3 research outputs found

    Computational Methods for the Analysis of Genomic Data and Biological Processes

    Get PDF
    In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality

    Ensemble learning and hierarchical data representation for microarray classification

    No full text
    The microarray data classification is an open and active research field. The development of more accurate algorithms is of great interest and many of the developed techniques can be straightforwardly applied in analyzing different kinds of omics data. In this work, an ensemble learning algorithm is applied within a classification framework that already got good predictive results. Ensemble techniques take individual experts, (i.e. classifiers), to combine them to improve the individual expert results with a voting scheme. In this case, a thinning algorithm is proposed which starts by using all the available experts and removes them one by one focusing on improving the ensemble vote. Two versions of a state of the art ensemble thinning algorithm have been tested and three key elements have been introduced to work with microarray data: the ensemble cohort definition, the nonexpert notion, which defines a set of excluded expert from the thinning process, and a rule to break ties in the thinning process. Experiments have been done on seven public datasets from the Microarray Quality Control study, MAQC. The proposed key elements have shown to be useful for the prediction performance and the studied ensemble technique shown to improve the state of the art results by producing classifiers with better predictions.Peer ReviewedPostprint (published version

    Ensemble learning and hierarchical data representation for microarray classification

    No full text
    The microarray data classification is an open and active research field. The development of more accurate algorithms is of great interest and many of the developed techniques can be straightforwardly applied in analyzing different kinds of omics data. In this work, an ensemble learning algorithm is applied within a classification framework that already got good predictive results. Ensemble techniques take individual experts, (i.e. classifiers), to combine them to improve the individual expert results with a voting scheme. In this case, a thinning algorithm is proposed which starts by using all the available experts and removes them one by one focusing on improving the ensemble vote. Two versions of a state of the art ensemble thinning algorithm have been tested and three key elements have been introduced to work with microarray data: the ensemble cohort definition, the nonexpert notion, which defines a set of excluded expert from the thinning process, and a rule to break ties in the thinning process. Experiments have been done on seven public datasets from the Microarray Quality Control study, MAQC. The proposed key elements have shown to be useful for the prediction performance and the studied ensemble technique shown to improve the state of the art results by producing classifiers with better predictions.Peer Reviewe
    corecore