27,367 research outputs found

    Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms

    Full text link
    Many different machine learning algorithms exist; taking into account each algorithm's hyperparameters, there is a staggeringly large number of possible alternatives overall. We consider the problem of simultaneously selecting a learning algorithm and setting its hyperparameters, going beyond previous work that addresses these issues in isolation. We show that this problem can be addressed by a fully automated approach, leveraging recent innovations in Bayesian optimization. Specifically, we consider a wide range of feature selection techniques (combining 3 search and 8 evaluator methods) and all classification approaches implemented in WEKA, spanning 2 ensemble methods, 10 meta-methods, 27 base classifiers, and hyperparameter settings for each classifier. On each of 21 popular datasets from the UCI repository, the KDD Cup 09, variants of the MNIST dataset and CIFAR-10, we show classification performance often much better than using standard selection/hyperparameter optimization methods. We hope that our approach will help non-expert users to more effectively identify machine learning algorithms and hyperparameter settings appropriate to their applications, and hence to achieve improved performance.Comment: 9 pages, 3 figure

    Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    Get PDF
    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan

    Weighted Heuristic Ensemble of Filters

    Get PDF
    Feature selection has become increasingly important in data mining in recent years due to the rapid increase in the dimensionality of big data. However, the reliability and consistency of feature selection methods (filters) vary considerably on different data and no single filter performs consistently well under various conditions. Therefore, feature selection ensemble has been investigated recently to provide more reliable and effective results than any individual one but all the existing feature selection ensemble treat the feature selection methods equally regardless of their performance. In this paper, we present a novel framework which applies weighted feature selection ensemble through proposing a systemic way of adding different weights to the feature selection methods-filters. Also, we investigate how to determine the appropriate weight for each filter in an ensemble. Experiments based on ten benchmark datasets show that theoretically and intuitively adding more weight to ‘good filters’ should lead to better results but in reality it is very uncertain. This assumption was found to be correct for some examples in our experiment. However, for other situations, filters which had been assumed to perform well showed bad performance leading to even worse results. Therefore adding weight to filters might not achieve much in accuracy terms, in addition to increasing complexity, time consumption and clearly decreasing the stability
    • …
    corecore