 
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                  learning_rate=0.001, 

                  epochs = 300, 

                  random_seed=RANDOM_SEED) 

 

The next base model to define its class object and the hyperparameter values is the 

KNN method. The class object and the hyper-parameter values of the KNN method 

are defined in the subsection that follows. 

5.2.3. k-Nearest Neighbour (KNN) Method 

To run the class code of KNN method defined in chapter 4, an object that contains 

class definition must be defined. In this research study, the object of the KNN method 

was defined as nnKNN. nnKNN contains the following set of hyper-parameters, which 

are passed to the class definition. The code shown below shows the manner in which 

the set of hyper-parameter values that are passed to the class. 

N_FEATURES = 29 

N_NEIGHBORS = 5 

TRAINx = Xs 

TRAINy = Ys 

RANDOM_SEED = 25 

nnKNN = k_Nearest_Neighbor(row_length=N_FEATURES, 

                          neighbors = N_NEIGHBORS, 

                          TrainDataX = TRAINx,  

                          TrainDataY = TRAINy, 

                          random_seed=RANDOM_SEED) 

 

Another base model for defining its class object and the hyper-parameter values is the 

Naïve Bayesian method. The class object and the hyper-parameter values of the 

Naïve Bayesian method are defined in the following subsection. 

5.2.4. Naïve Bayesian (NB) Method 

To run the class code of NB method defined in chapter 4 of this study, an object that 

contains class definition must be defined. The object of Naïve Bayesian method in this 

study is defined as nnNB, and nnNB contains the following set of hyperparameter 

values which are passed to the class definition. The code below shows the manner in 

which set of hyper-parameters are passed to the class. 

TRAINx = Xs 

TRAINy = Ys 

RANDOM_SEEDS = 25 

nnNB = Naive_Bayesian(TRAINx, TRAINy, RANDOM_SEEDS) 
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The last base model for defining its class object and the hyperparameter values is the 

Decision Tree method. The class object and the hyperparameter values of Decision 

Tree method are defined in the subsection that follows. 

5.2.5. Decision Tree (DT) Method 

An object that contains class definition must be defined in order to run the class code 

of the DT method defined in chapter 4. The object of Decision Tree method in this 

research study is defined as nnDT, which contains the following set of hyper-

parameters that are passed to the class definition. The Entropy was used as the 

criterion for training the tree. The optimum maximum depth and minimum sample leaf 

chosen were optimum. The code shown below illustrates the manner in which set of 

hyper-parameter values are passed to the class. 

MAX_DEPTH = 3 

MIN_SAMPLES_LEAF = 5 

ENTROPY_CRITERION = 'entropy' 

RANDOM_SEED = 1 

nnDT = Decision_tree(Max_depth = MAX_DEPTH,  

                     Min_samples_leaf = MIN_SAMPLES_LEAF,  

                     Entropy_Criterion = ENTROPY_CRITERION,  

                     random_seed = RANDOM_SEED) 

The class objects were created by passing the hyper-parameter values that enables 

stacking ensemble base models to learn the dataset, and were used for accessing the 

defined class properties. After defining the class objects of stacking ensemble base 

models, the class objects were deemed ready to be used for accessing the defined 

class definitions. In the following section, the manner in which the defined performance 

class is accessed through the usage of class objects is described. 

5.3. Performance of Base Models 

The class objects in section 5.2 are created by passing the optimum hyper-parameter 

values to class definition of base models defined in section 4.4. The class objects of 

stacking ensemble base models described in this section were used to access the 

defined performance property of the base model classes in order to compare the 

performance. 

The model’s overall accuracy as well as the true negative transactions, true positive 

transactions, false negative transactions, and false positive transactions. The 
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accuracy of the base models, which involves the overall accuracy and confusion matrix 

of the model, are discussed in the section that follows. 

5.3.1. Accuracy of Base Models 

The python code below prints the name and the overall accuracy score of the base 

models. Nn, nnSVM, nnKNN, nnDT, and nnNB are the class objects defined in section 

5.2, and score and getAccuracy are the class properties of base models in section 4.4. 

The X_test and y_test are the respective  input and output values of the test data. The 

accuracy of the base model was achieved by running the following code: 

print('Artificial Neural Network: '+str(nn.score(X_test, y_test))) 

print('Support Vector Machine: '+str(nnSVM._score(X_test, y_test))) 

print('K-Nearest Neighbor: '+str(nnKNN._getAccuracy(list(y_test), 

knn_pred))) 

print('Decision Tree: '+str(nnDT._getAccuracy(list(y_test), predProb))) 

print('Naive Bayesian: '+str(nnNB._getAccuracy(list(y_test), Predicted_y))) 

 

Output: 

 

Artificial Neural Network: 0.9518275341455708 

Support Vector Machine: 0.7108598714932762 

K-Nearest Neighbor: 90.83482555621877 

Decision Tree: 99.17488852217268 

Naive Bayesian: 97.06002832297555 

 

When compared with other base models, the Decision Tree Method performed 

extremely well and achieved a higher accuracy rate. The Support Vector Machine 

method achieved an accuracy that is far lower than that of other base models. The 

overall performance of all the base models is good. However, the statistics to show 

which class of the distribution is well classified is not shown. 

5.3.2. Confusion Matrix 

The confusion matrix is a classification model evaluation method that shows the total 

number of true negative, true positive, false negative, and false positive. The number 

of true positive (TP) transactions is the number of output transactions that the base 

classifier has predicted as being fraudulent when they were in fact fraudulent. 

Similarly, the count of true negative (TN) transactions is the count of output 

transactions that the base classifier has predicted as being non-fraudulent when they 

were in fact non-fraudulent, the count of false positive (FP) transactions is the count 

of output transactions that the base classifier has predicted as being fraudulent when 

they are non-fraudulent, and the count of false negative (FN) transactions is the count 
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of output transactions that the base classifier has predicted as being non-fraudulent 

when they are in fact fraudulent.  

The function definition of the confusion matrix Method is defined in algorithm 18 of 

section 8.4. The following pseudo-code shows the flow of how the confusion matrix 

Method was defined in section 8.4. 

Algorithm 18: Confusion Matrix Method 

Input: PredictedClassValues, ClassValues 

Output: Confusion Matrix Scores 

Begin 

1. Pivot = [] 

2. For each column in columns 

3.       Column = column value 

4.       Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN) 

5.       For ind = 1 to length of the Column 

6.             IF ClassValue and PredictedClassValue at ind are both equal to 1 

7.                   Then TP += 1 

8.             ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0 

9.                   Then FN += 1 

10.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1 

11.                   Then FP += 1 

12.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0 

13.                    Then TN += 1 

14.  Append TP, TN, FP,FN into the Pivot 

15. Return Pivot 

End of the function 
 

To run the confusion matrix, the following function object code was used:  

ConfusionMatrix(Model_predictions, y_test). The total number of illegal and legal transactions 

for testing dataset was 137 and 85306. 

 

Table 5.1: Confusion matrix. 

 
Model  TP TN FP FN 

 
ANN  5 81130 4176 132 

 
SVM   22  61753  23553 115 

 
KNN  7 77359 7947 130 

 
  DT  0 84492 814 137 
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Model  TP TN FP FN 

 
  NB  4 82699 2607 133 

 

It is clear from negative (legal) and positive (illegal) transactions listed in table 5.1 that 

the base models are extremely biased. To give the above confusion matrix table 

meaning, the table can be shown in a form of statistics. The function definition of the 

confusion matrix stats Method is defined in algorithm 19 of section 8.4. The following 

pseudo-code shows the flow of how the confusion matrix Method was defined in 

section 8.4. 

Algorithm 19: Confusion Matrix Stats Method 

Input: PredictedClassValues, ClassValues 

Output: Confusion Matrix Scores 

Begin 

1. Pivot = [] 

2. For each column in columns 

3.       Column = column value 

4.       Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN) 

5.       For ind = 1 to length of the Column 

6.             IF ClassValue and PredictedClassValue at ind are both equal to 1 

7.                   Then TP += 1 

8.             ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0 

9.                   Then FN += 1 

10.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1 

11.                   Then FP += 1 

12.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0 

13.                    Then TN += 1 

14.        Class0, Class1 = 0, 0 

15.        For each value in the ClassValue 

16.               IF value = 0 

17.                     Class0 += 1 

18.               ELIF value = 1 

19.                     Class1 += 1 

20.   Append TP/Class1, TN/Class0, FP/Class1,FN/Class0 into the Pivot 

21. Return Pivot 

End of the function 

 

To run the confusion matrix statistics function, the following function object code was 

used: ConfusionMatrixStat(Model_predictions, y_test). The output of confusion matrix 

statistics is shown in Table 5.2. 

 



97 
 

Table 5.2: Confusion Matrix Statistics. 

 
Model TP TN FP FN 

 
ANN 0.036496 0.951047 30.481752 0.001547 

 
SVM 0.160584 0.723900 171.919708 0.001348 

 
KNN 0.051095 0.906841 58.007299 0.001524 

 
DT 0.000000 0.990458 5.941606 0.001606 

 
NB 0.029197 0.969439 19.029197 0.001559 

 

It is clear from the negative (FN) transactions listed in table 5.2 that the Decision Tree 

method had a higher percentage of accuracy compared to other base models. 

However, the Decision Tree method was extremely biased compared to other base 

models; the Support Vector Machine method had a lower percentage of accuracy 

when compared with other base models. On the other hand, the true positive (TP) of 

Support Vector Machine method is greater than the true positive value of other base 

models. 

Therefore, it can be concluded that a higher percentage of accuracy of the base model 

that is extremely biased is meaningless compared to an average percentage of 

accuracy of the base model where all output class values are well represented. In this 

study, the true accuracy of a base model is the accuracy in which all output classes 

are well represented. 

The stacking ensemble base models were optimised to achieve equal representation 

of output classes while ensuring that the high overall accuracy of base models is 

maintained. The optimization methods of stacking ensemble base models are 

discussed in the next section. 

5.4. Optimized Stacking Ensemble Base Models 

To obtain the true accuracy of base models and thus achieve a classification problem 

of equal representation of class values, the hyper-parameters of the base models were 

modified. Furthermore, a classification problem of equal representation of class values 

was optimized to maintain the higher overall accuracy of base models. The definitions 
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of the base models (outlined in section 4.4) and class objects (outlined in section 5.3) 

were modified. A description of the manner in which each of the base models was 

modified in order to maintain a high level of is as follows 

 Optimization of the ANN model – for the ANN base model, the number of 

epochs was manually changed from 199 to 50 as defined in section 5.1.1, and 

used a FOR loop to loop through the hidden layers. The best number of hidden 

layers in relation to the epochs was achieved by computing the following code. 

ListItems = [] 

for ind in range(500): 

    nn = NNClassifier(n_classes=N_CLASSES,  

                  n_features=N_FEATURES, 

                  n_hidden_units=ind, 

                  l2=0.5, 

                  epochs=50, 

                  learning_rate=0.001, 

                  n_batches=25, 

                  random_seed=RANDOM_SEED) 

    Ann_pred = nn.predict(X_test) 

    CM = ConfusionMatrixDE(Ann_pred, y_test) 

    if np.array(CM)[0][1]/137 >= 0.50 and np.array(CM)[0][2]/85306 >= 

0.50: 

        ListItems.append([ind, np.array(CM)[0][1]/137, 

np.array(CM)[0][2]/85306]) 

 

The ListItems contains a list of hidden layers, true positive and true negative 

statistics. The hidden layer highest performance and good balance of class 

representation statistics between illegal transactions and legal transactions 

were chosen. The number of nearest neighbours was also changed from 5 to 

1 (see section 5.1.3). 

 

 Optimization of the SVM model – In the case of the SVM model, the classifier 

value was changed from 0 to 0.1 as stipulated in section 4.4.2.  

 Optimization of the KNN model – In the case of the KNN model, the number 

of nearest neighbors was changed from 5 to 1 as stipulated in section 5.1.3.  

 Optimization of the Decision Tree model – for the Decision Tree model, the 

training method was changed from entropy criterion to Gini criterion in section 

4.4.5.  

 Optimization of the Naïve Bayesian model - the predict function of the Naïve 

Bayesian class in section 4.4.4 was modified by multiplying the class probability 
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of legal transactions by 0.51 and the class probability of illegal transaction by 

0.41 for each transaction. The Naïve Bayesian prediction function was 

redefined as follows: 

     

def _predict(self, TestDataInstance): 

        probabilities = 

self._calculateClassProbabilities(TestDataInstance) 

        List, Clas = [], 0 

        for classValue, probability in probabilities.items(): 

            List.append([classValue, probability]) 

        Prob0 = List[0][1] * 0.51 

        Prob1 = List[1][1] * 0.49 

        if Prob0 > Prob1: 

            Clas = List[0][0] 

        else: 

            Clas = List[1][0] 

        return Clas 

 

The naïve Bayesian function is redefined inside the naïve Bayesian class.  

Once all the base models were optimized, the class object were used in combination 

with the class properties to re-run the accuracy code and print the true accuracies of 

the base models. The true accuracies of the base models are detailed in the following 

sub-section. 

5.4.1. True Accuracy of Base Models 

The python code shown below was used to prints the name and the overall true 

accuracy score of the base models. The class object and the class properties were 

used to run the accuracy code to print the true accuracies of the base models. 

Whereas the X_test refers to the input values of the test data, the y_test refers to the 

output values of the test data. The true accuracy of the base model was achieved by 

running the following code: 

print('Artificial Neural Network: '+str(getAccuracy(Ann_pred, 

np.array(y_test)))) 

print('Support Vector Machine: '+str(getAccuracy(SVM_pred, 

np.array(y_test)))) 

print('K-Nearest Neighbor: '+str(getAccuracy(knn_pred, np.array(y_test)))) 

print('Decision Tree: '+str(getAccuracy(DT_pred1, np.array(y_test)))) 

print('Naive Bayesian: '+str(nnNB._getAccuracy(list(y_test), NB_pred))) 

 

Output: 

 

Artificial Neural Network: 95.19562749435296  

Support Vector Machine: 72.8637805320506  

K-Nearest Neighbor: 92.20650023992604  

Decision Tree: 95.18158304366654  
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Naive Bayesian: 96.94065049214096 

 

The Naïve Bayesian method performed extremely well; relative to other base models, 

a higher accuracy rate was achieved. The accuracy of the SVM method was far lower 

than those of other base models. To check how well the class values of base models 

are represented, the confusion matrix is required. The true confusion matrix is 

discussed in the sub-section that follows. 

5.4.2. True Confusion Matrix 

This shows the number of true negative, true positive, false negative, and false positive 

transactions, which are defined in section 5.3.2. The confusion matrix function was 

used to generate the following confusion matrix shown in Table defined in section 5.3.2 

of this study. For the testing of the dataset, the total count of illegal transactions and 

the total count of legal transactions of 137 and 85306 were used, respectively. 

 

Table 5.3: True Confusion Matrix. 

 
Model TP TN FP FN 

 
ANN 98 81240 4066 39 

 
SVM 136 62121 23185 1 

 
KNN 126 78658 6648 11 

 
DT 125 84711 595 12 

 
NB 124 82705 2601 13 

 

To give the above confusion matrix more meaning, the confusion matrix statistics is 

required. To display the confusion matrix statistics, the confusion matrix statistics 

function defined in section 5.3.2 was used. The output of the confusion matrix statistics 

is shown in Table 5.4. 
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Table 5.4: True Confusion Matrix Statistics. 

 
Model TP TN FP FN 

 
ANN 0.715328 0.952336 29.678832 0.000457 

 
SVM 0.992701 0.728214 169.233577 0.000012 

 
KNN 0.919708 0.922069 48.525547 0.000129 

 
DT 0.912409 0.993025 4.343066 0.000141 

 
NB 0.905109 0.969510 18.985401 0.000152 

 

The confusion matrix statistics in Table 5.4 shows that the true positive and negative 

transactions are well represented. This means that the fraudulent data and non-

fraudulent data instances are well classified. Since the true accuracy of a base model 

is the accuracy in which all output classes are well represented, it can be concluded 

that the accuracies in section 5.4.2 are true accuracies of base models. The true 

accuracies are required to model a stacking ensemble method. Stacking ensemble 

method is a classification method that uses more than one classification model for 

decision making, and it is discussed in the next section. 

5.5. Stacking Ensemble Method 

The Stacking Ensemble Method is the final voting of the class values generated by the 

base modes defined in section 4.4. The voting class named Voting, which is discussed 

in section 4.6, allows base models to vote the final output of each transaction of credit 

card data. To run the Voting class code, the class Voting() was used as an object. The 

class object contains the class definition called class properties. The 

Model_predictions data dictionary that contains predicted class values by the base 

models was used for voting of the final class values. The following class object was 

used to return a list of predicted output values:  

Final_pred = Voting().Vote_Func(np.array(pd.DataFrame(Model_predictions))) 

Vote_Func is the class property of Voting class, which returns the list of final prediction 

of class values that belongs to credit card transactions. The list of predicted class 

values was required to compute the accuracy of stacking ensemble method. The 
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accuracy of the stacking ensemble method that represents the class values of the 

dataset well while maintaining or enhancing the performance of the classification 

model is essential to gain a confidence in the classifier model. The accuracy of the 

stacking ensemble method is discussed in the next sub-section. 

5.5.1. Stacking Ensemble Method Accuracy 

The stacking ensemble method accuracy was the accuracy that represents the class 

values of the dataset well while maintaining or enhancing the performance of the 

classifier model. The voting class property of accuracy was getAccuracy which takes 

two parameters, namely: the test output values of the dataset named y_test, and the 

predicted output of credit card transactions named Final_pred. To display the accuracy 

of the stacking ensemble method, the following python code was executed: 

Voting().getAccuracy(np.array(y_test), Final_pred).  

The output of 99.26500708074389 suggested that the stacking ensemble method was 

performing well. However, to determine how well the stacking ensemble method was 

performing, the confusion matrix defined in sub-section 5.3.2 was required. The 

confusion matrix of stacking ensemble method is discussed in the subsection that 

follows. 

5.5.2. Confusion Matrix of Stacking Ensemble. 

This shows the number of true negative, true positive, false negative, and false positive 

transactions. The confusion matrix was discussed in more detail in section 5.3.2. The 

function definition of the confusion matrix of Stacking Ensemble Method is defined in 

algorithm 20 of section 8.4. The following pseudo-code shows the flow of how the 

confusion matrix Method was defined in section 8.4. 

Algorithm 20: Confusion Matrix for Stacking Ensemble Method 

Input: PredictedClassValues, ClassValues 

Output: Confusion Matrix Scores 

Begin 

1. Pivot = [] 

2. For each column in columns 

3.       Column = column value 

4.       Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN) 

5.       For ind = 1 to length of the Column 

6.             IF ClassValue and PredictedClassValue at ind are both equal to 1 

7.                   Then TP += 1 
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8.             ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0 

9.                   Then FN += 1 

10.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1 

11.                   Then FP += 1 

12.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0 

13.                    Then TN += 1 

14.         Append TP, TN, FP,FN into the Pivot 

15. Return Pivot 

End of the function 

The Model_predictions is the data dictionary that contains predicted class values of 

base models that represent the class values well, and y-test is the output values of the 

testing dataset. Vote_Func is the class property of Voting class that returns the list of 

the final prediction of class values belonging to credit card transactions. The above 

confusion matrix function was executed, and the output is given in Table 5.5: 

Table 5.5: Confusion Matrix of Stacking Ensemble. 

Model TP TN FP FN 

Stacking Ensemble 1 84814 478 150 

The total number of illegal and legal transactions is 137 and 85306, respectively. The 

output of stacking ensemble method confusion matrix shows that the both base 

models and stacking ensemble method are performing well. However, to enhance the 

understanding of the confusion matrix, the statistics of the confusion matrix was 

required. The statistics of the stacking ensemble method confusion matrix is discussed 

in the following sub-section. 

5.5.3. Confusion Matrix Statistics of Stacking Ensemble. 

The statistics function of the stacking ensemble method confusion matrix was 

designed to show how well the class values are represented (in a form of percentages) 

by the prediction model. The function definition of the confusion matrix stats of 

Stacking Ensemble Method is defined in algorithm 21 of section 8.4. The following 

pseudo-code shows the flow of how the confusion matrix Method was defined in 

section 8.4. 

Algorithm 21: Confusion Matrix Stats for Stacking Ensemble Method 
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Input: PredictedClassValues, ClassValues 

Output: Confusion Matrix Scores 

Begin 

1. Pivot = [] 

2. For each column in columns 

3.       Column = column value 

4.       Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN) 

5.       For ind = 1 to length of the Column 

6.             IF ClassValue and PredictedClassValue at ind are both equal to 1 

7.                   Then TP += 1 

8.             ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0 

9.                   Then FN += 1 

10.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1 

11.                   Then FP += 1 

12.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0 

13.                    Then TN += 1 

14.        Class0, Class1 = 0, 0 

15.        For each value in the ClassValue 

16.               IF value = 0 

17.                     Class0 += 1 

18.               ELIF value = 1 

19.                     Class1 += 1 

20.   Append TP/Class1, TN/Class0, FP/Class1,FN/Class0 into the Pivot 

21. Return Pivot 

End of the function 

Whereas the Model_predictions is the data dictionary that contains predicted class 

values of base models representing the class values well, and y-test is the output 

values of the testing data. The above confusion matrix code was executed, and the 

output is displayed in Table 5.6. 

Table 5.6: Confusion Matrix Statistics of Stacking Ensemble. 

Model TP TN FP FN 

Stacking Ensemble 0.006623 0.994396 3.165563 0.001759 

While the total number of illegal transactions was found to be 137, and the total number 

of legal transactions was 85306. The statistics of the stacking ensemble method 

confusion matrix shows how well the class values are represented by the prediction 

model. However, a good classification model minimises the count of false negatives 

and positives, even when the count of true negatives and positives is good in relation 

to the total count of transactions.  

Therefore, this research study sought to optimize the stacking ensemble method to 

decrease the number of misclassified transaction while enhancing the performance of 
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the stacking ensemble method. The optimization technique that was adopted for this 

research study is Differential Evolution Method, which is detailed in the next sub-

section. 

5.6. Differential Evolution Method 

To run the class code of Differential Evolution Method defined in section 4.8, an object 

containing class definition must be defined. The object of the Differential Evolution 

Method is defined as DE, and DE contains the set of parameter values of the class 

that are passed to the constructor. The code shown below shows how the set of hyper-

parameters that are passed to the class and the Model_proba_df1, which is the Data-

Frame of predicted probabilities of transactions representing the class values well. 

 

TrainDataX = Model_proba_df1 

population_size = 100000 

Scaling_Factor = 0.9 

Max_Iterator = 500  

Crossover_Probability = 1.2 

random_seed = 25 

 

DE = DifferentialEvolution(TrainDataX,  

                           population_size,  

                           Scaling_Factor,  

                           Max_Iterator,  

                           Crossover_Probability, 

                           random_seed)  

 

The object code DE.Best_Population() was used to return the error rate named “Best 

Generation” and the best weight solution named “Best Solution”. The output of 

DE.Best_Population() is as follows: 

Best Generation: 0.9784773967015673 

Best Solution: [0.5191182431959512, -0.21487774856187453, 0.600552155776322

6, 0.5496892828208568, 1.384309253288074e-11] 

The best solution is the set of weights which are multiplied by the predicted class pro

babilities of each transaction. The logistic function and the optimized threshold of 0.8

38 were used for differential evolution decision making. The accuracy of differential e

volution model was required to determine how the model was performing. Differential 

evolution optimization was performing well if the class values of transactions were w

ell represented and high accuracy of the model was preserved. The accuracy of the 

differential evolution is discussed in the next sub-section. 
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5.6.1. Differential Evolution Accuracy 

The differential evolution accuracy refers to the accuracy in which the class values of 

differential evolution prediction model are well represented while maintaining or 

enhancing the performance of the model. The accuracy in which the class values of 

the classification model are well represented is defined as true accuracy of the model. 

To perform the true accuracy of differential evolution model, the class object was 

required. 

In this research study, the object of the Differential Evolution Method was defined in 

section 5.4 as DE. While Model_Probability_df is the data-frame that contains the 

predicted class probability of credit card transactions, getPredictions is the function of 

differential evolution that returns the list of predicted output classes of credit card 

transactions. On the other hand, getAccuracy is also the function of differential 

evolution that returns the accuracy of the differential evolution technique. The 

accuracy of Differential Evolution Model was achieved by running the following code: 

 

predictions = DE.getPredictions(Model_proba_df1) 

DE.getAccuracy(np.array(y_test), predictions) 

 

y_test is the output values of the test data described in the data split function in section 

4.1. The true accuracy of Differential Evolution Optimization Model is 

99.9133925541004. To check how well the class values of Differential Evolution 

Optimization Model were represented, confusion matrix was required, and it is outlined 

in the following sub-section. 

5.6.2. Differential Evolution Confusion Matrix 

This shows the number of true negative, true positive, false negative, and false positive 

transactions. The confusion matrix was discussed in great detail in section 5.3.2. The 

function definition of the differential evolution confusion matrix Method is defined in 

algorithm 22 of section 8.4. The following pseudo-code shows the flow of how the 

confusion matrix Method was defined in section 8.4. 

Algorithm 22: Confusion Matrix for Differential Evolution Method 
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Input: PredictedClassValues, ClassValues 

Output: Confusion Matrix Scores 

Begin 

1. Pivot = [] 

2. For each column in columns 

3.       Column = column value 

4.       Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN) 

5.       For ind = 1 to length of the Column 

6.             IF ClassValue and PredictedClassValue at ind are both equal to 1 

7.                   Then TP += 1 

8.             ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0 

9.                   Then FN += 1 

10.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1 

11.                   Then FP += 1 

12.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0 

13.                    Then TN += 1 

14.         Append TP, TN, FP,FN into the Pivot 

15. Return Pivot 

End of the function 

 

The Model_proba_df1 refers to the Data-Frame of predicted probabilities of 

transactions that represent the class values well. The getPredictions is the property of 

DE class object and is used to return the list of predicted class values of credit card 

transactions. The Model_proba_df1 Data-Frame, the class object, the getPredictions 

class property, and the confusion matrix function shown below were used to display 

the differential evolution confusion matrix indicated in Table 5.7. 

 

predictions = DE.getPredictions(Model_proba_df1) 

ConfusionMatrixDE(predictions, y_test) 

 

Table 5.7: Differential Evolution Confusion Matrix. 

Model TP TN FP FN 

Differential Evolution 117 85252 54 20 

 

y_test is the output values of the test data described in section 4.1 under the data split 

function. The total count of illegal and legal transactions is 137 and 85306, 

respectively. The output Differential Evolution confusion matrix shows that both the 

base model and Differential Evolution Optimization Model are performing well. The 

class values of the prediction models are well represented and the overall accuracy is 

good. To enhance the meaning of the above confusion matrix, the statistics of 

confusion matrix was required. For this reason, the statistics of the Differential 

Evolution confusion matrix is discussed in the following sub-section. 
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5.6.3. Differential Evolution Confusion Matrix Statistics 

In this research study, the differential evolution confusion matrix statistics function was 

designed to establish to how well the class values are represented (in a form of 

percentages) by the prediction model. The function definition of the differential 

evolution confusion matrix statistics Method is defined in algorithm 23 of section 8.4. 

The following pseudo-code shows the flow of how the confusion matrix Method was 

defined in section 8.4. 

Algorithm 23: Confusion Matrix Stats for Differential Evolution Method 

Input: PredictedClassValues, ClassValues 

Output: Confusion Matrix Scores 

Begin 

1. Pivot = [] 

2. For each column in columns 

3.       Column = column value 

4.       Initial True Positive(TP), True Negative(TN), False Positive(FP) and False Negative(FN) 

5.       For ind = 1 to length of the Column 

6.             IF ClassValue and PredictedClassValue at ind are both equal to 1 

7.                   Then TP += 1 

8.             ELIF ClassValue at ind is equal to 1 and PredictedClassValue at ind is equal to 0 

9.                   Then FN += 1 

10.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 1 

11.                   Then FP += 1 

12.             ELIF ClassValue at ind is equal to 0 and PredictedClassValue at ind is equal to 0 

13.                    Then TN += 1 

14.        Class0, Class1 = 0, 0 

15.        For each value in the ClassValue 

16.               IF value = 0 

17.                     Class0 += 1 

18.               ELIF value = 1 

19.                     Class1 += 1 

20.   Append TP/Class1, TN/Class0, FP/Class1,FN/Class0 into the Pivot 

21. Return Pivot 

End of the function 

 

The Data-Frame of predicted probabilities of transactions that represent the class 

values well is referred to as the Model_proba_df1. The getPredictions of DE class 

object was used to return the list of predicted class values of credit card transactions. 

The Model_proba_df1 Data-Frame, the class object, the getPredictions class property, 

and the confusion matrix statistics function shown below were used for displaying the 

Differential Evolution confusion matrix. 

predictions = DE.getPredictions(Model_proba_df1) 

ConfusionMatrixStatDE(predictions, y_test) 
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Table 5.8: Differential Evolution Confusion Matrix Statistics. 

Model TP TN FP FN 

Differential Evolution 0.854015 0.999367 0.394161 0.000234 

 

The output values of the test data (i.e. y_test) was defined in the data split function 

described in section 4.1; the total count of illegal transactions is 137 and the total count 

of legal transactions is 85306. The output of true differential evolution confusion matrix 

statistics shows how well the class values are represented by the prediction model. In 

the next subsection, a comparative analysis of the confusion matrix of the Differential 

Evolution Optimization Method and the Stacking Ensemble Method is undertaken. 

5.7. Differential Evolution Method vs Stacking Ensemble Method 

The confusion matrix is explained in details in sub-section 5.3.2. Figure 5.6 shows the 

true negative and true positive transactions of the stacking ensemble method and the 

classification problem of the differential evolution optimization of stacking ensemble 

method. 

 

Figure 5.6: True Positive/Negatives of Stacking Ensemble vs Differential Evolution Methods. 

It is clear from Figure 5.6 that the number of true positive transactions (fraudulent 

transactions) generated from the stacking ensemble method is exceeded by that of 

the true positives generated using the Differential Evolution Optimization of Stacking 

Ensemble method. Put differently, the number fraudulent transaction detected by the 

differential evolution optimization of Stacking Ensemble classifier is substantially 

higher than those of Stacking Ensemble model. 
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The number of true negative transactions (non-fraudulent transactions) of the Stacking 

Ensemble method is lower than that of the true negatives of the differential evolution 

optimization of stacking ensemble method. This suggest that the number of non-

fraudulent transaction detected using the Differential Evolution Optimization of 

Stacking Ensemble classifier are greater than those detected by the Stacking 

Ensemble method. 

A comparative analysis of the misclassified transactions using the differential evolution 

optimization of stacking ensemble classifier and the stacking ensemble classifier is 

displayed in Figure 5.7. 

 

Figure 5.7: False Positive/Negatives of Stacking Ensemble vs Differential Evolution Methods. 

According Figure 5.7, the number of false positive transactions (misclassified 

fraudulent transactions) generated using the Stacking Ensemble method is slightly 

higher than the false positives associated with the Differential Evolution Optimization 

of Stacking Ensemble method. Relative to the false positive transactions, the 

percentage of negative transactions (misclassified non-fraudulent transactions) is 

significantly low and therefore not visible. 
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Figure 5.8: False Negatives of Stacking Ensemble vs Differential Evolution Methods. 

Figure 5.8 shows the number of false negative transactions (misclassified non-

fraudulent transactions) for the two methods. The number of false negative 

transactions generated through the stacking ensemble method is greater than that of 

the Differential Evolution Optimization of Stacking Ensemble method. 

5.8. Summary 

In this chapter, the presentation, the analysis and interpretation of the results of the 

research study were put forward. It is found that the differential evolution optimization 

of stacking ensemble classifier outperforms the stacking ensemble classifier in terms 

of classification and misclassification of credit card fraudulent transactions. The 

discussion and conclusion of the findings are explained in chapter 6 of this research 

study. 

 

 

 

 

 



112 
 

6. Chapter 6: Discussion and Conclusion 

This last and final chapter of this research study is composed of two sections. Efforts 

in the first section are aimed at establishing whether the research questions that were 

raised in the first chapter have been addressed. The second section concludes this 

research study and recommends the future works to address the limitations of the 

study. 

6.1. Discussion 

The Main Research Question, which was outlined in Chapter 1, was: 

 “Is the Differential Evolution optimization method a good approach for 

defining the weighting function to predict the outcome of future credit 

card fraudulent transactions?”  

As indicated in Chapter 5 (Data Analysis), the differential evolution stochastic 

optimization method shows that the weighted voting stacking ensemble method, when 

used in combination with a differential evolution stochastic optimization method 

performed better than the base models.  

When used in combination with the differential evolution stochastic optimization 

method, the weighted voting stacking ensemble method was able to achieve higher 

accuracy for confusion matrix true negative (TN) and true positive (TP) transactions. 

The confusion matrix false negative (FN) and false positive (FP) transactions of the 

credit card fraud data were, on the other hand, extremely low.  

This means that when used in combination with the differential evolution stochastic 

optimization method, the weighted voting stacking ensemble method performed very 

well without any biasness of the class distribution. Thus, the differential evolution 

optimization method is a good approach for defining the weighting function to predict 

the outcome of future fraudulent credit card transactions.  

The following sub-research questions for addressing the problem statement were 

asked: 

(a) First Sub-research Question  
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“Does Safe-Level-SMOTE oversampling method (on the minority classes) used 

with under-sampling method (that eliminates duplicate data samples on the 

majority class) have positive impact on reducing the high skewedness of the 

class distribution than SMOTE oversampling method (on the minority classes) 

used with the under-sampling method (that also eliminates duplicate data 

samples on the class with majority data observations)?” 

 

The SMOTE and the Safe-Level-SMOTE methods were computed with under-

sampling methods that eliminates duplicate data observations and randomly 

select the data observations of the class with majority data observations to 

balance the class distribution. The SL-SMOTE method actually performed 

better than SMOTE. However, the logic behind the mathematical 

representation of both the SMOTE and the SL-SMOTE methods was found to 

be violating the objective of SMOTE method. For this reason, the modified 

SMOTE and the modified SL-SMOTE methods were designed and tested in 

this research study.  

 

The modified SMOTE method was found to perform better than the modified 

SL-SMOTE method when tested with the credit card dataset used in this 

research study. Lastly, it can be concluded that both SMOTE and SL-SMOTE 

methods are powerful oversampling methods when used in combination with 

majority class data observations that were down-sampled by removing 

duplicate data observations and randomly select the data observation to 

balance the class distribution. Therefore, it can be concluded that incorrect 

computation of an algorithm can cloud the true computing capabilities of an 

algorithm. 

 

(b) Second Sub-research Question 

 

“Does Safe-Level-SMOTE oversampling method and the under-sampling 

method (that eliminates duplicate data samples on the class of the majority data 

observations) reduce or eliminate the problem of overlapping data samples 

between fraudulent and non-fraudulent classes?” 
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The Safe-Level-SMOTE oversampling method and the under-sampling method 

that eliminates duplicate data samples and randomly select data observations 

from the majority class to balance the class distribution did not eliminate the 

overlapping data observations since the training dataset was not entirely 

separable. 

 

The training dataset was not entirely separable because the SVM that is known 

to be wide road separator algorithm did not achieve the 100% accuracy. That 

is to say, the SVM method is the wide separator of illegal and legal transactions, 

and its inability to separate the two transactions speaks volumes about the 

dataset. However, it can be concluded that the overlapping data observations 

were reduced since all the base models (machine learning algorithms) 

performed well to classify the illegal and legal transactions according to their 

respective classes. 

 

(c) Third Sub-research Question 

 

“Does manual stacking of feature selection methods that are diverse on the 

PCA transformed features to hide the actual feature names, select enough 

good features to solve the problem than just selecting a feature selection 

algorithm?” 

 

The manual stacking of feature selection methods that are diverse on the PCA 

transformed features performed differently for each of the features. However, 

similarities were noted for features that were not adding or adding less value to 

the classification problem. The time feature appeared to be adding less value 

to the classification problem when computing univariate selection algorithm, 

recursive feature elimination algorithm, and feature importance algorithm. For 

this reason, the time feature was removed from the dataset. 

 

(d) Fourth Sub-research Question 
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“Does the stacking of the supervised machine learning algorithms have an 

impact on predictive accuracy given the under-sampling technique to remove 

the duplicate data observations on the majority class, and the Safe-Level-

SMOTE oversampling method?” 

The stacking of the supervised machine learning algorithms has proven to 

positively impact the predictive accuracy given the under-sampling technique 

to remove the duplicate data observations on the majority class, and the Safe-

Level-SMOTE oversampling method. Like the base models (machine learning 

methods), the stacking method was found to be extremely biased.  

However, the stacking method had fewer false negatives and false positives 

compared to the base models. This means that the stacking ensemble method 

performed slightly better than the base models. Therefore, the claim about the 

majority voting stacking ensemble method not being a good stacking ensemble 

method for the credit card dataset as compared to the weighted voting stacking 

ensemble method was correct. 

 

(e) Fifth Sub-research Question  

 

“Will the proposed data model for fraud detection efficiently detect credit card 

fraudulent activities?” 

 

The proposed method for fraud detection is the weighted voting stacking 

ensemble method used in combination with the differential evolution stochastic 

optimization method. The proposed data model was tested and evaluated with 

the credit card dataset that contained transactions effected in September 2013 

by the European cardholders. The dataset was downloaded from the Kaggle 

competition data repository (Kaggle, 2018). 

 

The weighted voting stacking ensemble method was designed and used for the 

credit card dataset since the base models (machine learning methods) are 

different and performs differently. Finding the relevant weights for the base 

models has proven to be a challenging task. However, the differential evolution 
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method was employed to search the optimum weights for the weighted voting 

stacking ensemble method. 

 

The differential evolution method was able to find the optimum weights for the 

weighted voting stacking ensemble method. When used in combination with 

differential evolution stochastic optimization method, the weighted voting 

stacking ensemble method performed far much better than the base models 

(machine learning methods) and the weighted voting stacking ensemble 

method. The true negative (TN) and the true positive (TP) transactions of the 

confusion matrix were high while the false negative (FN) and the false positive 

(FP) transactions were low. 

 

This means that the weighted voting stacking ensemble method with differential 

evolution method was able to generalize the data distribution by classifying 

fraudulent and non-fraudulent transactions correctly, and the model is not 

biased. It can therefore be concluded that the weighted voting stacking 

ensemble method in combination with differential evolution stochastic 

optimization method was able to classify illegal and legal transactions correctly 

and efficiently. 

Some researchers have managed to create machine learning methods for addressing 

the detection of credit card fraud (Malini & Pushpa 2017, pp. 1 – 4; Ganji 2012, pp. 1 

– 5; Das, et al. 2017, pp. 1 – 4; Manjaramkar & Kokare 2017, pp. 1 – 4; Liu, et al. 2017, 

pp. 1 – 6; Mao, et al. 2017, pp. 1 - 8). However, their approach involves the individual 

use of the machine learning methods and a comparison of the output accuracies. It is 

argued in this research study that one machine learning method cannot, regardless of 

its computational power, be used to solve problems in all the cases. This argument is 

supported by the No-Free-Lunch (NFL) theorem, which states that there is no machine 

learning method that can achieve the best performance for all measures in every given 

application (Macready & Wolpert 1996, pp. 67 - 82).  

The argument presented is this study is based on the fact that credit card fraudsters 

continue to upskill themselves with skills that allow them to bypass the powerful 

machine learning algorithms used in banks, and fraudsters exploit the loopholes 

present in every algorithm to their own benefit. Therefore, the creation of a detection 
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method that overcomes the loopholes found in the individual machine learning 

methods is seen as the best way for reducing or eliminating malicious activities 

associated with credit card fraud. 

The approach adopted in this research study for combating credit card fraud was 

different. Various machine learning algorithms that performs differently were chosen. 

Various machine learning methods were chosen with the aim to cover the search 

space of the problem. However, the method to guide the researchers in terms of the 

machine learning methods being various enough to cover the search space of the 

problem is unknown and was not designed in this study. Various machine learning 

models were chosen to weight vote the final output of each transaction of the dataset. 

The voting of the machine learning models was designed to solve the problem of weak 

classifier models given a credit card transaction. 

Since various machine learning method produced different prediction probability for 

each transaction, the weights for each voting machine learning model were used. 

However, to get the optimum weights for the machine learning techniques, it was 

necessary that the differential evolution method was used. The study has 

demonstrated that the differential evolution method is a good optimizer of weights for 

the machine learning models to vote the final output class of the credit card 

transactions. 

6.2. Conclusions 

The Main Research Question, which was outlined in Chapter 1, was: To obtain 

optimum data analytics algorithms that performs data insights to reveal fraudulent data 

patterns in order to prevent future fraudulent transactions. Dataset available from 

Kaggle machine learning competitions data repository (Kaggle, 2018) was used for 

addressing the objectives of the research study. This publicly available Kaggle 

repository data contained credit card dataset transactions made during September 

2013 by European cardholders and was consisted of a total of 284 807 transactions, 

of which 0.172% (492) were illegal. 

The Safe-Level SMOTE method was used for oversampling the fraudulent 

transactions while the duplicates were removed and random sampling was performed 

to non-fraudulent transactions to balance the class distribution. The feature selection 
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methods such as univariate selection algorithm, recursive feature elimination 

algorithm, and feature importance algorithm were stacked and majority voting was 

performed to vote out the feature(s) that did not add value to the decision making of 

the base models. 

The weaknesses of the widely used, popular, and powerful base models selected for 

the detection of credit card malicious activities was examined through the designing, 

testing, and evaluation processes. An evaluation of the base models using the 

confusion matrix revealed that the performance expectancies of the base models were 

different and each base model performed well in specific areas or behaviours of the 

dataset. Furthermore, the data observations were different in nature, and their 

differences creates further research opportunities in areas of the credit card data 

whereby the individual base models are unable to detect fraudulent behaviours. 

Various machine learning methods that perform differently and target various areas of 

the credit card data observations cover almost the entire search space of credit card 

data observations. To encourage proper credit card fraud detection or management 

system, financial institutions must design an environment that enables the adoption of 

weighted stacking ensemble methods with relevant base model weights to address 

the problem of credit card fraud. 

In this research study, it is proposed that the weighted stacking ensemble method with 

differential evolution stochastic optimization model is suitable for the issue of illegal 

activities associated with credit card fraud. The DE approach produced better results 

because it can be easily applied on a variety of real valued problems where the feature 

vector space is multi-dimensional and where noise exist in the dataset. The noise was 

corrected by correcting the crossover vectors with values which are less than the lower 

bound and values which are more than the upper bound of the search space. Another 

important point why DE produced better results the hyper-parameters (CR and F) do 

not require the same fine tuning unlike in many other Evolutionary Algorithms where 

the same hyper-parameter fine tuning is required. This helps vectors in DE to evolve 

and converge towards the optimum weights of the stacking ensemble method. 

The proposed model, which was evaluated using the confusion matrix, was found to 

perform better than the base models in terms of accuracy. Furthermore, the model 

was found to cover almost the entire search space of the credit card transactions. 
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However, it is noteworthy that the proposed model has its own limitations. Specifically, 

the framework for guiding the study in terms of the selection for stacking ensemble 

method of the base models covering the entire search space of the credit card data 

observations was not addressed. 

It is recommended that future works should include the implementation of the 

framework to guide the financial institutions in terms of selection for stacking ensemble 

method of the base models that covers the entire search space of the credit card data 

observations. The framework should be flexible enough to cater for all types of credit 

card datasets. 
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8.4. Python Source Codes 
 

Algorithm 1: Remove Duplicates in the Training Dataset 

def _duplicates(Training_data0): 

    Training_data0_df = pd.DataFrame(Training_data0) 

    Training_data0_df.drop_duplicates(keep='first', inplace=True) 

    Num_removed = len(Training_data0) - len(Training_data0_df) 

    return Num_removed, Training_data0_df 

 

Algorithm 2: Random Sampling 

def _randomSamples(Training_data0_df): 

    reduced = [] 

    index   = [] 

    for i in range(700): 

        ind = np.random.randint(0, len(training_data0_df)) 

        if ind not in index: 

            index.append(ind) 

            reduced.append(training_data0_df.iloc[ind]) 

        else: 

            i -= 1 

    return reduced 

 

Algorithm 3: Combine Training Dataset without Duplicates with Random Sample 

Dataset 

def _recombination(training_data , Training_data1): 

    randomSamples = pd.DataFrame(_randomSamples(training_data)) 

    recombination = randomSamples.append(Training_data1) 

    return recombination 

 

Algorithm 4: Safe Level SMOTE 

def euclidean_distance (x, y): 

    return np.sqrt(sum( pow( a-b, 2 ) for a, b in zip( x , y ))) 

 

def _safe_level_smote(recombination): 

    New_data = [] 

    for Pos_instance in [j for j,i in enumerate(np.array(recombination)) if 

float(i[-1]) == 1.0]: 

        k_distances = 

[[euclidean_distance(np.array(recombination)[Pos_instance], 

np.array(recombination)[i]), i] for i in range(len(np.array(recombination))) 

if i != Pos_instance] 

        k_distances.sort(reverse = False) 

        k = [np.array(recombination)[j] for j in [i[1] for i in 

k_distances[0:5]]] 

        n = k.pop(np.random.randint(0,5)) 

        n_distances = [[euclidean_distance(n, np.array(recombination)[i]), 

i] for i in range(len(np.array(recombination)))] 

        n_distances.sort(reverse = False) 

        n_neighbors = [np.array(recombination)[j] for j in [i[1] for i in 

n_distances[1:6]]] 

        SLp = len([i for i in k if i[-1] == 1]) 
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        SLn = len([i for i in n_neighbors if i[-1] == 1]) 

        if SLn != 0: 

            SL_ratio = SLp/SLn 

        else: 

            SL_ratio = np.inf 

        if SL_ratio == np.inf and SLp == 0: 

            continue 

        else: 

            feature  = [] 

            for i in range(len(np.array(recombination)[0])): 

                if SL_ratio == np.inf and SLp != 0: 

                    gap = 0 

                elif SL_ratio == 1: 

                    gap = np.random.uniform(0, 1) 

                elif SL_ratio > 1: 

                    gap = np.random.uniform(0, 1/SL_ratio) 

                elif SL_ratio < 1: 

                    gap = np.random.uniform(1 - SL_ratio, 1) 

                dif = k[0][i] - n_neighbors[0][i] 

                feature.append(n_neighbors[0][i] + gap*dif) 

            feature[-1] = 1.0 

            New_data.append(feature) 

    return New_data 

 

Algorithm 5: SMOTE 

def _Smote_func(recombination, No_of_neighbours, Percentage): 

    No_of_minority=len([i for i in (np.array(recombination)) if float(i[-1]) 

    == 1.0]) 

    No_New_instances = int((Percentage / 100) * No_of_minority) 

    # Number of attributes excluding the class attribute. 

    No_of_attributes = len(np.array(recombination)[0]) - 1  

    Sythetic_values  = [] 

     

    for Pos_instance in [j for j,i in enumerate(np.array(recombination))  

    if float(i[-1]) == 1.0]: 

           

k_distances=[[euclidean_distance(np.array(recombination)[Pos_instance

], np.array(recombination)[i]), i]  

      for i in range(len(np.array(recombination))) if i != Pos_instance and  

                       np.array(recombination)[i][-1] == 1.0] 

        k_distances.sort(reverse = False) 

        nnarray = [np.array(recombination)[j] for j in [i[1] for i in  

  k_distances[0:No_of_neighbours]]] 

         

    for newIndex in range(No_New_instances): 

        row = [] 

        nn = np.random.randint(0, No_of_neighbours) 

        for attr in range(0, No_of_attributes): 

            difference=float(nnarray[nn][attr])- 

float(np.array(recombination)[Pos_instance][attr]) 

            gap = np.random.uniform(0, 1) 

            row.append(np.array(recombination)[Pos_instance][attr]+  

(difference * gap)) 

        row.append(float(1.0)) 

        Sythetic_values.append(row)  

    return Sythetic_values 



140 
 

 

Algorithm 6: Modified SMOTE 

def _Smote_func_new(recombination, No_of_neighbours, Percentage): 

     

    No_of_minority   = len([i for i in (np.array(recombination))  

    if float(i[-1]) == 1.0]) 

    No_New_instances = int((Percentage / 100) * No_of_minority) 

    # Number of attributes excluding the class attribute.     

    No_of_attributes = len(np.array(recombination)[0]) - 1  

    Sythetic_values  = [] 

     

    for Pos_instance in [j for j,i in enumerate(np.array(recombination)) 

    if float(i[-1]) == 1.0]: 

        

k_distances=[[euclidean_distance(np.array(recombination)[Pos_instance], 

np.array(recombination)[i]), i]  

    for i in range(len(np.array(recombination))) if i != Pos_instance and  

                       np.array(recombination)[i][-1] == 1.0] 

        k_distances.sort(reverse = False) 

        nnarray = [np.array(recombination)[j] for j in [i[1] 

  for i in k_distances[0:No_of_neighbours]]] 

         

    for newIndex in range(No_New_instances): 

        row = [] 

        nn = np.random.randint(0, No_of_neighbours) 

        for attr in range(0,No_of_attributes): 

            row.append(np.random.uniform(float(nnarray[nn][attr]),  

float(np.array(recombination)[Pos_instance][attr]))) 

        row.append(float(1.0)) 

        Sythetic_values.append(row) 

    return Sythetic_values 

 

Algorithm 7: Modified Safe Level SMOTE 

def _safe_level_smote_new(recombination): 

 

    New_data = [] 

     

    for Pos_instance in [j for j,i in enumerate(np.array(recombination)) if 

float(i[-1]) == 1.0]: 

         

        k_distances = 

[[euclidean_distance(np.array(recombination)[Pos_instance], 

np.array(recombination)[i]), i]  

                       for i in range(len(np.array(recombination))) if i != 

Pos_instance] 

        k_distances.sort(reverse = False) 

        k = [np.array(recombination)[j] for j in [i[1] for i in 

k_distances[0:5]]] 

         

        n = k.pop(np.random.randint(0,5)) 

        n_distances = [[euclidean_distance(n, np.array(recombination)[i]), 

i] for i in range(len(np.array(recombination)))] 

        n_distances.sort(reverse = False) 
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        n_neighbors = [np.array(recombination)[j] for j in [i[1] for i in 

n_distances[1:6]]] 

         

        SLp = len([i for i in k if i[-1] == 1]) 

        SLn = len([i for i in n_neighbors if i[-1] == 1]) 

         

        if SLn != 0: 

            SL_ratio = SLp/SLn 

        else: 

            SL_ratio = np.inf 

 

        if SL_ratio == np.inf and SLp == 0: 

            continue 

        else: 

            feature  = [] 

            for i in range(len(np.array(recombination)[0])): 

                if SL_ratio == np.inf and SLp != 0: 

                    gap = 0 

                elif SL_ratio == 1: 

                    gap = np.random.uniform(0, 1) 

                elif SL_ratio > 1: 

                    gap = np.random.uniform(0, 1/SL_ratio) 

                elif SL_ratio < 1: 

                    gap = np.random.uniform(1 - SL_ratio, 1) 

                 

                feature.append(np.random.uniform(k[0][i], 

n_neighbors[0][i])) 

 

            feature[-1] = 1.0 

            New_data.append(feature) 

         

    return New_data   

 

Algorithm 8: Univariate Selection Method 

def Uni_select(Features, Class): 

    test = SelectKBest(score_func = f_classif, k = 30) 

    fit = test.fit(Features, Class) 

    Score = list(fit.scores_) 

    Univeriate_Scores = [(b,a)for a, b in zip(Features.columns, Score)] 

    Univeriate_Scores.sort(reverse = True) 

    return Univeriate_Scores 

 

Algorithm 9: Recursive Feature Elimination Method 

def Recursive(Features, Class): 

    model = LogisticRegression() 

    rfe = RFE(model, 1) 

    fit = rfe.fit(Features, Class) 

    ranking = fit.ranking_ 

    Recursive_Scores = [(b,a)for a, b in zip(Features.columns, ranking)] 

    Recursive_Scores.sort() 

    return Recursive_Scores 

 

Algorithm 10: Feature Importance Method 

def Importance(Features, Class): 
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    model = ExtraTreesClassifier() 

    model.fit(Features, Class) 

    importance = model.feature_importances_ 

    Importance_Scores = [(b,a)for a, b in zip(Features.columns, importance)] 

    Importance_Scores.sort(reverse = True) 

    return Importance_Scores 

 

Algorithm 11: Artificial Neural Network (ANN) 

Table 8.1: Artificial Neural Network class properties. 

Function Name Description 

1) _init_weight The function to initialize the weights. 

2) _add_bias_unit The function to add the bias unit value 

of 1 to the layers of the model. 

3) _forward The forward propagation function of the 

model. 

4) sigmoid_prime The derivative function of logistic 

function. 

5) _backward The backpropagation function. 

6) L2_reg The regularize term function. 

7) _error The model’s error function. 

8) _backprop_step The function defined to update weights 

of the model. 

 

The class of the ANN method is defined as follows: 
 

class NNClassifier(): 

 

    #Constructor 

    def __init__(self, n_classes, n_features, n_hidden_units=30, 

                 l1=0.0, l2=0.05, epochs=200, learning_rate=0.01, 

                 n_batches=1, random_seed=None): 

        if random_seed: 

            np.random.seed(random_seed) 

        self.n_classes = n_classes 

        self.n_features = n_features 

        self.n_hidden_units = n_hidden_units 

        self.w1, self.w2 = self._init_weights() 

        self.l1 = l1 

        self.l2 = l2 

        self.epochs = epochs 

        self.learning_rate = learning_rate 

        self.n_batches = n_batches 

         

    #Initialize Weights 

    def _init_weights(self): 

        w1 = np.random.uniform(-1.0, 1.0, size=self.n_hidden_units * 

(self.n_features + 1)) 

        w1 = w1.reshape(self.n_hidden_units, self.n_features + 1) 

        w2 = np.random.uniform(-1.0, 1.0, size=self.n_classes * 

(self.n_hidden_units + 1)) 

        w2 = w2.reshape(self.n_classes, self.n_hidden_units + 1) 
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        return w1, w2 

     

    # Adding Bias Terms 

    def _add_bias_unit(self, X, how='column'): 

        if how == 'column': 

            X_new = np.ones((X.shape[0], X.shape[1] + 1)) 

            X_new[:, 1:] = X 

        elif how == 'row': 

            X_new = np.ones((X.shape[0] + 1, X.shape[1])) 

            X_new[1:, :] = X 

        return X_new 

     

    # Sigmoid Fuction 

    def sigmoid(self, activation): 

        return 1.0 / (1.0 + np.exp(-activation)) 

     

    #Forward Feed 

    def _forward(self, X): 

        net_input = self._add_bias_unit(X, how='column') 

        net_hidden = self.w1.dot(net_input.T) 

        act_hidden = self.sigmoid(net_hidden) 

        act_hidden = self._add_bias_unit(act_hidden, how='row') 

        net_out = self.w2.dot(act_hidden) 

        act_out = self.sigmoid(net_out) 

        return net_input, net_hidden, act_hidden, net_out, act_out 

     

    #Derivative of Sigmoid Function 

    def sigmoid_prime(self, output): 

        return output * (1.0 - output) 

    #Backpropagation 

    def _backward(self, net_input, net_hidden, act_hidden, act_out, y): 

        y = list(zip(*y)) 

        sigma3 = act_out - y 

        net_hidden = self._add_bias_unit(net_hidden, how='row') 

        sigma2 = self.w2.T.dot(sigma3) * self.sigmoid_prime(net_hidden) 

        sigma2 = sigma2[1:, :] 

        grad1 = sigma2.dot(net_input) 

        grad2 = sigma3.dot(act_hidden.T) 

        return grad1, grad2 

     

    #Regularizer 

    def L2_reg(self, lambd, w1, w2, m): 

        return (np.sum(np.square(self.w1)) + 

np.sum(np.square(self.w2)))*(lambd/(2*m)) 

     

    #Loss/Cost Fuction 

    def cross_entropy(self, output, y): 

        SumEntropy = 0 

        for ind in range(len(y)): 

            if y[ind][1] == 1.0: 

                SumEntropy += (-np.log(output[1][ind])) 

            else: 

                SumEntropy += (-np.log(1 - output[0][ind])) 

        return SumEntropy 

     

    #Error Rate 

    def _error(self, y, output): 



144 
 

        L1_term = self.L1_reg(self.l1, self.w1, self.w2, len(y)) 

        L2_term = self.L2_reg(self.l2, self.w1, self.w2, len(y)) 

        error = self.cross_entropy(output, y) + L2_term 

        return 0.5 * np.mean(error) 

     

    #Updating Weights 

    def _backprop_step(self, X, y): 

        net_input, net_hidden, act_hidden, net_out, act_out = 

self._forward(X) 

        grad1, grad2 = self._backward(net_input, net_hidden, act_hidden, 

act_out, y) 

        grad1[:, 1:] += (self.w1[:, 1:] * (self.l2)) 

        grad2[:, 1:] += (self.w2[:, 1:] * (self.l2)) 

        error = self._error(y, act_out) 

        return error, grad1, grad2 

     

    #Predictions 

    def predict(self, X): 

        Xt = X.copy() 

        net_input, net_hidden, act_hidden, net_out, act_out = 

self._forward(Xt) 

        return [np.argmax(ind) for ind in net_out.T] 

     

    #Decision Making Function 

    def softmax(self, inputs): 

        return np.exp(inputs) / float(sum(np.exp(inputs))) 

     

    #Class Probability Predictions 

    def predict_proba(self, X): 

        Xt = X.copy() 

        net_input, net_hidden, act_hidden, net_out, act_out = 

self._forward(Xt) 

        return [self.softmax(ind) for ind in net_out.T] 

     

    #Class with Highest Probability 

    def probability(self, prediction_list, prediction_proba_list): 

        proba = [] 

        for Index, Value in enumerate(prediction_list): 

            proba.append(prediction_proba_list[Index][Value]) 

        return proba 

     

    #Learn 

    def fit(self, X, y): 

        y = to_categorical(y, self.n_classes) 

        X_data, y_data = X.copy(), y.copy() 

        for epoch in range(self.epochs): 

            error, grad1, grad2 = self._backprop_step(X_data, y_data) 

            self.w1 -= (self.learning_rate * grad1) 

            self.w2 -= (self.learning_rate * grad2) 

            print('>epoch=%d, error=%.3f'%(epoch, error)) 

        return self 

     

    # Score 

    def score(self, X, y): 

        y_hat = self.predict(X) 

        return np.sum(y == y_hat, axis=0) / float(X.shape[0]) 
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Algorithm 12: Support Vector Machine (SVM) 

Table 8.2: Support Vector Machine class properties. 

Function Name Description 

1) _init_weights The initialization of the weights 

2) _add_bias_unit The function to add the bias unit value 

of 1 to the layers of the model. 

3) _format The function that formats the output 

values to float numbers. 

4) _predict_proba The function that predicts the class 

probability. 

5) _predict The function that predicts the output of 

the transaction. 

6) _score The function to output the score. 

7) probability The function to output the class 

probabilities. 

8) _train The function that allows the model to 

learn from historical data 

 

The class of the SVM method is defined as follows: 
 

class Support_Vaector_Machine(): 

     

    #Constructor 

    def __init__(self, n_classes, n_features, learning_rate=0.01, 

                 epochs = 100, random_seed=None): 

        if random_seed: 

                np.random.seed(random_seed) 

        self.n_classes      = n_classes 

        self.n_features     = n_features 

        self.learning_rate  = learning_rate 

        self.epochs         = epochs 

        self.W              = self._init_weights() 

         

    #Initialize Weights     

    def _init_weights(self): 

        W = np.random.uniform(0.0, size = self.n_classes * (self.n_features 

+ 1)) 

        W = W.reshape(self.n_classes, self.n_features + 1) 

        return W 

     

    #Adding Bias Terms 

    def _add_bias_unit(self, X): 

        X_new = np.ones((X.shape[0], X.shape[1] + 1)) 

        X_new[:, 1:] = X 

        return X_new 

     

    #Format Output Values to Float Numbers             

    def _formatY(self, y): 

        group = lambda List, num: zip(*[List[i::num] for i in range(num)]) 

        y = to_categorical(y, 2) 
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        y = [ -1.0 if value == 0.0 else value for values in y for value in 

values] 

        y = [np.array(value) for value in list(group(y, 2))] 

        return y 

     

    #Probability of the Output 

    def _predict_proba(self, X, y): 

        net_input = self._add_bias_unit(X) 

        Weighted  = self.W.dot(net_input.T) 

        format_y  = self._formatY(y) 

        X_pred    = Weighted.T * format_y 

        return X_pred 

     

    #Predictions 

    def _predict(self, X, y): 

        proba = self._predict_proba(X, y) 

        pred = [np.argmax(value) for value in proba] 

        return pred 

     

    #Score 

    def _score(self, X, y): 

        pred = self._predict(X, y) 

        Count = 0 

        for i in range(len(pred)): 

            if pred[i] == list(y)[i]: 

                Count += 1 

        return Count/len(y) 

     

    #Class with Highest Probability 

    def probability(self, pred_list, pred_proba_list): 

        proba = [] 

        for Index, Value in enumerate(pred_list): 

            proba.append(pred_proba_list[Index][Value]) 

        return proba 

     

    #Train 

    def _train(self, x_train, y_train): 

        for epoch in range(self.epochs): 

            pred = self._predict_proba(x_train, y_train) 

            for ind in range(len(pred)): 

                if (pred[ind][1] >= 0): 

                    self.W = self.W + self.learning_rate * ((-2) * 

(1/self.epochs) * self.W) 

                else: 

                    self.W = self.W + self.learning_rate * 

((np.array(y_train)[ind] 

                            * np.array(self._add_bias_unit(x_train))[ind]) 

                            - (2 * (1/self.epochs) * self.W)) 

        return self 

 

Algorithm 13: K-Nearest Neighbour (KNN) 

Table 8.3: k-Nearest Neighbour class properties. 

Function Name Description 
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1) _distance The function that calculates the 

difference between the two values. 

2) _euclideanDistance The function to measure the gap size 

between two data observations. 

3) _getNeighbors The function to get the k-neighbours. 

4) _predict The function to predict the output of 

each transaction. 

5) _probability The function to calculate the class 

probabilities of transactions. 

6) _getAccuracy The function to return the accuracy of 

the model. 

 

The class of the KNN method is defined as follows: 
 

class k_Nearest_Neighbor(): 

     

    #Constructor 

    def __init__(self, row_length, neighbors, TrainDataX, TrainDataY, 

random_seed=None): 

        if random_seed: 

                np.random.seed(random_seed)    

        self.TrainDataX  = TrainDataX 

        self.TrainDataY  = TrainDataY 

        self.row_length  = row_length 

        self.neighbors   = neighbors 

        

     #Distance Function 

    def _distance(self, row1_value, row2_value): 

        Distance = pow((row1_value - row2_value), 2) 

        return Distance 

     

    #Euclidean Distance Function 

    def _euclideanDistance(self, row1, row2): 

        distance = 0 

        for ind in range(self.row_length): 

            distance += self._distance(row1[ind], row2[ind]) 

        return np.sqrt(distance) 

     

     #Function to get k nearest neighbors 

    def _getNeighbors(self, TestDataX): 

        k_nearest_neighbors = [] 

        for ind in range(len(self.TrainDataX)): 

            dist = self._euclideanDistance(np.array(self.TrainDataX)[ind], 

TestDataX) 

            k_nearest_neighbors.append((ind, dist)) 

        k_nearest_neighbors.sort(key = operator.itemgetter(1), 

reverse=False) 

        return [k_nearest_neighbors[i] for i in range(5)] 

     

     #Function for Prediction of transaction 

    def _predict(self, TestRow): 

        k_nearest_neighbors = self._getNeighbors(TestRow) 

        for Neighbor in k_nearest_neighbors: 
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            count0, count1 = 0, 0 

            if self.TrainDataY[Neighbor[0]] == 0.0: 

                count0 += 1 

            elif self.TrainDataY[Neighbor[0]] == 1.0: 

                count1 += 1 

        if count0 > count1: 

            predictions = 0.0 

        else: 

            predictions = 1.0 

        return predictions 

 

     #Function to get predictions 

    def _getPredictions(self, TestDataX): 

        count = 0 

        predictions = [] 

        for TestRow in np.array(TestDataX): 

            predictions.append(self._predict(TestRow)) 

            print(count) 

            count += 1 

        return predictions 

     

     # Class Probability Function 

    def _probability(self, TestDataX): 

        Percentage = [] 

        for TestRow in TestDataX: 

            k_nearest_neighbors = self._getNeighbors(TestRow) 

            count0, count1 = 0, 0 

            for Index, Neighbor in k_nearest_neighbors: 

                if self.TrainDataY[Index] == 0.0: 

                    count0 += 1 

                elif self.TrainDataY[Index] == 1.0: 

                    count1 += 1 

            if count0 > count1: 

                Percentage.append(count0/5) 

            else: 

                Percentage.append(count1/5) 

        return Percentage 

 

     # Function to get the Accuracy 

    def _getAccuracy(self, TestDataY, predictions): 

        correct = 0 

        for y in range(len(np.array(TestDataY))): 

            if np.array(TestDataY)[y] == predictions[y]: 

                correct += 1 

        return (correct/float(len(np.array(TestDataY)))) * 100.0 

 

Algorithm 14: Naïve Bayesian (NB) 

Table 8.4: Naive Bayesian class properties. 

Function Name Description 

1) Mean The function to calculate the mean. 

2) Standard Deviation The function to calculate the Standard 

Deviation. 
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3) _calculateProbability Gaussian/Normal Distribution function 

that calculates the class probabilities. 

4) _summaize The function that computes the 

standard deviation and the mean of 

features. 

5) _separateByClass The function to separate transactions by 

class values. 

6) _summarizeByClass The function to compute the mean and 

standard deviation of transactions 

separated by class values. 

7) _CalculateClassProbabilities The function that calculate the class 

probability. 

8) _predict The function to predict the output of 

each transaction. 

9) _getPredictions The function to get the list of predictions 

10)   probability The function that returns the list of 

probabilities. 

11)   _getAccuracy The function that returns the accuracy 

of the model. 

 

The class of the Naïve Bayesian method is defined as follows: 
 

class Naive_Bayesian(): 

     

#Constuctor 

    def __init__(self, x, y, random_seed=None): 

        if random_seed: 

                np.random.seed(random_seed) 

        self.TrainDataX = x 

        self.TrainDataY = y 

      

    #Mean Function    

    def _mean(self, numbers): 

        return sum(numbers)/float(len(numbers)) 

 

    #Standard Deviation Function 

    def _stdev(self, numbers): 

        avg = self._mean(numbers) 

        variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-

1) 

        return np.sqrt(variance) 

 

    #Gaussian/Normal Distribution Function 

    def _calculateProbability(self, RowValue, mean, stdev): 

        exponent = np.exp(-(np.power(RowValue-

mean,2)/(2*np.power(stdev,2)))) 

        return (1 / (np.sqrt(2*np.pi) * stdev)) * exponent 

 

    #Mean and standard deviation of features 

    def _summarize(self,TrainData): 

        summaries = [(self._mean(attribute), self._stdev(attribute))  

                     for attribute in zip(*np.array(TrainData))] 
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        return summaries 

 

    #Separated Transactions by Class Values 

    def _separateByClass(self): 

        separated = {} 

        for ind in range(len(np.array(self.TrainDataX))): 

            vector = np.array(self.TrainDataX)[ind] 

            if (np.array(self.TrainDataY)[ind] not in separated): 

                separated[np.array(self.TrainDataY)[ind]] = [] 

            separated[np.array(self.TrainDataY)[ind]].append(vector) 

        return separated 

 

    #Mean and Standard Deviation of Features by class values 

    def _summarizeByClass(self): 

        separated = self._separateByClass() 

        summaries = {} 

        for classValue, instances in separated.items(): 

            summaries[classValue] = self._summarize(instances) 

        return summaries 

 

    #Function to Calculate Class Probabilities 

    def _calculateClassProbabilities(self, TestDataInstance): 

        probabilities = {} 

        summaries = self._summarizeByClass() 

        for classValue, classSummaries in summaries.items(): 

            probabilities[classValue] = 1 

            for ind in range(len(classSummaries)): 

                mean, stdev = classSummaries[ind] 

                RowValue = TestDataInstance[ind] 

                probabilities[classValue] *= 

self._calculateProbability(RowValue, mean, stdev) 

        return probabilities 

 

    #Function to Predict the output of Transaction 

    def _predict(self, TestDataInstance): 

        probabilities = self._calculateClassProbabilities(TestDataInstance) 

        bestLabel, bestProb = None, -1 

        for classValue, probability in probabilities.items(): 

            if bestLabel is None or probability > bestProb: 

                bestProb = probability 

                bestLabel = classValue 

        return bestLabel 

 

    #Function to get Predictions 

    def _getPredictions(self,TestDataX): 

        predictions = [] 

        for i in range(len(np.array(TestDataX))): 

            result = self._predict(np.array(TestDataX)[i]) 

            predictions.append(result) 

        return predictions 

 

    #Function that Returns the Probabilities 

    def probability(self, TestDataX): 

        probas = [] 

        for TestDataInstance in np.array(TestDataX): 

            proba = 

list(self._calculateClassProbabilities(TestDataInstance).values()) 
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            probas.append(proba[np.argmax(proba)]) 

        return probas 

 

    #Function to get Accuracies 

    def _getAccuracy(self, TestDataY, predictions): 

        correct = 0 

        for ind in range(len(TestDataY)): 

            if TestDataY[ind] == predictions[ind]: 

                correct += 1 

        return (correct/float(len(TestDataY)))*100.0 

 

Algorithm 15: Decision Tree (DT) 

Table 8.5: Decision Tree class properties. 

Function Name Description 

1) _train_using_entropy The function is used to train the DT 

model. 

2) _pred_proba The function that calculates the class 

probabilities. 

3) _prediction The function that returns the list of 

predictions. 

4) probability The function that returns the list of the 

probabilities of predicted values. 

5) _getAccuracy The function to return the accuracy of 

the DT model. 
 

The class of the Decision Tree method is defined as follows: 
 

from sklearn.tree import DecisionTreeClassifier 

 

class Decision_tree(): 

     

    def __init__(self, Gini_Criterion, Max_depth, Min_samples_leaf,  

                 Entropy_Criterion, random_seed=None): 

        if random_seed: 

                np.random.seed(random_seed) 

        self.Gini_Criterion = Gini_Criterion 

        self.Max_depth = Max_depth 

        self.Min_samples_leaf = Min_samples_leaf 

        self.Entropy_Criterion = Entropy_Criterion 

 

    def _train_using_gini(self, X_train, y_train): 

        clf_gini = DecisionTreeClassifier(criterion = self.Gini_Criterion,  

                             random_state = 1, max_depth = self.Max_depth,  

                             min_samples_leaf = self.Min_samples_leaf) 

        clf_gini.fit(X_train, y_train)  

        return clf_gini 

 

    def _train_using_entropy(self, X_train, y_train):  

        clf_entropy = DecisionTreeClassifier(  

                criterion = self.Entropy_Criterion,  

                random_state = 1,  

                max_depth = self.Max_depth,  
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                min_samples_leaf = self.Min_samples_leaf)   

        clf_entropy.fit(X_train, y_train)  

        return clf_entropy 

     

    def _pred_proba(self, X_test, clf_object): 

        predict_prob = clf_object.predict_proba(X_test) 

        return predict_prob 

 

    def _prediction(self, X_test, clf_object): 

        y_pred = clf_object.predict(X_test) 

        return y_pred 

     

    def probability(self, pred_list, pred_proba_list): 

        proba = [] 

        for Index, Value in enumerate(pred_list): 

            proba.append(pred_proba_list[Index][Value]) 

        return proba 

 

    def _getAccuracy(self, yTest, predictions): 

            correct = 0 

            for y in range(len(yTest)): 

                if yTest[y] == predictions[y]: 

                    correct += 1 

            return (correct/float(len(yTest))) * 100.0 

 

Algorithm 16: Stacking Ensemble Method 

Table 8.6: Stacking Ensemble class properties. 

Function Name Description 

1) Mode_Fun The class property used for voting per 

transaction. 

2) Vote_Function The class property used for returning 

the list of voted transactions. 

3) getAccuracy The class property used for computing 

the accuracy of the model. 

4) Unmatched_Indexes The class property used for returning 

the count of misclassified credit card 

transactions. 
 

class Voting(): 

 

    def __init__(self): 

        pass 

     

    def Mode_Fun(self, List): 

        Predict, Count0, Count1 = 0,0,0 

        for Value in List: 

            if Value == 0.0: 

                Count0 += 1 

            elif Value == 1.0: 

                Count1 += 1 

        if Count0 > Count1: 

            Predict = 0.0 
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        else: 

            Predict = 1.0 

        return Predict 

 

    def Vote_func(self, Model_pred_A): 

        predictions = [] 

        for Row in Model_pred_A: 

            Mode = self.Mode_Fun(Row) 

            predictions.append(Mode) 

        return predictions 

 

    def getAccuracy(self, TestDataY, predictions): 

        correct = 0 

        for ind in range(len(TestDataY)): 

            if TestDataY[ind] == predictions[ind]: 

                correct += 1 

        return (correct/float(len(TestDataY)))*100.0 

 

    def Unmatched_Indexes(self, TestDataY, predictions): 

        incorrect = [] 

        for ind in range(len(TestDataY)): 

            if TestDataY[ind] != predictions[ind]: 

                incorrect.append(ind) 

        return incorrect 

 

Algorithm 17: Differential Evolution Optimization Method 

class DifferentialEvolution(): 

    def __init__(self, TrainDataX, population_size, Scaling_Factor, 

Max_Iterator, Crossover_Probability,random_seed=None): 

        if random_seed: 

                np.random.seed(random_seed)         

        self.TrainDataX = np.array(TrainDataX) 

        self.population_size = population_size 

        self.Scaling_Factor = Scaling_Factor 

        self.Max_Iterator = Max_Iterator 

        self.Population = self.Initialize(self.population_size) 

        self.Crossover_Probability = Crossover_Probability 

     

    def Bounds(self): 

        bounds = [] 

        for Feature in zip(*np.array(self.TrainDataX)): 

            Min, Max = min(Feature), max(Feature) 

            bounds.append([Min, Max]) 

        return bounds 

     

    def Ensure_Bound(self, Vector, Bound): 

        New_Vector = [] 

        for ind in range(len(Vector)): 

            if Bound[ind][0] >= Vector[ind]: 

                New_Vector.append(Bound[ind][0]) 

            if Bound[ind][1] <= Vector[ind]: 

                New_Vector.append(Bound[ind][1]) 

            if Bound[ind][0] <= Vector[ind] and Vector[ind] <= 

Bound[ind][1]: 

                New_Vector.append(Vector[ind]) 
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        return New_Vector 

     

    def Cost_Func(self, x): 

        sums = sum([x[i]**2 for i in range(len(x))]) 

        return sums 

     

    # Target Individuals 

    def Initialize(self, pop_size): 

        bounds = self.Bounds() 

        Population = [] 

        for Index in range(pop_size): 

            Individual = [] 

            for Value1, Value2 in bounds: 

                Individual.append(np.random.uniform(Value1, Value2)) 

            Population.append(Individual) 

        return Population 

     

    def RandomValues(self, LengthList): 

        count = 0 

        RandomList   = [] 

        while count < LengthList: 

            RandomNumber = np.random.randint(0, self.population_size) 

            if RandomNumber not in RandomList: 

                RandomList.append(RandomNumber) 

                count += 1 

            else: 

                count += 0 

        return RandomList 

     

    def Mutation(self): 

        LengthList   = 3 

        RandomList = self.RandomValues(LengthList) 

        X1 = self.Population[RandomList[0]] 

        X2 = self.Population[RandomList[1]] 

        X3 = self.Population[RandomList[2]] 

        diff = [x1 - x2 for x1, x2 in zip(X2, X3)] 

        V_donor = [x1 + self.Scaling_Factor*diff for x1, diff in zip(X1, 

diff)] 

        V_donor = self.Ensure_Bound(V_donor, self.Bounds()) 

        return V_donor 

     

    def Crossover(self,): 

        V_Targets = self.Population 

        V_donor = self.Mutation() 

        V_trials = [] 

        for V_Target in V_Targets: 

            V_trial = [] 

            for Index in range(len(V_Target)): 

                crossover = np.random.uniform(0,1) # Check the interval 

                if crossover < self.Crossover_Probability: 

                    V_trial.append(V_donor[Index]) 

                else: 

                    V_trial.append(V_Target[Index]) 

            V_trials.append(V_trial) 
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        return V_trials 

     

    def Scores(self): 

        Gen_Scores = [] 

        V_trials  = self.Crossover() 

        V_Targets = self.Population 

        for i in range(1, self.Max_Iterator + 1): 

            Trial_Costs = [self.Cost_Func(V_trial) for V_trial in V_trials] 

            Target_Costs = [self.Cost_Func(V_Target) for V_Target in 

V_Targets] 

            for Index in range(len(Trial_Costs)): 

                if Trial_Costs[Index] < Target_Costs[Index]: 

                    self.Population[Index] = V_trials[Index] 

                    Gen_Scores.append(Trial_Costs[Index]) 

                else: 

                    Gen_Scores.append(Target_Costs[Index]) 

        return Gen_Scores 

     

    def Best_Population(self): 

        Gen_Scores = self.Scores() 

        Gen_min = min(Gen_Scores) 

        Gen_Sol = self.Population[Gen_Scores.index(min(Gen_Scores))] 

        print('Best Generation: ', Gen_min) 

        print('Best Solution  : ', Gen_Sol) 

        return Gen_Sol 

     

    def sigmoid(self,activation): 

        return 1.0 / (1.0 + np.exp(-activation)) 

     

    def getPredictions(self, Model_Probability_df): 

        List = [] 

        Best_Solution = self.Best_Population() 

        for Observation in np.array(Model_Probability_df): 

            DotProduct = 

self.sigmoid(Observation.dot(np.array(Best_Solution).T)) 

            if DotProduct >=  0.838: 

                List.append(1) 

            else: 

                List.append(0) 

        return List 

     

    def getAccuracy(self, TestDataY, predictions): 

        correct = 0 

        for ind in range(len(TestDataY)): 

            if TestDataY[ind] == predictions[ind]: 

                correct += 1 

        return (correct/float(len(TestDataY)))*100.0 

 

Algorithm 18: Confusion Matrix Method 

def ConfusionMatrix(Model_pred_df, y_test): 

    Pivot = [] 

    for value in Model_pred_df.columns: 

        Column = Model_pred_df[value] 

        TP, TN, FP, FN = 0, 0, 0, 0 
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        for ind in range(len(Column)): 

            if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0: 

                TP += 1 

            elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0: 

                FN += 1 

            elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0: 

                FP += 1 

            elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0: 

                TN += 1 

        Pivot.append([value, TP, TN, FP, FN]) 

    return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN']) 

 

Algorithm 19: Confusion Matrix Stats Method 

def ConfusionMatrixStat(Model_pred_df, y_test): 

    Pivot = [] 

    for value in Model_pred_df.columns: 

        Column = Model_pred_df[value] 

        TP, TN, FP, FN = 0, 0, 0, 0 

        for ind in range(len(Column)): 

            if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0: 

                TP += 1 

            elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0: 

                FN += 1 

            elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0: 

                FP += 1 

            elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0: 

                TN += 1 

        Class0, Class1 = 0,0 

        for Value in np.array(y_test): 

            if Value == 0.0: 

                Class0 += 1 

            elif Value == 1.0: 

                Class1 += 1 

        Pivot.append([value, TP/Class1, TN/Class0, FP/Class1, FN/Class0]) 

    return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN']) 

 

Algorithm 20: Confusion Matrix for Stacking Ensemble Method 

def ConfusionMatrixSE(Model_predictions, y_test): 

    Pivot = [] 

    Column = Model_pred_df 

    TP, TN, FP, FN = 0, 0, 0, 0 

    for ind in range(len(Column)): 

        if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0: 

            TP += 1 

        elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0: 

            FN += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0: 

            FP += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0: 

            TN += 1 

    Pivot.append(['Stacking Ensemble', TP, TN, FP, FN]) 

    return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN']) 
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Algorithm 21: Confusion Matrix Stats for Stacking Ensemble Method 

def ConfusionMatrixStatSE(Model_pred_df, y_test): 

    Pivot = [] 

    Column = Model_pred_df 

    TP, TN, FP, FN = 0, 0, 0, 0 

    for ind in range(len(Column)): 

        if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0: 

            TP += 1 

        elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0: 

            FN += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0: 

            FP += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0: 

            TN += 1 

    Class0, Class1 = 0,0 

    for Value in np.array(y_test): 

        if Value == 0.0: 

            Class0 += 1 

        elif Value == 1.0: 

            Class1 += 1 

    Pivot.append(['Stacking Ensemble Method', TP/Class1, TN/Class0, 

FP/Class1, FN/Class0]) 

    return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN']) 

Algorithm 22: Confusion Matrix for Differential Evolution Method 

def ConfusionMatrixDE(Model_pred_df, y_test): 

    Pivot = [] 

    Column = Model_pred_df 

    TP, TN, FP, FN = 0, 0, 0, 0 

    for ind in range(len(Column)): 

        if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0: 

            TP += 1 

        elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0: 

            FN += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0: 

            FP += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0: 

            TN += 1 

    Pivot.append(['Differential Evolution', TP, TN, FP, FN]) 

    return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN']) 

 

Algorithm 23: Confusion Matrix Stats for Differential Evolution Method 

def ConfusionMatrixStatDE(Model_pred_df, y_test): 

    Pivot = [] 

    Column = Model_pred_df 

    TP, TN, FP, FN = 0, 0, 0, 0 

    for ind in range(len(Column)): 

        if np.array(y_test)[ind] == 1.0 and Column[ind] == 1.0: 

            TP += 1 

        elif np.array(y_test)[ind] == 1.0 and Column[ind] == 0.0: 

            FN += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 1.0: 
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            FP += 1 

        elif np.array(y_test)[ind] == 0.0 and Column[ind] == 0.0: 

            TN += 1 

    Class0, Class1 = 0,0 

    for Value in np.array(y_test): 

        if Value == 0.0: 

            Class0 += 1 

        elif Value == 1.0: 

            Class1 += 1 

    Pivot.append(['Differential Evolution', TP/Class1, TN/Class0, 

FP/Class1, FN/Class0]) 

    return pd.DataFrame(Pivot, columns = ['Model', 'TP', 'TN', 'FP', 'FN']) 

 

 


