899 research outputs found

    Ensemble clustering for result diversification

    Get PDF
    This paper describes the participation of the University of Twente in the Web track of TREC 2012. Our baseline approach uses the Mirex toolkit, an open source tool that sequantially scans all the documents. For result diversification, we experimented with improving the quality of clusters through ensemble clustering. We combined clusters obtained by different clustering methods (such as LDA and K-means) and clusters obtained by using different types of data (such as document text and anchor text). Our two-layer ensemble run performed better than the LDA based diversification and also better than a non-diversification run

    Ultra-Scalable Spectral Clustering and Ensemble Clustering

    Full text link
    This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for K-nearest representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high efficiency. Based on the ensemble generation via multiple U-SEPC's, a new bipartite graph is constructed between objects and base clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning ten-million-level nonlinearly-separable datasets on a PC with 64GB memory. Experiments on various large-scale datasets have demonstrated the scalability and robustness of our algorithms. The MATLAB code and experimental data are available at https://www.researchgate.net/publication/330760669.Comment: To appear in IEEE Transactions on Knowledge and Data Engineering, 201

    Microbial community pattern detection in human body habitats via ensemble clustering framework

    Full text link
    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural patterns. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome.Comment: BMC Systems Biology 201

    An algebraic approach to ensemble clustering

    Get PDF
    International audienceIn clustering, consensus clustering aims at providing a single partition fitting a consensus from a set of independently generated. Common procedures, which are mainly statistical and graph-based, are recognized for their robustness and ability to scale-up. In this paper, we provide a complementary and original viewpoint over consensus clustering, by means of algebraic definitions which allow to ascertain the nature of available inferences in a systematic approach (e.g. a knowledge base). We found our approach on the lattice of partitions, for which we shall disclose how some operators can be added with the aim to express a formula representing the consensus. We show that adopting an incremental approach may assist to retain significant amount of aggregate data which fits well with the set of input clusterings. Beyond that ability to model formulae, we also note that its potential cannot be easily captured through such a logical system. It is due to the volatile nature of handling partitions which finally impacts on ability to draw some valuable conclusions

    Visual Decision Support for Ensemble Clustering

    Get PDF
    The continuing growth of data leads to major challenges for data clustering in scientific data management. Clustering algorithms must handle high data volumes/dimensionality, while users need assistance during their analyses. Ensemble clustering provides robust, high-quality results and eases the algorithm selection and parameterization. Drawbacks of available concepts are the lack of facilities for result adjustment and the missing support for result interpretation. To tackle these issues, we have already published an extended algorithm for ensemble clustering that uses soft clusterings. In this paper, we propose a novel visualization, tightly coupled to this algorithm, that provides assistance for result adjustments and allows the interpretation of clusterings for data sets of arbitrary size
    corecore