447 research outputs found

    Mitigation of Catastrophic Interference in Neural Networks and Ensembles using a Fixed Expansion Layer

    Get PDF
    Catastrophic forgetting (also known in the literature as catastrophic interference) is the phenomenon by which learning systems exhibit a severe exponential loss of learned information when exposed to relatively small amounts of new training data. This loss of information is not caused by constraints due to the lack of resources available to the learning system, but rather is caused by representational overlap within the learning system and by side-effects of the training methods used. Catastrophic forgetting in auto-associative pattern recognition is a well-studied attribute of most parameterized supervised learning systems. A variation of this phenomenon, in the context of feedforward neural networks, arises when non-stationary inputs lead to loss of previously learned mappings. The majority of the schemes proposed in the literature for mitigating catastrophic forgetting are not data-driven, but rather rely on storage of prior representations of the learning system. We introduce the Fixed Expansion Layer (FEL) feedforward neural network that embeds an expansion layer which sparsely encodes the information contained within the hidden layer, in order to help mitigate forgetting of prior learned representations. The fixed expansion layer approach is generally applicable to feedforward neural networks, as demonstrated by the application of the FEL technique to a recurrent neural network algorithm built on top of a standard feedforward neural network. Additionally, we investigate a novel framework for training ensembles of FEL networks, based on exploiting an information-theoretic measure of diversity between FEL learners, to further control undesired plasticity. The proposed methodology is demonstrated on a several tasks, clearly emphasizing its advantages over existing techniques. The architecture proposed can be applied to address a range of computational intelligence tasks, including classification problems, regression problems and system control

    Neuron Clustering for Mitigating Catastrophic Forgetting in Supervised and Reinforcement Learning

    Get PDF
    Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many novel training techniques. One issue that has affected neural networks and prevented them from performing well in more realistic online environments is that of catastrophic forgetting. Catastrophic forgetting affects supervised learning systems when input samples are temporally correlated or are non-stationary. However, most real-world problems are non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the input space. Reinforcement learning represents a worst-case scenario when it comes to precipitating catastrophic forgetting in neural networks. Meaningful training examples are acquired as the agent explores different regions of its state/action space. When the agent is in one such region, only highly correlated samples from that region are typically acquired. Moreover, the regions that the agent is likely to visit will depend on its current policy, suggesting that an agent that has a good policy may avoid exploring particular regions. The confluence of these factors means that without some mitigation techniques, supervised neural networks as function approximation in temporal-difference learning will be restricted to the simplest test cases. This work explores catastrophic forgetting in neural networks in terms of supervised and reinforcement learning. A simple mathematical model is introduced to argue that catastrophic forgetting is a result of overlapping representations in the hidden layers in which updates to the weights can affect multiple unrelated regions of the input space. A novel neural network architecture, dubbed cluster-select, is introduced which utilizes online clustering for the selection of a subset of hidden neurons to be activated in the feedforward and backpropagation stages. Clusterselect is demonstrated to outperform leading techniques in both classification nd regression. In the context of reinforcement learning, cluster-select is studied for both fully and partially observable Markov decision processes and is demonstrated to converge faster and behave in a more stable manner when compared to other state-of-the-art algorithms

    Pseudorehearsal in value function approximation

    Full text link
    Catastrophic forgetting is of special importance in reinforcement learning, as the data distribution is generally non-stationary over time. We study and compare several pseudorehearsal approaches for Q-learning with function approximation in a pole balancing task. We have found that pseudorehearsal seems to assist learning even in such very simple problems, given proper initialization of the rehearsal parameters

    A dynamic ensemble learning algorithm for neural networks

    Get PDF

    Overcoming the Stability Gap in Continual Learning

    Full text link
    In many real-world applications, deep neural networks are retrained from scratch as a dataset grows in size. Given the computational expense for retraining networks, it has been argued that continual learning could make updating networks more efficient. An obstacle to achieving this goal is the stability gap, which refers to an observation that when updating on new data, performance on previously learned data degrades before recovering. Addressing this problem would enable continual learning to learn new data with fewer network updates, resulting in increased computational efficiency. We study how to mitigate the stability gap in rehearsal (or experience replay), a widely employed continual learning method. We test a variety of hypotheses to understand why the stability gap occurs. This leads us to discover a method that vastly reduces this gap. In experiments on a large-scale incremental class learning setting, we are able to significantly reduce the number of network updates to recover performance. Our work has the potential to advance the state-of-the-art in continual learning for real-world applications along with reducing the carbon footprint required to maintain updated neural networks
    • …
    corecore