
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2015

Neuron Clustering for Mitigating Catastrophic Forgetting in Neuron Clustering for Mitigating Catastrophic Forgetting in

Supervised and Reinforcement Learning Supervised and Reinforcement Learning

Benjamin Frederick Goodrich
University of Tennessee - Knoxville, bgoodric@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Artificial Intelligence and Robotics Commons, Controls and Control Theory Commons, and

the Robotics Commons

Recommended Citation Recommended Citation
Goodrich, Benjamin Frederick, "Neuron Clustering for Mitigating Catastrophic Forgetting in Supervised
and Reinforcement Learning. " PhD diss., University of Tennessee, 2015.
https://trace.tennessee.edu/utk_graddiss/3581

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3581&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Benjamin Frederick Goodrich entitled "Neuron

Clustering for Mitigating Catastrophic Forgetting in Supervised and Reinforcement Learning." I

have examined the final electronic copy of this dissertation for form and content and

recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy, with a major in Computer Engineering.

Itamar Arel, Major Professor

We have read this dissertation and recommend its acceptance:

Jamie Coble, Jeremy Holleman, Jens Gregor

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Neuron Clustering for Mitigating

Catastrophic Forgetting in

Supervised and Reinforcement

Learning

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Benjamin Frederick Goodrich

December 2015

c© by Benjamin Frederick Goodrich, 2015

All Rights Reserved.

ii

Acknowledgements

There have been a lot of people over the years who have encouraged me, and who

opened doors and provided opportunities to make this work possible. First of all, I

want to thank Dr. Michael J. Roberts who taught several of my courses during my

undergraduate years at The University of Tennessee. He was one of the strongest

influences in encouraging me to go on to graduate school.

The last few years in my graduate program, I’ve had many colleagues and friends

who I want to thank. I want to thank everyone in my lab who have been there

to bounce around research ideas and who have been very supportive. Some of

the ideas presented in this dissertation began during discussions with these people.

This includes Aaron Mishtal, Andrew Davis, Derek Rose, Steven Young, Tomer

Lancewicki, Benjamin Martin, Nicole Pennington, and Bobby Coop. I also want to

thank Dr. Harry Richards, who was the program manager of the SCALE-IT program

and who has been an excellent mentor and friend. I also want to thank my gym

trainer Mariah Melancon who helped me to eat properly and exercise, which turned

out to be absolutely critical for my mental and physical health during the last year

especially.

Finally, perhaps most importantly, I want to thank my advisor Dr. Itamar Arel

who has been the most helpful and influential person in encouraging me to finish for

the past few years.

iii

Abstract

Neural networks have had many great successes in recent years, particularly with

the advent of deep learning and many novel training techniques. One issue that has

afflicted neural networks and prevented them from performing well in more realistic

online environments is that of catastrophic forgetting. Catastrophic forgetting affects

supervised learning systems when input samples are temporally correlated or are

non-stationary. However, most real-world problems are non-stationary in nature,

resulting in prolonged periods of time separating inputs drawn from different regions

of the input space.

Reinforcement learning represents a worst-case scenario when it comes to pre-

cipitating catastrophic forgetting in neural networks. Meaningful training examples

are acquired as the agent explores different regions of its state/action space. When

the agent is in one such region, only highly correlated samples from that region are

typically acquired. Moreover, the regions that the agent is likely to visit will depend

on its current policy, suggesting that an agent that has a good policy may avoid

exploring particular regions. The confluence of these factors means that without

some mitigation techniques, supervised neural networks as function approximation in

temporal-difference learning will be restricted to the simplest test cases.

This work explores catastrophic forgetting in neural networks in terms of

supervised and reinforcement learning. A simple mathematical model is introduced

to argue that catastrophic forgetting is a result of overlapping representations in the

hidden layers in which updates to the weights can affect multiple unrelated regions

iv

of the input space. A novel neural network architecture, dubbed ”cluster-select,”

is introduced which utilizes online clustering for the selection of a subset of hidden

neurons to be activated in the feedforward and backpropagation stages. Cluster-

select is demonstrated to outperform leading techniques in both classification and

regression. In the context of reinforcement learning, cluster-select is studied for

both fully and partially observable Markov decision processes and is demonstrated

to converge faster and behave in a more stable manner when compared to other

state-of-the-art algorithms.

v

Table of Contents

1 Introduction 1

2 Background and Related Work 4

2.1 Neural Networks . 4

2.1.1 Artificial Neuron Model . 5

2.1.2 FeedForward Network . 6

2.1.3 Recurrent Neural Networks 9

2.2 Reinforcement Learning . 10

2.2.1 Fully Observable MDPs . 11

2.2.2 Reinforcement Learning Problem 12

2.2.3 Partially Observable MDPs 12

2.2.4 Q-Learning . 13

2.2.5 SARSA(0) . 16

2.3 Catastrophic Forgetting Overview . 17

2.3.1 Defining Catastrophic Forgetting 18

2.3.2 Existing Network Architectures 22

2.3.3 Catastrophic Forgetting in Control Problems 28

3 A Neuron Clustering Approach 31

3.1 Motivation . 31

3.2 Analysis . 33

3.3 The Cluster-Select Approach . 36

vi

3.3.1 Feedforward Implementation Details 38

3.3.2 Covariance Estimation . 41

4 Mitigating Catastrophic Forgetting in Classifier and Regression

Problems 43

4.1 Feedforward with Cluster-Select . 43

4.2 Recurrent Network . 46

4.2.1 Online Non-stationary Task 46

4.2.2 Recurrent Training Details . 47

4.3 Simulation Results and Analysis . 49

4.3.1 MNIST Experiment . 50

4.3.2 MNIST Experiment with Noise 53

4.3.3 20 Newsgroups Experiment 55

4.3.4 Autoassociative Encoder Experiment 56

4.3.5 Reduced MNIST Experiment 58

4.3.6 Experiment with Gas Sensor Array Dataset 60

4.3.7 Pendulum Experiment . 61

5 Mitigating Catastrophic Forgetting in Reinforcement Learning En-

vironments 68

5.1 Forgetting in MDPs . 69

5.1.1 Cart-Pole Experiment . 70

5.2 POMDP Environment . 75

5.2.1 Partially Observable Cart-Pole Experiment 75

5.2.2 Arcade Learning Environment Experiment 77

6 Conclusions 87

6.1 Summary of Contributions . 87

6.2 Future Work . 88

6.3 Concluding Remarks . 90

vii

6.4 Publications . 90

Bibliography 92

Vita 102

viii

List of Tables

5.1 Constants for Cart-Pole Test . 70

5.2 Summary of Results . 75

ix

List of Figures

2.1 Artificial Neuron Model . 6

2.2 Example model of a neural network with a single hidden layer. X is

the matrix of inputs fed in, Y is the matrix of hidden outputs, and

Z is the matrix containing the final network outputs. The two weight

matrices W (1) and W (2) correspond to the input to hidden and hidden

to output weights respectively. 7

2.3 The popular mini-batch gradient descent algorithm, used for super-

vised training on large datasets . 9

2.4 Model of an Elman Network. The hidden outputs from the previous

time step are provided as inputs for the next time step. Note that the

number of inputs, hidden, and output nodes can vary from the number

depicted here. 11

2.5 Illustration of Catastrophic Forgetting 21

3.1 Illustration of the cluster-select process 37

4.1 Training algorithm used for mini-batch training with cluster-select . . 46

4.2 How MNIST was split into P1 and P2 50

4.3 P1 miss rate vs. P2 miss rate possibilities frontiers for MNIST

forgetting task . 51

4.4 Results for MNIST Test with noise 54

x

4.5 P1 miss rate vs. P2 miss rate possibilities frontiers for 20 newsgroups

dataset forgetting task . 57

4.6 P1 Miss Rate vs. P2 Miss Rate Possibilities Frontiers for Autoasso-

ciative Encoder Forgetting Task . 58

4.7 Cluster-Select MNIST Result . 60

4.8 Cluster-Select Gas Sensor Array Dataset Result 61

4.9 Sample of P1 and P2 datasets. This plot shows sin(θ) and −cos(θ)

which is the data that is fed to the neural network. The data shown

indicates the relative x and y position of the pendulum if it is swinging

around the origin. In 4.9(a) the pendulum swings completely around

in circles. In 4.9(b) however, the pendulum is swaying back and forth.

To see that the pendulum is not swinging around, notice the y position

−cos(θ) does not swing higher than −0.5 units. 64

4.10 Illustration of P1 and P2 error rates during training on the recurrent

simple pendulum task . 65

4.11 Selected Neurons During the Regime Change 66

5.1 Result for a Tabular Qs,a Estimator 73

5.2 Result for Cluster-Select Neural Net Qs,a Estimator 73

5.3 Result for a Neural Net Qs,a Estimator with Linear Rectified Activations 74

5.4 Result for a Neural Net Qs,a Estimator with Sigmoid Activations . . . 74

5.5 Result for a Neural Net Qs,a Estimator with Hyperbolic Tangent

Activations . 74

5.6 Result for Cluster-Select Neural Net Qs,a Estimator on a POMDP

Cart-pole Test Case . 77

5.7 Modified algorithm from deep Q-learning with experience replay. . . . 79

5.8 Plot of Number of Episodes Before Achieving a Score (Convergence

Speed) . 85

xi

5.9 Number of Consecutive Episodes which were Greater Than a Particular

Score (Stability) . 86

xii

Chapter 1

Introduction

Catastrophic forgetting is a problem that affects artificial neural networks as well as

other learning systems [1]. When a network with a global shared pool of parameters

is trained on one task, then trained on a second task, it will rapidly exhibit degraded

performance on the first task. This problem significantly impacts application domains

in which neural networks can be employed, as it exposes difficulties in operating when

online or non-stationary settings are considered.

Traditionally, the data must be selected in a way that makes it appear stationary

such that samples are independently and identically distributed (i.i.d.) Training

data is generally shuffled and presented in a random order [2]. Should the data

be presented in a non-stationary manner, the network may not adequately capture

the representations pertaining to all samples due to temporal bias associated with a

particular subset of samples.

While training offline allows for drawing samples in an i.i.d. manner, there

are many online learning scenarios in which one does not have the convenience of

determining the order of the training samples a priori. An example of such online

task is reinforcement learning with a large state space. When using neural networks

for value function approximation, sequences of samples presented to the network

typically pertain to a small region of the state space. Should there be a region that is

1

not visited as often as other regions, the network based representation for that region

will rapidly degrade. Limitations of neural networks when applied to reinforcement

learning have been recognized and explored in the past with limited success [3] [4]

[5] [6] [7]. Recent work has introduced techniques aimed at mitigating catastrophic

forgetting which have been successfully applied to deep neural networks in playing

Atari games [8]. However, the solutions proposed have notable scalability limitations.

One major goal of this dissertation is to investigate reinforcement learning as a test

case for studying techniques that mitigate catastrophic forgetting.

Environments in which actions are taken, and observations and rewards are

generated sequentially are common to living organisms. Similar to situations faced

by agents in a reinforcement learning scenario, biological creatures typically receive

sequences of observations that are correlated as they pertain to a common underlying

state of the environment. This stands in contrast to the common way in which neural

networks are trained where consecutive samples are assumed to be uncorrelated.

Catastrophic forgetting may contribute to degraded performance even in station-

ary settings, particularly in the context of deep learning systems involving very large

datasets. A network that captures characteristics and features of a large dataset must

also be made large, suggesting more neurons or layers must be allocated. In [9] a law of

diminishing returns is demonstrated, whereby adding capacity to the network ceases

to contribute capturing of new representations. Catastrophic forgetting may be at

play, since for large datasets, key characteristics will be presented less frequently, and

the network will not be able to adequately fit to those features before they are lost.

In the past, substantial research was aimed at addressing catastrophic forgetting

[10] [11] [12] [13] [14]. The topic has grown in interest recently [15] [16] [17]. In this

work, a technique will be devised which will be demonstrated to mitigate catastrophic

forgetting in non-stationary classification and regressing settings, as well as the more

challenging case of reinforcement learning.

An outline for the rest of this dissertation is as follows. Chapter 2 will introduce

background information necessary for the rest of the dissertation. A brief review of

2

neural networks will be given in order to establish notation and context for discussing

catastrophic forgetting. A review of reinforcement learning will set the stage for

exposing catastrophic forgetting. Finally, a brief review of the existing techniques

that have been proposed as means of reducing the impact of catastrophic forgetting

will be provided.

Chapter 3 begins by describing a mathematical model used to derive insight into

the catastrophic forgetting phenomenon. The main theoretical contribution reveals

how overlapping representations trigger catastrophic forgetting. This is followed by

the introduction of the main technique presented in this dissertation, dubbed ”cluster-

select.” The latter uses online clustering as a form of unsupervised learning to select

(or mask) neurons during the feedforward phase. Each neuron is associated with

a centroid in addition to its weights and only neurons that have centroids that are

nearest to the sample point are selected. This effectively creates overlapping sub

networks out of a large network and reduces overlap between samples that belong to

different regions.

Chapter 4 explores applying cluster-select to several classification and regression

test cases. For classification, the data samples are constructed in a non-stationary

manner by switching class labels during training. The regression test case involves

a time series prediction problem for a pendulum. The pendulum behaves differently

depending on the speed at which it swings which yields non-stationary behavior and

corresponding samples.

Chapter 5 addresses the more interesting test case of reinforcement learning.

Cluster-select is first applied to a cart-pole balancing reinforcement learning task

in both fully and partially observable settings. Cluster-select is shown to perform

better than alternative neural network architectures on the cart-pole test case. Next,

the pong video game of the arcade learning environment [18] is investigated where we

compare cluster-select to using replay buffer which was successfully demonstrated in

recent work [8]. Finally, chapter 6 provides a summary of dissertation contributions

along with concluding thoughts.

3

Chapter 2

Background and Related Work

The purpose of this chapter is to introduce background material which will be

necessary to provide context for the rest of this dissertation. Three main topics

are covered, the first being an overview of artificial neural networks, since it is

necessary to understand neural networks before discussing catastrophic forgetting.

Next reinforcement learning will be reviewed because it provides an environment

in which catastrophic forgetting naturally occurs. The final topic of discussion is

catastrophic forgetting. Prior work on catastrophic forgetting will be outlined where

existing approaches that mitigate forgetting will be covered. The chapter concludes

with a discussion of related work that encountered forgetting in reinforcement learning

in addition to related work that examined forgetting in biological systems.

2.1 Neural Networks

Before we can begin to discuss catastrophic forgetting in supervised learning, it is

necessary to provide a brief overview of neural networks. This section will serve as a

brief refresher, and to establish some notation that will be used. By no means is this

meant to be a comprehensive overview of the field of neural networks. More in depth

discussion can be found in [19], [20], and [2].

4

As a general overview, neural networks provide a way to approximate a nonlinear

function, provided training data. That is, when shown a set of input and output pairs,

an artificial neural network can adjust its internal weights to produce the desired input

output pair. The real power of neural networks is in their ability to generalize. If a

neural network is trained on sufficient data, it can learn to produce useful outputs

for input data that has not been presented during training.

2.1.1 Artificial Neuron Model

The perceptron [21] is the most common type of artificial neuron. Figure 2.1 shows

the typical behavior of this type of neuron. Mathematically, it takes an input vector

X = [x0, , x1, ..., xn−1, xn = 1.0] and computes an activation value simply by taking

the dot product of the input vector with internal weights. a = ~x · ~w. This activation

value is passed through a nonlinear activation function.

Most activations functions are sigmoidal in nature, meaning the function is ’S’

shaped. An activation function that was very popular in the past, and remains

commonly used is the logistic function f(a) = 1
1+e−a

. For multiclass problems, a

popular extension of this activation function is softmax, which can be defined as

f(ai) = eai∑C
j e

aj
. Softmax is used for the output layer, and it builds an output

probability distribution for each of the j classes that have activation values aj.

Another popular activation function is a × tanh(b × x) where a = 1.7159 and

b = 2/3 were recommended in [2]. In recent years, rectified linear activations have

been found to perform well in deep neural networks. Rectified linear is defined

as f(a) = a if (a > 0), 0 otherwise. Rectified linear activation functions are not

sigmoidal, but they encourage a more sparse representation, and the gradient is signal

is stronger during the backpropagation phase, making them ideal for deeper networks.

Note that the input vector is internally augmented to contain a ”1”, this is an

internal input, known as the bias input and allows the activation to be nonzero for

5

an input that consists of zeros. This perceptron neuron model is very common and

is sometimes referred to simply as an ”Artificial Neuron.”

Figure 2.1: Artificial Neuron Model

2.1.2 FeedForward Network

Artificial neurons can be linked together in a directed weighted graph to form a

feedforward neural network. The most common type of feedforward neural network

is a multilayer perceptron ∗.

Multilayer perceptrons consist of a layer of input neurons, one or more hidden

layers, and an output layer. Figure 2.2 shows a typical fully connected arrangement

with a single hidden layer. The input layer is not technically a layer of neurons, but

is simply a placeholder for the inputs to the network.

Gradient Descent Training

Typically after a set of inputs is fed forward to produce a set of outputs, an error

or cost function e is computed. Mean squared error (MSE) is a natural choice for

the cost function because it yields the maximum likelihood estimator. If ~z is the

vector of outputs from the network, and ~t is the target, then the mean squared error

gives e = (t − z)2. An algorithm known as backpropagation allows computing of

∗In literature, the terminology is often mixed. Some papers refer to multilayer perceptrons as
feedforward networks, or even simply as artificial neural networks.

6

Figure 2.2: Example model of a neural network with a single hidden layer. X
is the matrix of inputs fed in, Y is the matrix of hidden outputs, and Z is the
matrix containing the final network outputs. The two weight matrices W (1) and W (2)

correspond to the input to hidden and hidden to output weights respectively.

the gradient of each weight with respect to this error function. This allows gradient

descent based weight updates to occur during training. To find more information on

gradient descent and backpropagation, see [19]

Matrix Computation for Neural Networks

Neural network computations can be reduced to large matrix operations if one is

careful in setting up the matrices. This allows obtaining multiple samples at once.

For computing the feedforward pass, the samples can be placed in a matrix denoted

X ∈ Rn×k with n being number of inputs and k the number of samples (i.e. each

sample is a column vector in this matrix). The neural network weights from the

input layer to hidden layer can be placed in a matrix denoted W (1) ∈ Rh×n where h is

number of hidden neurons and n is number of inputs (i.e. each neuron weight vector

is a row in this matrix). If the inputs and weights are set up in this manner, then

a feedforward operation from input to hidden can be computed as Y = f(W (1)X)

where f(·) performs the nonlinear activation function on each element of the input

7

matrix. This hidden output matrix Y can be further fed-forward again to the output

layer by performing Z = f(W (2)Y). Note the W (2) matrix is the weights from the

hidden to output layer. This will produce an output Z that contains the network

output for all of the samples. These matrices, X, Y Z, W (1), and W (2) are labeled in

figure 2.2.

It is also possible to define backpropagation as a series of matrix operations as

well, see [2] for details. This allows computing a gradient that reduces the error for

all of the samples that are fed through. Highly optimized CPU and GPU libraries

exist for matrix operations. The ability to scale to parallel architectures makes neural

networks very attractive from a research standpoint. This attractiveness is part of

the reason that neural network are now popular computational tools to use.

Neural networks lost their popularity in the late 90s due to greater success when

using support vector machines. However, they have enjoyed a renewed popularity

starting in the mid 2000s. There are several reasons for this renaissance. The first

reason is the emergence of big data, that is very large datasets that are the result

of cheaper storage and the fact that in many cases data collection is much easier to

perform. The second reason is the emergence of deep learning. Neural networks that

are much deeper in the sense that they have many hidden layers can be trained that

are capable of making more powerful generalizations. All of this is ultimately due

to the final reason which is the resurgence of parallel architectures and the fact that

neural network training can be performed as a series of parallel operations. This has

led to a computational revolution in the speed at which training deep networks can

be performed on large datasets, making neural networks very powerful tools that can

be applied to many problem domains.

Mini-batch Gradient Descent

The most common training algorithm for a large dataset is mini-batch gradient

descent shown in Figure 2.3 below. This algorithm iterates through the full dataset on

each epoch. On each iteration, it divides the full dataset up into mini-batches, each

8

Algorithm 1: Mini-batch Gradient Descent

initialize mini-batch size hyperparameter m
initialize training dataset X̂
for each epoch of training do

divide training data X̂ into smaller portions X̂i, each containing m samples.
for each mini-batch do

select a mini-batch X̂i and put it into X
feedforward X through the network
compute output error
backpropagate to compute weight updates
apply weight updates

end
shuffle training data

end

Figure 2.3: The popular mini-batch gradient descent algorithm, used for supervised
training on large datasets

containing m samples. The training algorithm feeds a mini-batch in as a whole and

applies a weight update to minimize the error for that mini-batch. The training data

is shuffled to randomize the order that each sample is presented to the network which

prevents oscillations in convergence. Shuffling the training data may potentially be

a slow operation, hence it may be preferable to only perform the shuffling every n

epochs where n is a small integer.

This algorithm naturally helps prevent catastrophic forgetting primarily because

the data is shuffled and presented in batches. This ensures that each weight update

minimizes an independent and identically distributed collection of samples and thus

guarantees that the error gradient does not favor a set of samples that are correlated

in any way.

2.1.3 Recurrent Neural Networks

Some training tasks require a network to capture temporal dependencies in the

training data. Time series prediction, for example, may require future predictions to

9

be made based on past observations. To accomplish this, a recurrent neural network

is used. Recurrent networks are designed to capture temporal regularities in the data.

Elman networks

One common type of recurrent neural network is known as an Elman network [22].

The latter achieves recurrence by taking the outputs from the hidden layer and passing

them in as inputs for the subsequent time step. See Figure 2.4 for an illustration of

an Elman recurrent network.

Elman networks can be trained by stepping through a temporal dataset and

calculating errors at each time step. During training, it is also possible to unfold the

network through time and backpropagate through multiple time steps into the past.

This leads to a technique known as backpropagation through time [23]. Unfortunately,

backpropagation through time for multiple time steps leads to a problem known as the

vanishing gradient problem [24], where the gradients for the weight updates rapidly

shrink for each layer of backpropagation. Another issue is the exploding gradient

problem, where gradients rapidly grow in size, causing a very large weight update

that can corrupt the network weights if it isn’t treated properly [25].

2.2 Reinforcement Learning

This section introduces reinforcement learning which provides an environment that is

naturally vulnerable to catastrophic forgetting. We begin by defining reinforcement

learning in terms of fully observable Markov decision processes (MDPs), then we

cover partially observable MDPs (POMDPs) which reflect the more realistic setting

of partial observability of the environment. Next we cover two popular reinforcement

learning algorithms: SARSA and Q-learning which will be used in Chapter 5. Finally

we review existing work on catastrophic forgetting in the reinforcement learning

context.

10

Figure 2.4: Model of an Elman Network. The hidden outputs from the previous
time step are provided as inputs for the next time step. Note that the number of
inputs, hidden, and output nodes can vary from the number depicted here.

Reinforcement learning [26] is a branch of machine learning that is concerned

with training an agent to learn from an environment by collecting rewards. The

agent observes the environment to obtain a state, or in some cases a partial state

known as an observation. From these observations the agent must take an action to

collect a reward and achieve a new state. By learning to take the action that leads

to the greatest overall reward, the agent achieves the desired behavior.

2.2.1 Fully Observable MDPs

Formally, the fully observable case of reinforcement learning (RL) can be framed as

a Markov decision process (MDP) which is defined by the tuple (S,A, P,R) where S

is the state space, A is the space of possible actions, P : S × A × S 7→ [0, 1] is the

state transition probability function, R : S×A 7→ R is the reward function. A policy

π maps states to actions π : S 7→ A.

11

2.2.2 Reinforcement Learning Problem

Let the state space S be S = (s1, s2, ..., sn) and, accordingly, the action space A be

A = (a1, a2, ..., an). Suppose at episode k, the agent detects Sk = s ∈ S, the agent

chooses an action ak = a ∈ A(sk) according to policy π in order to interact with

the environment. Next, the environment transitions into a new state sk+1 = s′ ∈ S

with the probability Pss′(a) and provides the agent with a feedback reward denoted

by rk(s, a). The process is then repeated. The goal for the RL agent is to maximize

the expected discounted reward, or state-value, which is represented as:

V π(s) = Eπ

{
∞∑
k=0

γkrk(sk, π(sk))|s0 = s

}
(2.1)

where γ(0 ≤ γ < 1) is the discount factor and Eπ{} denotes the expected return when

starting in s and following policy π thereafter. The equation above can be rewritten

as

V π(s) = R(s, π(s)) + γ
∑
s′∈S

Pss′ (π(s))V π(s
′
), (2.2)

where R(s, π(s)) = E {r(s, π(s))} is the mean value of the reward r(s, π(s)).

The reinforcement learning problem involves finding a policy π that maximizes

discounted reward according to equation 2.2. In practical situations, many of

the above parameters are unknown, and must be somehow learned or estimated.

For example, the transition probability Pss′ (a) and the reward function R(s, π(s))

are unknown, making the problem more difficult. Moreover, in more challenging

situations as discussed next, the state construct may not even be fully known.

2.2.3 Partially Observable MDPs

Thus far an unrealistic assumption has been made, that the environment is fully

observable. By modeling the state as an explicit variable we are assuming that

the agent can instantaneously know everything about its current environment. For

12

example, consider a robot maneuvering in an environment, full observability presumes

the robot would have full knowledge of where all objects of interest are located. In

a more practical setting, the agent can only know what is presently being observed

from the environment. Observations could include for example, sensor readings or

other measurements of the environment. This implies a partially observable Markov

decision process (POMDP) where instead of a state s we are given an observation o.

Therefore, the state must somehow be inferred from a sequence of observations.

State inference necessitates some type of machine learning algorithm, or a neural

network that can learn to infer a model of the environment. One simple way to

model the environment is to train a recurrent neural network to predict the next

observation given past observations. If the network can successfully learn to generate

such predictions, it suggests the hidden layers of the network represent the current

belief about the state of the environment. Under this type of framework, a recurrent

network is used to derive the true state S by learning to predict observations o ∈ Ω.

The POMDP Model can formally be described as a tuple (S,A, P,R,O,Ω). It

can be assumed that the world can be described as an MDP, however, our agent only

receives partial state through observations. Hence as before, there is an MDP model

where S is the state space, A is the space of possible actions, P is the state transition

probability function, and R is the reward. In addition, there are extra components for

a POMDP. Ω is the set of all possible observations o ∈ Ω. The observation function

O : S ×A 7→ p(Ω) maps an action and subsequent state to a probability of receiving

an observation.

2.2.4 Q-Learning

Q-learning [27] is one of the most effective and popular algorithms for learning from

delayed rewards in absence of the transition probability and reward function. In Q-

learning, policies and the value function are represented by a lookup table indexed

by state-action pairs. Formally, for each state s and action a, we define the Q value

13

under policy π to be:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

Pss′ (a)V π(s
′
) (2.3)

which reflects the expected discounted rewards from following policy π.

We can define the optimal value function as the value function when following

the optimal policy. It follows an important identity known as the Bellman optimality

equation given below.

Q∗(s, a) = E
{
r + γmax

a′
Q∗(s′, a′) | s, a

}
=
∑
s′
P a
ss′

[
Ra
ss′ + γmax

a′
Q∗(s′, a′)

] (2.4)

The Bellman optimality equation describes the optimal value at time t if we know

the optimal value at time t+ 1. The premise behind Q-learning is to estimate the Q

function via an iterative update known as value iteration. This effectively propagates

the Q-values backwards in time, and over many updates it is guaranteed to converge

to the optimal value. Correspondingly, the state-action value update rule is given by

Qk+1(s, a) = Qk(s, a) + αδk, (2.5)

where δk is temporal difference error defined (for Q-learning) as

δk = rk + γ max
a′∈A(s′)

Qk(s
′
, a
′
)−Qk(s, a), (2.6)

and α the learning rate.

It is impractical to store these updates in a table form when addressing a large

state and/or action space. Due to the curse of dimensionality, the table size grows

exponentially with each added dimension. Moreover, tables do not offer any form of

generalization since an update to one table cell will not affect other cells. Function

approximation techniques offer a practical solution when large spaces are considered

14

and can effectively replace the tabular form for value function estimation of the value

function (Qk(s, a)) [26]. Q-learning based update equations can be derived for a

generic function approximation technique with parameters at iteration k denoted by

θk. Training is achieved by gradient descent methods by defining the loss function

L(θk) in a way that minimizes error between the network outputs and the temporal

difference error, such as

L(θk) = E
[
(yk −Q (s, a; θk))

2] . (2.7)

The above loss function takes the expectation over the distribution of states and

actions that are followed (known as the behavior distribution), where yk is defined as

yk = E
[
r + γmax

a′
Q (s′, a′; θk−1)

]
. (2.8)

Taking the derivative of this loss function with respect to the parameters produces

the following gradient expression

∇θkJ(θk) = E
[(
r + γmax

a′
Q (s′, a′; θk−1)−Q (s, a; θk)

)
∇θkQ (s, a; θk)

]
. (2.9)

If stochastic gradient descent is used, the expectation can be removed from the above

equation. With a small enough learning rate α, the solution will converge to the

expectation, given the following update rule

θk+1 = θk + α
(
r + γmax

a′
Qθk−1

(s′, a′)−Qθk (s, a)
)
∇θkQ (s, a; θk) (2.10)

= θk + αδk∇θkQ (s, a; θk) . (2.11)

Note that δk in equation 2.11 matches the definition in equation 2.6

The preceding definitions assume any generic gradient based function approxima-

tion technique with parameter vector θ, however it should be noted that a standard

feedforward neural network can be used as the function approximation technique, in

15

which case the parameters θ would instead be the individual weights of the neural

network. As far as implementing this with a neural network, the δk value can simply

be backpropagated as an error term to compute the weight updates according to 2.11.

It should be noted that Q-learning is an off-policy method, meaning that it

approximates the value of the greedy policy π(a) = maxaQ(s, a) while following an

exploratory policy. One popular technique of exploration is ε-greedy, which chooses

the greedy action with probability 1 − ε and selects a random action otherwise. An

exploratory policy is important to ensure adequate coverage of the state/action space.

2.2.5 SARSA(0)

SARSA is a popular on-policy learning technique that provides an alternative to Q-

learning. SARSA uses an update similar to Q-learning, with a key difference that the

δk is instead given by

δk = rk + γQk(s
′
, a
′
)−Qk(s, a). (2.12)

Unlike Q-learning, SARSA is an on-policy method, meaning that it approximates the

value of the current policy being followed instead of learning the value of the optimal

policy. The current policy being followed generally consists of greedy actions in

addition to some exploratory actions chosen via ε-greedy strategies. Choosing greedy

actions that have the highest value leads to improvements in the current policy, and

as the policy improves, the estimate of the Q value will converge to the optimal value

function and the policy will converge to the optimal policy.

Eligibility Traces

A useful extension of SARSA is a mechanism known as eligibility traces which allows

for faster convergence. The main premise behind eligibility traces is that since the

temporal difference updates are applied backwards in time (notice equation 2.5 applies

the update from a future time step to a previous time step), a performance boost

in learning can be achieved if credit is assigned more than one time step into the

16

past. Credit assignment into the past can be accomplished by maintaining a history

of visited states and applying the current credit assignment update on a decaying

subset of past states. Eligibility traces can only be used with on-policy methods since

a history of state visitations can only be maintained for the policy that was followed.

A parameter λ is used to control eligibility, and SARSA with eligibility traces is

generally referred to as SARSA(λ).

For gradient descent training techniques, the parameter updates for a popular

version of eligibility traces called gradient-descent SARSA is defined as follows

θk+1 = θk + αδkek (2.13)

ek = λγek−1 +∇θkQ (s, a; θk) (2.14)

with δk given in equation 2.12. The update strategy for gradient-descent SARSA

essentially maintains a decaying history in ek of the most recent weight gradients

∇θkQ (s, a; θk), and applies the credit assignment to this history of previous gradients,

which effectively applies the credit assignment multiple time steps into the past. Note

that here, we assume that an update is performed on every time step, hence both the

update iteration and the time step are indexed by k.

When considering implementing this technique, one can backpropagate the

constant 1.0 through the network. The computed gradient update for the weight

matrices will correspond to ∇θkQ (s, a; θk). From these weight matrices, one can

maintain ek by iteratively applying equation 2.14 on each time step. The gradient

update can be computed according to equation 2.13.

2.3 Catastrophic Forgetting Overview

Catastrophic forgetting is a well-studied topic in machine learning. This section

serves to provide an overview of catastrophic forgetting. First, catastrophic forgetting

is defined. Next, a brief overview is provided of existing approaches to mitigating

17

forgetting including existing neural network architectures and training techniques

that have been developed over the years specifically aimed at non-stationary datasets.

In addition, related work is covered which treats the issue of catastrophic forgetting

in the context of reinforcement learning.

2.3.1 Defining Catastrophic Forgetting

Catastrophic forgetting is a term that has been used for decades by researchers

to describe a phenomenon that has been observed while training neural networks.

Despite the fact that it has been recognized and well studied, a survey of existing

literature reveals that catastrophic forgetting seems to have multiple definitions. A

common scenario in which forgetting occurs involves a network trained to perform

task A then task B. When the network is evaluated on task A after learning task B,

its ability to perform task A sharply degrades. [17].

An alternative definition for forgetting is derived from the storage capacity of

the network. A neural network is viewed as storing information in the form of

mapping input examples to output examples. Under this assumption, forgetting

occurs when the network is presented with novel input examples which it must store.

Catastrophic forgetting refers to the observed phenomenon where prior information

appears to be suddenly erased as a consequence of new information being stored

[10]. Another approach to defining catastrophic forgetting is in terms of sequential

learning environments where information to be learned arrives over time. Neural

networks perform poorly at such tasks due to catastrophic forgetting, where learning

to represent newly arrived information disrupts prior representation [28].

The different perspectives for describing forgetting appear to arrive at the same

paradigm. Supervised learning implicitly assumes that samples are drawn in an i.i.d.

manner from a stationary distribution. Catastrophic forgetting emerges any time this

assumption is violated. Weight updates to minimize error for the current samples may

18

not necessarily minimize error for previously presented samples, and the observed

behavior is that it appears to result in a very substantial increase in error.

Despite the fact that catastrophic forgetting has been studied for decades, no

precise or consistent definition of the phenomenon could be located. In the remainder

of this section, such a definition will be provided. The reader should keep in mind

that there may be other ways to defining the problem.

In order to define forgetting, some concept of time should be considered.

Otherwise, it is meaningless to refer to prior information or prior training. Time may

simply be used to index the current training iteration. However, in a nonstationary

setting time is used to index the data that is presently available since the assumption

is that data available at time t may not necessarily be the same as data available at

time t+ 1.

To train a model over time, it must be updated such that the parameters are

changing over time. Suppose a model with parameters θt is trained at time step

t. Let Xt denote the data samples and corresponding targets we have available for

training at time t. Typically, in the stationary setting we have some loss function

L(θ,X) to indicate the error for data X given by some model with parameters θ.

Since our model is changing over time we must define a loss function that specifies at

what point in time the loss is being measured.

If we are training on a dataset at a given time step t, the only loss function that can

practically be utilized is one that measures the loss of the data that we have available

at time step t. Such a loss function can be expressed as et = L(θt, Xt). Suppose

training is performed until time step T where T > t. Since the model is trained

online, the parameters are updated at each time step to reduce the loss function at

that time step. All losses over time can be represented as a vector which can be

defined as e = (e0, e1, e..., eT). Under typical online training, the overall objective

function would be to reduce the magnitude of e, or to state it more clearly, the

following objective function is minimized through training: J = ‖e‖2, representing

19

the squared Euclidean norm of e. At each time step t, the parameters θt are updated

to reduce error for the current samples Xt, and not necessarily for past samples.

Forgetting occurs when minimizing the above given objective function does not

lead to an optimal set of model parameters at some later time step T where T <

t. That is, if another loss function is defined to indicate the error at a previous

time step given our most recent model parameters θT , such a loss function can be

expressed as e′t = L(θT , Xt). The end objective of training is that the most recent

model will reduce error for all previous examples. The vector of losses over the past,

given the most recent model parameters can be defined as e′ = (e′0, e
′
1, e
′
..., e

′
T). The

overarching goal of training is to produce a final set of model parameters that reduce

error for examples that were previously seen, which can be expressed as the following

overall objective function: J ′ = ‖e′‖2. The objective function that is to be minimized

through training is J ′, however minimizing J ′ assumes our algorithm has access to all

previously available training data. In reality, only J can be minimized, and the hope

is that through minimizing J , J ′ is also minimized. In a strictly stationary setting in

which samples are drawn in an i.i.d. manner, minimizing J will lead to final model

parameters in which J ′ is also minimized. However, due to forgetting effects, in a

nonstationary training environment, minimizing J may not necessarily lead to good

model parameters. This is the essence of catastrophic forgetting. A model that suffers

less from forgetting is one in which minimizing J will also minimize J ′.

The following definition of forgetting can now be provided. Forgetting is the effect

where updates to model weights to reduce error at time T > t increases error at time

t. Forgetting has been observed to occur in a catastrophic manner such that the

increase in error happens to a significant degree. The model itself may be more than

capable of generalizing across past training data with minimal loss if the past data

were to be shuffled and presented in a random i.i.d order, however should the data

be presented in a nonstationary manner, catastrophic forgetting occurs.

Figure 2.5 illustrates the described forgetting behavior. The solid line labeled

L(θt, Xt) indicates a typical training curve for a neural network. In practice, such a

20

curve may be noisy and may not monotonically decay as shown in the figure. This

is particularly true if the data is nonstationary. Suppose training is performed on

nonstationary data until some later time T and then the error is measured for the

past training data using the latest model given at time T . The dashed line labeled

L(θT , Xt) indicates such an error should forgetting occur. If the dashed line ever

dominates the solid line, as indicated at time step τ , then forgetting has occurred.

One way to induce a nonstationary input sequence is to switch datasets at a

particular time step of training. In chapter 3, a mathematical analysis will be provided

for catastrophic forgetting with linear networks in the case of training on two datasets

labeled P1 and P2. To perform this analysis, it will be assumed that dataset P1 is

switched with dataset P2. Under this assumption, several inequalities will be derived

which provide bounds on how much the P1 error may increase when training on P2.

In chapter 4, several experiments will be performed which induce nonstationary

patterns by switching datasets during training. Loss is measured for the previous

dataset while training on the new one. A time series prediction test will also be

investigated involving a pendulum model. In the case of the latter, the loss function

for previous data will be directly plotted using the latest model parameters allowing

explicit measurement of the forgetting phenomenon.

Figure 2.5: Illustration of Catastrophic Forgetting

21

2.3.2 Existing Network Architectures

There have been numerous techniques proposed in the literature to address the issue

of catastrophic forgetting in neural networks. Prior to the most recent renaissance

of neural networks, one can find numerous older ideas and techniques dating back

to the 1990s [1]. Catastrophic forgetting became less popular as a research topic

during the 2000s; however, more recently with the growing popularity of deep learning

architectures, interest in solving catastrophic forgetting has re-emerged.

Activation Sharpening

One theory, postulates that catastrophic forgetting is caused by overlapping repre-

sentations. In canonical neural networks, almost all nodes contribute to every stored

pattern. Under this reasoning, an early approach to mitigating catastrophic forgetting

was known as activation sharpening [11]. Activation sharpening is a technique that

attempts to reduce the distribution of representations in the network by strengthening

activations of the largest active subset of hidden layer neurons, while weakening the

others. This is achieved by applying an update rule to strengthen a subset of the

activations, resulting in a more sparse representation [29].

Activation sharpening works on the hidden layer by selecting the k nodes with

the highest activation for ”sharpening”. If we have a sigmoid activation function that

only outputs values in the range 0 < A < 1, where A is the activation, then the k

nodes to be sharpened are updated according to

Anew = Aold + α(1− Aold), (2.15)

and the other nodes are updated according to

Anew = Aold − αAold, (2.16)

22

where Aold is the original activation of the neuron. The difference in activation is fed

back as standard backpropagation error.

Radial Basis Networks

One technique that works in simpler (i.e. lower dimensional) problem domains is to

use radial basis function (RBF) networks [30]. RBF networks are defined as neural

networks consisting of one hidden layer where each neuron j in the hidden layer is

given a centroid vector (denoted ~cj) and the activation is a nonlinear function that is

inversely proportional to the distance from the centroid to the input. For example, if

Euclidean distance is used, then the distance is computed as

dj = ‖~cj − ~x‖2, (2.17)

and a commonly used activation function takes the Gaussian form

yj = e−
dj

2σ2 , (2.18)

where yj is the hidden layer activation for neuron j in this case. Typically, centroid

locations are chosen at the beginning of training either randomly or via k-means. To

feedforward to the output layer, the hidden activations are multiplied by a weight

matrix that is trained via standard backpropagation.

RBF networks have local activation functions (zero over most of the input space),

and do not suffer as much from catastrophic forgetting. Unfortunately, they have

a few disadvantages. The main issue with RBF networks is that one must know

where to place the centroids before training can begin. In a truly non-stationary

setting, sample data that correctly covers the input space will not be available at

the beginning of training. The other issue is that these are not deep networks; RBF

networks have one layer and as a result they have trouble generalizing, especially in

23

high dimensional spaces. They suffer from the curse of dimensionality in that many

basis functions are needed to cover higher dimensional spaces [2].

Fixed Expansion Layer

Another technique that is based on overlapping representations being the root cause,

is the Fixed Expansion Layer (FEL) [15]. This scheme works by adding an additional

layer of fixed weights known as the FEL layer. When feedforward is performed, a

sparse coding technique is used to consistently select only a few neurons in the FEL

layer, which has the effect of helping eliminate overlapping representations.

Maxout Networks And Local Winner-Take-All Networks

One notable technique that has been found to perform well involves types of networks

known as local winner-take-all [16] and maxout [31] networks. These techniques add

redundant weights to the network whereby only a subset of the neurons are active for

every feedforward and backpropagation pass.

In the case of regular feedforward neural networks, the output of all n neurons

within a layer can be computed as ~y = f(W~x), where ~x is the input vector, W

denotes the weight matrix and f is a nonlinear activation function. Both local winner-

take-all and maxout networks group neurons within each layer such that there are k

neurons per group. Moreover, both select the neuron within the group that yields the

largest output and activate that single neuron and deactivate the rest. That is where

the similarity between the two schemes ends. In the case of local winner-take-all,

deactivated neurons within a group are forced to output value of 0. In the case of

maxout networks, a group contains a single winning output which is assigned to it.

The key difference here is in the number of outputs a layer hosts. A local winner-

take-all layer with n neurons will have n outputs. However, a maxout layer with k

neurons per group and n total neurons will have n/k outputs in total.

24

Another way of looking at the differences between maxout and local winner-

take-all is in terms of the sparsity induced. Local winner-take-all provides a sparse

representation in the feedforward pass, since only a single neuron within a group has a

non-zero output. Maxout does not provide a sparse representation because the layer

has only a single output per group, and all groups may provide non-zero outputs.

Maxout does however have a sparse gradient update because only the neuron that

contributed to the group output will be updated. For a more in depth description of

maxout and local winner-take-all, the reader is referred to [31] and [16], respectively,

with a related discussion available in [17].

Dropout

Dropout [32] is a training technique that was not originally developed for catastrophic

forgetting. It was instead introduced as an improved regularization technique to be

used in training. Dropout has commonly been used with rectified linear activations,

although [17] reported that it helped with catastrophic forgetting when applied to

maxout networks.

Dropout is a regularization technique aimed at reducing over fitting. The scheme

works by randomly (usually with a probability 0.5 [33]) setting neuron outputs to

zero during training, which effectively yields a random selection of neurons to form

smaller (sub)network models out of the larger network being trained. An alternative

interpretation of dropout is training 2n models that share weights, where n denotes

the number of neurons in a given layer.

During the inference phase, the full network is used, which can be viewed as

averaging all of the smaller network models. To guarantee a statistical average, the

neuron output magnitudes are all multiplied by the probability that they were not

set to zero during the training phase (again, usually 0.5).

25

Rehearsal Methods

An alternative approach is based on the assumption that catastrophic forgetting

should be mitigated by retraining the network on previously observed data, which

leads to two similar classes of solutions: rehearsal methods, and pseudo-rehearsal

methods. Rehearsal methods are a class of techniques that involve storing previous

training data in a memory buffer, and retraining the network on elements stored in

this buffer along with any new information that is to be learned [10]. The size of

this buffer, strategy for storing prior samples, and how they are presented, leads to a

variety solutions that are all similar in that they store and rehearse the training data.

A recent success in the area of deep reinforcement learning is partially attributed

to what is essentially a rehearsal method. In [8], a deep network was able to learn to

play Atari video games. A key element to the success of this work was in a technique

known as ”experience replay,” which essentially is a buffer of stored network updates

that are applied to the network in random order. While rehearsal methods in general

seem to work, they have a major drawback in that they require storing of extensive

history. Essentially, they rely on creating an explicit memory structure to train the

network on prior data, rendering the approach difficult to scale as more memory and

training time are required in larger-scale problems.

One way to enhance rehearsal methods, as well as avoid some of the issues

associated with them, is through a class of solutions known as pseudo-rehearsal

methods [12]. These methods are similar to rehearsal; however, instead of explicitly

storing prior information, they work by feeding randomly generated pseudo-patterns

into the network and recording the output. These pseudo-patterns with the saved

output targets are again fed into the network along with the new data to be trained.

While this technique has been shown to be notably effective, it still requires an extra

training step.

26

Dual Network Models

Another research thrust is based on observations in neuroscience and human memory

in particular. The hippocampi region is involved in new memory formation. The

evidence for this is partly based on the observation that damage to the hippocampi

causes patients to be unable to form new memories. It seems that new memories

begin in the hippocampi and are moved to the neocortex [34]. The fact that there

are two separate regions, one for memory formation and one for memory storage,

inspires a set of techniques known as dual-network models [13]. Under these models,

a ”learning” network is used to learn new representations, while a ”storage” network

is used to store the information. Information is transferred from the learning network

to the storage network by creating pseudo-patterns of random inputs and recording

the corresponding outputs from the learning network. The input/output pairs that

come from the learning network are used as inputs and targets on the storage network.

Note that this is a simplification of the technique; please see the referenced papers

for more details.

Ensemble of Learners

Under certain conditions, an ensemble of learners can contribute another layer of

robustness to mitigating catastrophic forgetting [15]. The main idea is that due

to variations within each network, some learners may forget particular regions of

the input space faster than others. By combining all networks into an ensemble,

the best out of all of them may be achieved. Furthermore, networks with different

hyperparameters naturally tend to learn and forget at different rates. Some networks

will be very fast to learn new representations, but will also be fast to forget samples

that are not being frequently presented. Other networks will require new information

to be presented many times before it can be learned, but they will also be slow to

forget prior information.

27

2.3.3 Catastrophic Forgetting in Control Problems

The field of reinforcement learning has also encountered catastrophic forgetting,

although it wasn’t as well recognized as such at first. In the early 1990s, a computer

program known as TD-Gammon was developed that combined reinforcement learning

with a neural network based value function and had a very notable success when

applied to the game of backgammon [35]. TD-Gammon was able to successfully learn

moves that outperformed human experts. While that success was very notable and

popularized combining neural networks and reinforcement learning, it was short lived.

Neural networks seemed poorly suited to solving many other reinforcement learning

test cases. A notable work was published in [3] which demonstrated neural networks

diverging and failing to perform well on several test cases. Researchers began to

realize that neural networks appeared to be unable to perform well when combined

with reinforcement learning, at least for many problem cases.

Notable Work that Recognized the Phenomenon

Although researchers have noted instabilities when training neural networks as value

functions estimators, it wasn’t clear that this may have been due to catastrophic

forgetting. The work in [36] demonstrated that temporal difference learning with

function approximation techniques in general can diverge if some weights are shared

across states. Subsequent research abandoned nonlinear function approximation

techniques and instead utilized linear function approximation techniques which were

better understood and could have stronger convergence guarantees.

Some researchers have recognized that when using nonlinear function approxima-

tors, catastrophic forgetting could be involved in the observed instabilities [37]. The

work in [6] attempts to mitigate the forgetting problem in a reinforcement learning

setting by utilizing radial basis function networks.

The work in [38] also illustrates how forgetting can occur as it attempts to train

a learner to follow the trajectory of a dataset generated by an expert player for a

28

popular video game. In order for the agent to successfully learn to follow a good

trajectory, it was necessary for the dataset to include enough examples of recovery

from failure states. It wasn’t enough that the agent train on the trajectory that was

followed by an optimal policy; the training data had to include examples of recovering

from failures. These failure examples had to be presented to the network often enough

to prevent it from unlearning, which is notable because an optimal policy will never

visit failure states often enough to produce samples that can prevent that policy from

being unlearned.

Recent Successes in Reinforcement Learning

A more recent successes in reinforcement learning was noted earlier in section 2.3.2.

The work in [8] trained a network dubbed a ”deep Q-network” (DQN) which was

able to learn to play multiple Atari games. A key element to this success was in the

use of a replay buffer, or also called ”experience replay.” Note that the terms ”replay

buffer” and ”experience replay” may be used interchangeably to refer to the use of a

memory buffer in the context of reinforcement learning.

The replay buffer contains samples of states, actions and rewards. The neural

network value function approximation technique was trained by sampling randomly

from this table and applying the Q-learning update rule to produce a set of updates.

Results are also provided in [8] demonstrating that a linear function approximation

technique performs poorly by comparison, illustrating that neural networks can

outperform other techniques. Utilizing a replay buffer is not a new idea [39] [37],

however, it was demonstrated to greatly improve stability in DQN.

Biological Insight

It may possible to gain insights and inspiration by observing biological systems and

how they handle catastrophic forgetting, since biological systems appear to be able

to effectively mitigate it somewhat. In neuroscience, the problem is known as the

29

stability vs. plasticity dilemma, or essentially: how do the weights within a biological

neural network maintain enough stability to be able to store knowledge for a long

period of time, while being plastic enough to learn new information? [40] [41]

Some experiments have demonstrated catastrophic forgetting in biological systems

[42], however it seems to only occur in specific situations. In general, artificial systems

suffer in a more pronounced manner. Unfortunately, learning mechanisms governing

biological systems are not yet well understood, and it is still not possible to probe

neurons in biological systems with enough detail to discover exactly what techniques

they employ. However, there are interesting connections between what has been

observed in biological systems and several techniques that have been found to work

in artificial systems.

It has been observed by probing brains of many different types of animals that a

type of memory replay appears to occur during sleep [43] [44] [45] [46]. It has been

hypothesized that this replay may be connected to learning reward driven behavior

[47]. It seems most, if not all biological systems with brains require sleep, yet the

reasons for this requirement is still unknown. In evolutionary terms, sleep would have

a negative cost associated with it since it requires a creature to be incapacitated for

often a lengthy period of time. The prevailing hypothesis is that sleep is involved in

memory formation in the brain via some form of offline consolidation process that is

related to the observed replay mechanism [48]. It is notable that a replay mechanism

appears to be involved in the brain during sleep, especially since there are similarities

to the use of a replay buffer which greatly improved stability in the deep Q-network.

30

Chapter 3

A Neuron Clustering Approach

The main approach proposed in this dissertation, dubbed ”cluster-select” [49] [50]

[51], essentially modifies the standard feedforward network model by proposing an

unsupervised learning component. This chapter begins by providing motivation for

cluster-select followed by theoretical grounding for what causes catastrophic forgetting

and how cluster-select can mitigate the effect. Implementation considerations for

cluster-select are discussed in detail.

3.1 Motivation

The approach presented here draws some inspiration from several current techniques

in addition to some new ideas. One motivation that has already been discussed is that

catastrophic forgetting is caused by overlapping global representations. The major

implication is that any weight update to a neural network to minimize error in one

region of the input space may affect completely unrelated regions that are distant

from the region being updated. Perhaps this is why pseudo-rehearsal works so well,

by saving prior input/output pairs from random locations in the input space, and

feeding them through again later, the training algorithm is forcing the network to

only allow local updates without affecting distant unrelated regions. Neural networks

with sigmoid based activation functions in particular, have a property where unrelated

31

regions of the input space are affected by weight update phases. Since the sigmoid

activation function is nonzero over most of the input space, changes to the input

weights to reduce the error for one input will cause the sigmoid based activation to

change its output for a wide range of inputs.

Another motivation for this technique centers on the idea of partitioning the

weights to create redundant (or unused) capacity within the network. Most network

models employ all of the neurons and all of the weights during the feedforward

and weight update phases, meaning that any single weight update iteration can

potentially modify the entire network. Alternatively, a network model that partitions

the neurons, or weights, such that only a subset are used at any specific time tends

to more effectively mitigate catastrophic forgetting. Techniques such as local winner-

take-all, maxout, and dropout all perform network partitioning. Consider the brain

for an example of a system that must also have redundant capacity. If instead every

single neuron in the brain was active at all times and contributing to every single

new piece of information that was being learned, one could imagine that catastrophic

forgetting would occur. By partitioning the input space such that the entire network

is not used on every feedforward pass, a feedforward network is provided with extra

hidden capacity.

In neuroscience, a balance emerges between stability and plasticity: stability

being a network’s ability to remain rigid enough to encode long term information,

and plasticity denoting a network’s ability to be malleable enough to learn new

information. Some motivation comes from the stability vs. plasticity dilemma in

that we seek to provide artificial neural networks a sense of stabilizing on input

examples they have been trained on. In chapter 4, we experiment with a per-neuron

learning rate which we decay. A decaying learning rate applied to each neuron

provides individual neurons with a critical period in which they must learn, and

it seems to greatly reduce the catastrophic forgetting effect in a recurrent setting.

While care must be taken not to make unsubstantiated comparisons to neuroscience,

it is worthwhile to note that there appears to be a critical period in many animals

32

and in humans during which certain changes are only allowed to occur in the brain,

and particular learning tasks such as language acquisition can only occur effectively

during these periods [52]. This critical learning period could perhaps be one way the

brain manages to balance the stability vs. plasticity dilemma.

3.2 Analysis

Deep linear networks are created by generating multiple layers that are linear (i.e.

have a linear activation function), thus performing multiple linear transformations.

In practice, a deep linear network may not be any more powerful than a single linear

transformation, since a series of linear transformations can be expressed instead

as a single linear transformation. However, Saxe et al. [53] advocates building a

mathematical theory for deep neural networks by examining the case of deep linear

networks. Such linear networks are demonstrated by [53] to have non-linear training

dynamics. Since the linear case is easier to understand, it is useful to analyze the case

for insights that may also apply to the nonlinear case. In this section, an analysis of

catastrophic forgetting is provided for the linear case.

Suppose there is a linear network with a single hidden layer, and weight matrices

W (1) for input to hidden weights and W (2) for hidden to output weights. There are

two datasets considered, P1 and P2. Network output error for dataset P1 is defined

as

eu =
∑
u∈P1

‖yu −W (2)W (1)xu‖. (3.1)

Alternatively, if we apply dataset P1 to a matrix Xu where each column is a different

sample, the network output error can be equivalently defined as

eu = ‖Y u −W (2)W (1)Xu‖F , (3.2)

33

where ‖‖F denotes Frobenius norm. Minimizing error using gradient descent yields

the following update rule

∇W (1)
u = λW (2)T(Y u −W (2)W (1)Xu)XuT (3.3)

∇W (2)
u = λ(Y u −W (2)W (1)Xu)XuTW (1)T , (3.4)

where λ is a small positive step size. The error and update equations for P2 are the

same as 3.2, 3.3, and 3.4 except u ∈ P1 is replaced by v ∈ P2. The T superscript is

used to denote transpose, such that XuT , W (2)T , and W (1)T are the input and weight

matrices transposed.

Assume the network has been trained on P1 long enough such that ∇W (1)
u ≈ 0,

∇W (2)
u ≈ 0, and eu ≈ ‖εu‖F . That is, the error has reached a minimum εu and the

weight updates have become small. Now, suppose training is performed on P2 for

one step and the weights are updated according to ∇W (1)
v and ∇W (2)

v , yielding the

following P1 error:

eu = ‖Y u − (W (2) +∇W (2)
v)(W (1) +∇W (1)

v)Xu‖F

= ‖Y u −W (2)W (1)Xu −W (2)∇W (1)
v Xu −∇W (2)

v W (1)Xu −∇W (2)
v ∇W (1)

v Xu‖F

= ‖−εu +W (2)∇W (1)
v Xu +∇W (2)

v W (1)Xu +∇W (2)
v ∇W (1)

v Xu‖F (3.5)

Using properties of norms, yields the following upper bound on 3.5

‖−εu +W (2)∇W (1)
v Xu +∇W (2)

v W (1)Xu +∇W (2)
v ∇W (1)

v Xu‖F ≤

‖εu‖F + ‖W (2)∇W (1)
v Xu‖+ ‖∇W (2)

v W (1)Xu‖+ ‖∇W (2)
v ∇W (1)

v Xu‖.

Notice that εu is the error that we had before, and the other terms describe how

the P1 error changed after performing a single update for P2. Next, we consider

each term separately. Expanding terms and using the sub-multiplicative property

of the Frobenius norm (i.e. ‖AB‖F = ‖A‖F‖B‖F) to rearrange terms provides the

34

following:

‖W (2)∇W (1)
v Xu‖F = ‖W (2)W (2)TεvXvTXu‖F

≤ ‖W (2)W (2)T‖F‖εv‖F‖XvTXu‖F

= λ‖εv‖F‖W (2)W (2)T‖F‖XvTXu‖F (3.6)

‖∇W (2)
v W (1)Xu‖F ≤ ‖εv‖F‖XvTW (1)TW (1)Xu‖F

= λ‖εv‖F‖(W (1)Xv)TW (1)Xu‖F (3.7)

‖∇W (2)
v ∇W (1)

v xu‖F = λεvXvTW (1)TλW (2)TεvXvTXu

≤ λ2‖εv‖2F‖(W (2)W (1)Xv)T‖F‖XvTXu‖F (3.8)

These inequalities indicate interesting theoretical implications as to what causes

forgetting. First, note that all of the terms depend on dataset P2 error defined as εv,

meaning that if sufficiently lowering P1 error also made P2 error low, then P1 error

will not be affected as severely by training on P2.

The most important theoretical implication is that the dot products between the

samples from the two datasets cause forgetting. The term XvTXu produces a matrix

whose entries indicate the dot product between samples from datasets P1 and P2.

That is [XvTXu]ij = xvi · xuj . The dot products between the two datasets and dot

products between the hidden layer representations are involved. Moreover, 3.6 and

3.8 depend on the Frobenius norm of the dot product matrix between the P1 and

P2 datasets defined as ‖XvTXu‖F . The other term, 3.7, depends on the Frobenius

norm of the matrix of dot products of the hidden layer representations between the

two datasets defined as ‖(W (1)Xv)TW (1)Xu‖F (these terms are underlined in the

above equations). The implication of this dependency is that if we can make the

35

representations more orthogonal in the sense that their dot products are close to

zero, then catastrophic forgetting should be reduced.

There appears to be a balance in forgetting, between the dot products of the

two datasets and how similar their error surfaces are. To minimize forgetting, the

error surface between P1 and P2 should be related in the sense that minimizing εu

also minimizes εv. If this is not the case for some samples, suggesting that P2 error

is not minimized by minimizing P1, then those samples need to be uncorrelated in

the sense that their dot product is small. In addition to the samples themselves

being orthogonal, their hidden representations must also be orthogonal. If one of the

layers yields a representation with a large dot product, that layer will cause the entire

network to experience catastrophic forgetting.

Cluster-select attempts to make the hidden representation less distributed, and

more localized as well as reduce the dot products between the datasets. As described

previously, this is accomplished by forcing activations to zero if they are distant in

the input space. In terms of orthogonality between samples, forcing some activations

to zero will reduce the magnitude of the dot product. If the sample is distant enough

in the input space that it has an entirely different set of nonzero activations, then the

corresponding dot products between the activations will be zero.

3.3 The Cluster-Select Approach

The general framework of cluster-select involves assigning each neuron a cluster in

addition to its regular weights. When an input is observed, k out of n neurons which

have the nearest centroids are selected. A sub-network is built out of the k neurons

such that only those neurons are used in the feedforward process. This selection

process has the effect of partitioning the input space such that different regions are

assigned to different neurons. Overlap is minimized via the inherent segmentation

of the representations. Moreover, the approach supports redundancy in the network,

such that not all neurons are active at the same time.

36

(a) Illustration of three centroids (C1, C2,
and C3) and two sample points (X1 and X2)

(b) Neurons N1 and N2 are selected
when X1 is the input.

(c) Neurons N2 and N3 are selected
when X2 is the input.

Figure 3.1: Illustration of the cluster-select process

Figure 1 provides a coarse illustration of the proposed technique. Assuming a

network that takes two-dimensional input data, with two samples labeled X1 and X2

and three hidden neurons in networks labeled N1 N2, and N3. These neurons each

contain centroids labeled C1, C2 and C3. In Figure 3.1(a) the two sample points are

shown along with 3 centroids plotted as a function of the input space. If two out

of three nearest centroids are selected, then Figure 3.1(b) depicts what occurs when

X1 is propagated through the network. In this case, since centroids C1 and C2 are

nearest to X1, they are selected and a sub-network consisting of two hidden neurons

(N1 and N2) is invoked. However, should X2 be propagated through the network,

centroids C2 and C3 are selected given that they are nearest to X2 and a sub-network

consisting of N2 and N3 is used, as illustrated in Figure 3.1(c)

Suppose neuron j has centroid vector ~cj in addition to weight vector ~wj. During

the feedforward phase, a distance between the layer’s input ~x and each neuron’s

37

centroid vector ~cj is computed. We consider a vector of distances ~d where each

neuron’s distance dj is computed as

dj = ||~x− ~cj||2 (3.9)

The squared Euclidean distance is utilized as the distance measure. Neuron

selection is achieved by selecting the elements of ~d that correspond to the k smallest

dj distance values. These neurons are allowed to have a nonzero activation which

is computed using the standard formulation for feedforward networks, aj = f(~x · ~w)

where f(·) is the activation function used. The neurons that are not the k nearest

have their activation values forced to zero. During the backpropagation phase, the

gradient is only propagated through neurons with non-zero activation.

3.3.1 Feedforward Implementation Details

In the case of regular multilayer perceptrons, each neuron is associated with a weight

vector. In general, all of the weight vectors of the neurons are combined (as column

vectors) to yield a weight matrix W . More specifically, the elements of W are wji,

where i is an index into the previous layer and j is an index into the current layer.

W (1) refers to the weights of the first hidden layer, W (2) refers to the weights of the

next layer. (To simplify this discussion only networks with one hidden layer will be

addressed, since it is straightforward to generalize to multiple layers.)

During each feedforward one typically passes a group of samples through each layer

as a mini-batch. If the matrix of samples for a mini-batch is defined as X, where

each sample is a column vector in this matrix, then the output of the hidden layer

can be computed by performing Y ← f(W (1)X), where f(·) is the hidden activation

function. This will produce Y which will be a matrix of column vectors in which each

vector represents the hidden layer activations for a given sample. The final network

output can be computed as Z ← g(W (2)X), where g is the output activation function,

if it exists.

38

As an example for how to mask out neurons, dropout is applied in a feedforward

pass using the above formulation. To formulate dropout, an R matrix can be defined

consisting of random values that take on 0 or 1 with probability 0.5. To apply

feedforward with dropout, this mask matrix can be used to set activations to zero by

performing Y ← f(R◦(W (1)X)) where ◦ denotes the Hadamard product representing

element-wise multiplication.

Cluster-select assigns a centroid to each neuron. One way to formulate this is

to define a centroid matrix C. This matrix will have the same dimensions as the

weight matrix W , where every neuron is allocated a centroid as a column vector in

this matrix. This matrix will be used to select neurons whose centroids are nearest

to the sample point. The first step in performing this is to compute the distances.

The matrix Y d is employed to indicate the distance of each neurons to each sample

point. Y d is defined as Rh×k, where h is the number of hidden neurons and k is the

number of samples, essentially it is the same size as Y . It is similar to the neuron

output matrix Y , with the exception that it stores distances instead of neuron outputs.

To understand how to obtain the elements of Y d it is useful to understand how to

compute the elements of Y .

Y ← f(W (1)X) (3.10)

yjl ← f(wj1x1l + wj2x2l + · · ·+ wjnxnl) (3.11)

This is simply the definition of matrix multiplication. Note the order in which

the elements in the matrix are indexed. Since Y d has the same dimensions as Y , the

centroid distances will need to be computed by indexing elements in the same order.

In this case, Euclidean distances will be computed instead of a simple multiplication.

The elements of Y d are obtained by finding centroid distances such that each element

of Y d produces the following equation:

ydjl ← (cj1 − x1l)2 + (cj2 − x2l)2 + · · ·+ (cjn − xnl)2 (3.12)

39

Expanding terms gives:

ydjl ← c2j1 − 2cj1x1l + x21l + c2j2 − 2cj2x2l + x22l + . . .

+c2jn − 2cjnxnl + x2nl

(3.13)

Terms can be rearranged to get:

ydjl ← c2j1 + c2j2 + · · ·+ c2jn (3.14)

−2[cj1x1l + cj2x2l + · · ·+ cjnxnl] (3.15)

+x21l + x22l + · · ·+ x2nl (3.16)

Each of the terms 3.14, 3.15 and 3.16 can be computed. Namely, 3.14 is a column

vector that consists of
∑
i

c2ji, 3.15 is 2CX, and 3.16 is a row vector that consists of∑
i

x2il. Most scientific computing environments, including Numpy [54] and Matlab

[55], can compute each term in an optimized manner, allowing for a very efficient

implementation of this scheme.

Once Y d has been computed, it is used to deactivate neurons that are at a

great enough distance. That is, if a neuron’s distance is beyond some threshold

for a particular sample, its activation is set to 0. That neuron is not updated in

the backpropagation phase since it was unused. Selective feedforward and weight

updating is achieved by generating a masking matrix from Y d defined as M consisting

of the binary values 0 and 1. M has the same dimensions as both W and C and is

used to deactivate neurons. If ydjl exceeds the threshold, then that neuron’s centroid

is at a great enough distance such that the corresponding md
jl element in the mask

matrix is set to 0.

mjl ←

1 if ydjl < y
d(k)
l

0 else

(3.17)

40

Selecting k nearest neurons for each sample requires performing a column-wise sort

operation on Y d and taking the k’th row and using it as a threshold. In the notation

above y
d,(k)
l represents the k’th order statistic (k’th smallest value) on column l’th of

Y d. During feedforward the M matrix is used to mask out neurons whose centroids

are sufficiently distant from the samples by performing Y ← f(M ◦ (W (1)X)). This

is similar to how the mask matrix R was utilized earlier in dropout. The matrix M

is also used in the backpropagation phase to ensure that weights are not updated for

neurons that were not selected.

Note that the process outlined above was written in the context of training mini-

batches (i.e. groups of samples). It can easily also be applied to the case where a

single sample is propagated through the network whereby the X matrix of inputs

is a single column vector. Several other matrices also reduce to vector form, which

does not affect applicability. A good implementation should apply to both cases of

mini-batches or single vectors of inputs.

While the details presented thus far are the same for the case of feedforward and

recurrent networks, there are nonetheless differences in how the centroids are placed,

and the training regime used in each. These differences depends on the training

scenario. The following chapters consider applying cluster-select to different scenarios.

The next chapter considers classification and regression tasks, and chapter 5 applies

cluster-select in the more difficult reinforcement learning setting.

3.3.2 Covariance Estimation

Cluster-select can be extended to utilize Mahalanobis distance instead of Euclidean

distance to associate inputs with neurons. The use of Mahalanobis distance allows

the centroids to take covariance into consideration when covering the input space.

Covariance estimation is a well-studied problem [56, 57]. In environments where

data arrives sequentially, the covariance matrix is required to be updated sequentially

[58]. Some models simplify covariance estimation by limiting to a diagonal matrix

41

[59, 60]. Moreover, when the number of observations n is comparable to the

number of variables p the covariance estimation problem becomes more challenging.

In such scenarios, the sample covariance matrix is not well-conditioned nor is it

necessarily invertible (despite the fact that those two properties are required for most

applications). When n ≤ p, the inversion cannot be computed at all [61, Sec. 2.2].

In such case, a desirable estimator would outperform the sample covariance matrix,

both in finite samples and asymptotically.

The next chapter contains two experiments that utilize a sequential covariance

estimator. For details of the covariance estimator which we used, the reader is referred

to [62].

42

Chapter 4

Mitigating Catastrophic Forgetting

in Classifier and Regression

Problems

This chapter explores applying cluster-select to several feedforward and recurrent

training scenarios. We begin by modifying the most common mini-batch feedforward

training algorithm to incorporate cluster-select. Next we describe how to apply

cluster-select in training a recurrent dataset. Finally, catastrophic forgetting

experiments are performed on multiple classification and regression datasets. It

should be noted that many of the test cases in this chapter have been artificially

designed such that they are non-stationary. The next chapter will tackle the more

difficult case of reinforcement learning in which the problem itself is non-stationary.

4.1 Feedforward with Cluster-Select

The previous chapter described how neurons are selected during the feedforward and

backpropagation phases. What has not yet been discussed is how the centroids are

placed or moved during training. In this section, we describe how the feedforward

43

variation of cluster select modifies the standard training algorithm [2] for training a

neural network classifier via mini-batch updates. In particular, we describe details

such as when and how to place centroids. Figure 4.1 provides a technical description

of our training algorithm. Note that the recurrent variation differs from this and will

be described in section 4.2.1.

Centroids should ideally be placed in a way that minimizes overlap between

different regimes in the input space. One approach to address overlap is to have a

network which detects regime changes and places new centroids to cover novel inputs.

Network error is one good indicator of novel inputs. If the network has sufficiently

learned one regime, then a novel presentation from a different regime should produce

a notable error on the network’s output/s.

The network detects the error by maintaining a moving average over recent output

errors. Let el denote the mean squared error in the current mini-batch for all samples

belonging to class label l, then a moving average error εl can be updated according

to

εnewl ← (1− α)el + αεl, (4.1)

where alpha is some constant close to but less than 1.0.

The neural network should be viewed as a black box that can reconfigure itself

to process non-stationary data and internally allocate resources as needed. As a

consequence of this, the network must internally detect the change in regime. A

moving average error provides the network with a data-driven method to internally

detect regime changes.

Eligibility is a concept borrowed from reinforcement learning [63], which provides

a way to track recent usage of neurons. Once placement of a new centroid is triggered,

the neurons that have the lowest eligibility will have their centroids overwritten by the

new ones. During each feedforward pass, should a neuron be selected, its eligibility

is additively increased by 1. All neurons have their eligibility decayed with time by a

44

constant factor regardless of whether they are selected. Eligibility’s main purpose is

to keep track of which neurons are not being frequently used.

Centroids are placed simply by taking samples belonging to the current mini-batch

and overwriting the centroid location of neurons that have the lowest eligibility. Once

the new centroids are placed, the moving average error εl is reset to el to prevent the

εl > kel criteria for placing more centroids from triggering again immediately.

During training centroids are also moved closer to samples for which they were

the winners (i.e. closest). If a neuron was selected by its input, then its centroid is

moved by some small constant to the location of the sample that selected it.

~cnewj ← ~c+ β(~x− ~c) (4.2)

This works to slowly shift the centroids toward samples that selected them. β is a

small constant close to 0 and is included as a hyperparameter.

When training begins, the centroids are initialized to a value that is distant from

all sample points (all elements are set to −10). The moving average error estimate is

initialized such that it will trigger placement of new centroids on the very first epoch.

In section 4.3.2, we also explore adding an ensemble of learners. As previously

discussed, an ensemble can aid in mitigating catastrophic forgetting due to variations

within each network within the ensemble. To promote variations within each network,

we explore lowering the learning rate for some of the networks in the ensemble after

detecting the regime change. This simple technique greatly improved results in the

tests with the ensemble of learners. Lowering the learning rate may allow some

networks to become slow learners, but more stable at retaining prior representations.

The networks that are faster learners will be more plastic in the sense that they learn

the new representations. The ensemble of learners as a whole will utilize both types

of networks to have both desirable properties of stability and plasticity.

45

Algorithm 2: Cluster-Select Training

Initialize all centroids to some distant location.
Initialize εl ∀ l to a very small value.
for each mini-batch of training do training loop

feedforward mini-batch using centroid selection.
Compute error.
for each class label do

Compute class label error as el.
if εl > tel then

Choose centroids from samples that caused error increase. Place the
new centroids on least eligible neurons.
εl ← el (reset moving average error to prevent re-triggering)

end
εl ← (1− α)el + αεl

end
~cnewj ← ~c+ β(~x− ~c)
Backpropagate error and update weights.

end

Figure 4.1: Training algorithm used for mini-batch training with cluster-select

4.2 Recurrent Network

Online non-stationary tasks are the essence of where catastrophic forgetting has

perhaps the most impact. In this section, we provide motivation for designing an

online task and why it is an important test case, then the details for training a

recurrent neural network (RNN) with cluster-select follow.

4.2.1 Online Non-stationary Task

Online non-stationary training scenarios are common in cases such as reinforcement

learning which will be covered in the next chapter. In this chapter, we choose to

evaluate a simple time series dataset that exhibits an abrupt change in its behavior.

The goal of this work is to design a simple test case that mimics some of the difficulties

encountered in real world situations, particularly a non-stationary situation in which

the data is received online.

46

In a true online scenario, a RNN can only be trained on data as it is being

received. While there are methods to present data at a different time, namely,

rehearsal techniques, which store data in a buffer and replay it to the RNN later.

Such techniques can be considered an alternative method of mitigating catastrophic

forgetting, and as mentioned previously, they suffer from scalability issues in that

they require explicit storage for past training data. Instead, we choose to rely on the

RNN architecture to mitigate catastrophic forgetting as we feed the data in an online

fashion.

While the dataset used here has been pre-generated such that all of the samples

are available offline, we choose to simulate an online environment by restricting

training such that samples from both regimes are presented to the network only once.

Although the time series prediction problem is by itself fairly simple to learn, this

online training setting causes catastrophic forgetting to occur with standard network

models [28].

4.2.2 Recurrent Training Details

For the recurrent variation of cluster-select, an Elman [22] network is used to perform

time series prediction. The input consists of the state of the system at the current

time step combined with the hidden network output at the previous time step. The

network should be able to learn to infer the future state of the system by using its

internal feedback from the previous time step. Unlike the training technique used

for a feedforward network, mini-batches can no longer be used in an online training

setting, unless some form of rehearsal method is used to save past examples.

Another difference when applying cluster-select to the time series dataset is that

no centroids were placed or moved during training. Instead, centroids were initialized

randomly with each centroid selected from a Gaussian distribution with mean and

variances similar to that of the data that is trained on. Each centroid provided a fixed

region in the input space where a particular neuron would be activated. A per-neuron

47

learning rate was maintained and decayed for each neuron that was selected. Let ~l

be a vector of learning rates for neurons in the hidden layer, where lj is the learning

rate of neuron j in the hidden layer. If neuron j is one of the k out of n neurons that

were selected then its learning rate is decayed by ζ

l newj ← ζlj (4.3)

Decaying the learning rate has the effect of causing individual neurons to

eventually stop learning, meaning that as the network learns a region of the input

space, training slows until the network no longer has capacity to represent new

information for that particular region.

In theory, when novel data is encountered by the network, it will belong to a new

region of the input space which will select at least some new neurons. Newly selected

neurons will have an initially high learning rate, and can thus learn and compensate

for the neurons that have stopped learning, without interfering.

The decay rate ζ must be chosen very carefully for the task. In some sense it can

be seen as a parameter that balances stability and plasticity. It should be near, but

slightly less than 1.0. If it is too close to 1.0 then the network will effectively have

no decay and forget prior representations. If the decay rate is too small then training

will diminish too early before sufficient learning has taken place.

All tests had multiple hyperparameters that had to be chosen carefully. A software

package known as hyperopt [64] was used to perform automatic hyperparameter

optimization. This was advantageous for several reasons. First, it allowed better

objectivity in comparing results since having a human manually tweak settings can

lead to biases if the human researcher does not invest a sufficient effort into tweaking

parameters to find the optimal set for each technique. Secondly, it saves the extra

work of having to tweak extra settings which can be time consuming.

48

4.3 Simulation Results and Analysis

In order to explore different aspects of the proposed approach, experiments were

performed on multiple datasets under different conditions. There were a variety

of tasks performed, including several feedforward classification tasks as well as an

autoregression task. First, experiments were ran on a test case with the MNIST

handwritten digit dataset. MNIST is a popular dataset used for classification tasks

in machine learning [65]. Secondly, a test case was considered with added noise

to MNIST. Adding noise allowed cluster-select to perform even better compared

to the other techniques. Next, the 20 newsgroups dataset [66] was tested, which

another popular dataset used in machine learning. An artificial dataset consisting

of random binary patterns was also considered. Experiments were performed with

online covariance estimation to utilize Mahalanobis distance with cluster-select using

a dimensionality reduced MNIST dataset, and a gas dataset with added noise. To

apply cluster-select to a RNN, a test case was constructed using motion from an ideal

pendulum to create a non-stationary regression task. This section details all of these

experiments.

In order to simulate a dynamic environment, all feedforward tests partitioned

the datasets into two parts, P1 and P2. The general training approach for the

nonstationary classification tests where dataset P1 was switched with P2 was derived

from [17] and [16]. Once training on P1 was complete, training was switched to

dataset P2 and performance was measured on both P1 and P2 while the network

continued to learn P2. The objective function which hyperopt optimized over was

min(P1error + P2error) ∀ epochs or the minimum error reached for P1 + P2 at

some point in training. If this error is 0, it would mean that at some point in training

the network was able to learn both P1 and P2 with no error.

Initially, we had included learning rate as a hyperparameter, however we noticed

that results were often difficult to compare since it affects the speed of convergence

of the network. We ended up with some networks that had very high learning rates

49

Figure 4.2: How MNIST was split into P1 and P2

and were very unpredictable. Although they often did well to minimize the hyperopt

objective function, when plotted, results were sometimes very noisy and converged

overall to much worse final solutions. This rendered the results difficult to interpret.

It was decided that using a constant learning rate across all simulations made the

results much easier to compare. All of the networks for the non-recurrent tasks had 2

hidden layers and an output layer. In the recurrent simple pendulum test case, only

a single hidden layer was used in an Elman network.

Finally, an important parameter for the classification tasks was the threshold t at

which to wait for error to increase before detecting the P1 to P2 change. It turns

out (from the tests performed on these datasets) that this parameter has a very large

range that effectively triggers the change when necessary. The range for this threshold

parameter t was measured by estimating how high and how low it could be while still

triggering the placement of new centroids at both the beginning of training, and when

the P1 to P2 switch actually occurred. This parameter was simply left at a known

good value and was not included in the hyperparameter search. This parameter also

depends on the moving average rate, α in the previous section, which was left at 0.95.

As a result, these were not actually hyperparameters included in the search. For

classification with cluster-select, the output layer had a hyperbolic tangent activation

with ”-1” being assigned to the target for the incorrect class and ”+1” being assigned

to the target for the correct class.

4.3.1 MNIST Experiment

MNIST [65] is a popular dataset used for classification tasks in machine learning,

which consists of 60,000 greyscale images, each 28 by 28 pixels, and is divided into

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P1 Miss Rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

P2
 M

is
s

Ra
te

Cluster-Select Best
Maxout Best
Maxout w/ Dropout Best
LWTA Best
Rectified Linear w/ Dropout Best
Ensemble

Figure 4.3: P1 miss rate vs. P2 miss rate possibilities frontiers for MNIST forgetting
task

50,000 training images and 10,000 test images. Image pixel values were normalized

to be between 0.0 (solid black) and 1.0 (solid white).

Test Setup

In order to test catastrophic forgetting, the task was made non-stationary by dividing

the dataset into two parts called P1 and P2 (as illustrated in Figure 4.2). For P1,

only images of digits 0-4 were used; for P2 images of digits 5-9 were used, meaning

the network would classify which of the 5 digits the input image belonged to. For

P1 this would classify as digits 0-4. After training was switched to P2 the 5 class

labels would switch to digits 5-9 such that digit ”0” from P1 would change labels to

digit ”5” from P2 and digit ”1” would change to digit ”6”, and so on. The network

was first trained on P1 until the test error rate did not increase after 100 consecutive

epochs. Afterwards training was switched to P2. As the network learned the P2

training set, both P1 and P2 test rates were observed.

51

For this test 40 runs were performed using each technique, (local winner-take-all,

local winner-take-all with dropout, maxout, maxout with dropout, cluster-select).

Each run was given a unique set of hyperparameters using hyperopt. The objective

function hyperopt minimized was min(P1error + P2error) ∀ epochs That is, the

minimum summation of both P1 and P2 test error for all of the epochs of training.

The set of hyperparameters that produced the best result according to this criteria

was considered the winner. The winning run for each technique is the one considered

for plotting. The learning rate was set to a fixed value of 0.005 for all runs. The

networks all had two hidden layers and an output layer consisting of 5 outputs to

predict which of the 5 digits the input image belonged to.

The cluster-select technique required 5 total hyperparameters. There was a

hyperparameter for the number of centroids selected on each feedforward pass (what

k should be when selecting k out of n), the total number of neurons, how many

centroids to replace when the P1 to P2 change was detected, and also the speed

to move each centroid (β in the previous section). In addition, it wasn’t certain if

clustering should occur only on (1) the first hidden layer, (2) the second, or (3) both,

therefore a discrete hyperparameter was included to select one of the 3 options.

The maxout and local winner-take-all runs had only two hyperparameters. The

first being the number of nodes per group, which indicated how many neurons are in

each group and was varied from 2 to 128. The other parameter was the number of

hidden neurons which was varied from 1024 to 2048. Softmax was used as the output

layer since this is commonly used for networks with these types of activations. Results

are also included that combine these techniques with dropout (using a dropout rate

of 0.5).

For the ensemble of learners, only a single run was performed by taking the

5 best performing networks and further varying their hyperparameters slightly to

produce 16 networks. Having different hyperparameters is a way to help diversify the

network predictions and behavior relative to each other. This 16 network ensemble

was evaluated by producing a linear combination of the outputs of all 16 networks.

52

When a network detected the P1 to P2 change, it had a 0.5 probability of also

lowering its learning rate. This meant that roughly half of the networks had their

learning rates lowered when the change was detected. Learning rate was lowered by

50% when the change was detected.

Simulation Results

Figure 4.3 shows the results for this test. As the network forgets P1 it learns P2

producing a curve if both errors are plotted together. This technique of plotting the

impact of catastrophic forgetting was first introduced in [17] and illustrates the error

on P2 relative to P1. The closer the curve gets to the bottom left hand corner, the

better the network was able to capture both P1 and P2 at some point during training.

How close the curve gets to the bottom left corner corresponds directly to the loss

function used for hyperopt. Cluster-select performs the best on this task. Note that

the ensemble here was made of the 5 best cluster-select networks. It seems to give

nearly identical performance.

4.3.2 MNIST Experiment with Noise

Test Setup

This test is similar to the last, except white Gaussian noise with zero mean and

variance 2.0 was added to the normalized images, making the task a bit more

challenging. In addition, the ensemble was organized a bit differently, and a technique

of further diversifying the ensemble of learners was attempted where some of the

networks in the ensemble had their learning rate lowered.

An attempt was made to improve ensemble results, hence the ensemble was

constructed with 16 networks instead of 5 as in the previous test case. To produce the

parameters for these 16 networks, 5 best performing networks were taken and their

hyperparameters were further varied slightly to produce 16 networks. Having different

hyperparameters is a way to help diversify the network predictions and behavior

53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P1 Miss Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P2
 M

is
s

Ra
te

Cluster-Select Best
Maxout Best
Maxout w/ Dropout Best
LWTA Best
LWTA w/ Dropout Best
Ensemble w/ No Learning Rate Decay
Ensemble w/ Learning Rate Decay

Figure 4.4: Results for MNIST Test with noise

relative to each other. This 16 network ensemble was evaluated by producing a linear

combination of the outputs of all 16 networks. When a network detected the P1 to

P2 change, it had a 0.5 probability of also lowering its learning rate. This meant that

roughly half of the networks had their learning rates lowered when the change was

detected. Learning rate was lowered by 50% when the change was detected.

Simulation Results

The cluster-select technique performs well in this test case, with the ensemble of 16

cluster-select networks performing the best. To determine if lowering the learning

rate helped, an ensemble that does not lower the learning rate after detecting the P1

to P2 change is also shown. This ensemble is otherwise identical to the one that does

lower the rate. Comparing both ensembles demonstrates that lowering the learning

rate turned out to be the key in gaining extra performance out of the ensemble.

It should be noted that while the ensemble of 16 networks produced the best

results, it takes nearly 16 times more CPU resources to run. While parallelizing

54

an ensemble of networks is possible, the implementation may not be trivial. The

matrix operations for feedforward are already parallelized within the network, which

means that each network within the ensemble must run on individual machines or

CPUs. For the test case presented here, the code was not parallelized this way,

thus performing the single run required several days. Because of the computational

overhead, we were unable to run many experiments with the hyperparameters for the

ensemble. As a result, the hyperparameter of 0.5 probability of lowering the learning

rate for a particular network and the hyperparameter of lowering it by 50% may

not be optimal, since only a few combinations were attempted. While an ensemble

can help significantly as shown here, it may or may not be worth the investment.

Regardless, the single cluster-select network still significantly outperformed the other

known techniques.

Adding noise to the test also caused further improvements of our technique in

relation to the other techniques. Comparing to the previous test without noise, it

appears that the noise adversely affects local winner-take-all and maxout networks

more so than cluster-select. The ensemble improvements are also more notable when

noise is added. At least in this test case, our technique appears to be significantly

more effective in noisy environments.

4.3.3 20 Newsgroups Experiment

Test Setup

The 20 newsgroups dataset [66] is a text classification dataset consisting of 18,837

posts to 20 Usenet newsgroups. The task is to determine which of the 20 newsgroups

the post was submitted to, based on the contents of the post. Before this could be

fed to a neural network, some technique of feature extraction had to be performed.

We chose to use the TF-IDF method to extract 2000 features [67]. This dataset

has a problem of fitting only to 2 or 3 features if they are included; so we chose to

remove the headers, footers, and quotations block as recommended by the scikit-learn

55

documentation when dealing with this dataset [68]. Removing these features makes

this a much more challenging problem. We decided to reshuffle the training and

testing data such that we randomly chose 2048 feature vectors for testing, and 16,789

for training.

This set had 20 total classes, and was divided into two segments, P1 and P2, each

consisting of 10 class labels. When no improvement was observed for 300 epochs,

training was switched from P1 to P2 such that a new set of classes would map to the

old labels. Error rates were observed on the P1 and P2 test sets during the switch

from P1 to P2 and plotted in figure 4.5.

It is possible to achieve a better training accuracy by including many more than

2000 features, however this would greatly slow down training, and we wanted this test

to measure forgetting, not necessarily to achieve the highest accuracy on this data

set. For this test we fixed the learning rate to .025.

Simulation Results

Figure 4.5 shows the results. A total of 75 experiments were ran for each type of

network with random hyperparameter sampling. All techniques were able to achieve

an accuracy of around 30% on P1. In the context of learning both P1 and P2,

cluster-select was able to perform the best. The ensemble of 5 cluster-select networks

performed only slightly better than a single network.

4.3.4 Autoassociative Encoder Experiment

Test Setup

In order to evaluate this technique on a regression task, an artificial dataset was

created containing 200 random binary patterns. Each binary pattern contains 100

random binary inputs and 100 random binary outputs. The task is to train a neural

network to associate a given 100 bit input to an unrelated 100 bit output. All networks

56

0.3 0.4 0.5 0.6 0.7
P1 Miss Rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P2
 M

is
s

Ra
te

Cluster-Select Best
Maxout Best
Maxout w/ Dropout Best
LWTA Best
Rectified Linear w/ Dropout Best
Ensemble

Figure 4.5: P1 miss rate vs. P2 miss rate possibilities frontiers for 20 newsgroups
dataset forgetting task

in this test had linear outputs since this was a regression problem, and the binary

targets were either −1 or +1.

The dataset was divided into two parts each containing 100 patterns. As before,

training was performed on the first dataset P1, then when the error had not decreased

for 300 epochs, training was switched to the second dataset P2. Error rate is measured

in the percentage of total bits the network got incorrect. A bit was considered correct

if the sign of the network output matched the sign of the bit (i.e. if the network

output is less than 0 the bit must be −1 to be considered correct, else if the network

output is greater than 0 the bit must be 1 to be correct). Randomly guessing would

produce an error rate of about 50%, hence the graph scale in figure 4.6 goes to 50%.

The dataset was small enough that we did not need to divide the dataset up into

mini-batches, instead we trained on the entire batch during each epoch.

57

0.1 0.2 0.3 0.4 0.5
P1 Miss Rate

0.1

0.2

0.3

0.4

0.5

P2
 M
is
s
Ra

te

Cluster-Select Best
Maxout Best
LWTA Best
Sigmoid Best

Figure 4.6: P1 Miss Rate vs. P2 Miss Rate Possibilities Frontiers for
Autoassociative Encoder Forgetting Task

Simulation Results

For this test 100 experiments were performed per network type. As illustrated in

Figure 4.6, this test actually shows local winner-take-all and maxout ahead of cluster-

select. A network with sigmoid hidden layers was also included for comparison. This

test shows that all three techniques (maxout, local winner-take-all, and cluster-select)

perform well on this regression test. We believe cluster-select did not achieve the

performance it could have because there was still some overlap between the clusters

that were selected. Some centroids for P1 were likely selected when training on P2.

Considering that each of the 100 vectors in P2 had to have k centroids selected (k

being the number of centroids selected, a hyperparameter), at least some of those

inputs likely selected centroids that were allocated for P1.

4.3.5 Reduced MNIST Experiment

In theory, Mahalanobis distance can provide a richer metric compared to the

Euclidean distance since it considers the spread of samples around a centroid. For

58

the following two test cases, we wanted to evaluate how incorporating covariance

estimation into the cluster-select process could help improve performance. In the

other experiments, Euclidean distance was used.

Mahalanobis distance requires extra computational power compared to Euclidean

distance. However, These computations can be performed in an accelerated manner

using parallel hardware such as GPUs. The results here are preliminary and are

intended to shed light on whether including the covariance matrix can improve

performance. We did not attempt to build a highly efficient parallel implementation

of Mahalanobis distance, and as a result we had to limit the number of dimensions

and size of the datasets in these test cases.

Test Setup

For the first test with covariance, the MNIST handwritten digit dataset was used.

An autoencoder [69] was constructed consisting of a hidden layer with 50 activations.

MNIST was reduced to 50 dimensions using this autoencoder. The dataset was then

divided into two subsets. As before, samples that had class labels for digits 0 through

4 were placed in subset P1, and samples for which the class was 5 through 9 were

placed in subset P2. A network was trained on P1 to predict which of the 5 classes

the sample belonged. Once training on P1 was complete (no improvement on test

error was observed for 30 epochs), the dataset was switched to P2. After switching

to P2, both P1 and P2 error were observed for forgetting.

Simulation Results

Figure 4.7 illustrates a definite improvement of using Mahalanobis distance over

Euclidean because it shows that the network was able to capture more of P1 without

misclassifying P2. Forgetting curves for maxout and LWTA networks are also shown.

The results depicted in Figure 4.7 demonstrate that cluster-select using Euclidean

59

0.1 1.0

P1 Miss Rate

0.1

1.0

P
2

 M
is

s
 R

a
t
e

cluster-select with covariance estimation

cluster-select

maxout

local winner-take-all

Figure 4.7: Cluster-Select MNIST Result

distance outperforms both LWTA and maxout networks. Adding covariance to

cluster-select provides a significant boost in performance.

4.3.6 Experiment with Gas Sensor Array Dataset

Test Setup

For the second catastrophic forgetting test in which covariance was incorporated

into the distance calculation, a dataset was utilized that consists of readings from a

gas sensor array under dynamic gas mixtures [70]. This dataset has 19 dimensions,

including a time dimension which was removed. The task is to determine which of

two gas concentrations (Ethylene and CO, or Methane and Ethylene) are present,

hence creating a binary classification task. The dataset was first normalized such

that each dimension had zero mean and unit variance. Then, to make the dataset

more challenging, Gaussian noise was added with variance 1.0.

To test catastrophic forgetting, dataset P1 was scrambled such that the input

dimensions were randomly rearranged, producing dataset P2. Just as before, training

is performed on P1 until it reaches satisfactory performance (no improvement

60

0.1 0.2 0.3

P1 Miss Rate

0.1

0.2

0.3

P
2

 M
is

s
 R

a
t
e

cluster-select with covariance estimation

cluster-select

maxout

local winner-take-all

Figure 4.8: Cluster-Select Gas Sensor Array Dataset Result

observed on the test set for 30 epochs). Training is then switched to P2 and both P1

and P2 are observed.

Simulation Results

The results for the gas dataset follow the same trends as before, cluster-select

outperforms both LWTA and maxout. Adding covariance further boosts performance.

Cluster-select with covariance estimation is generally closer to the bottom left hand

corner of the graph indicating better performance.

4.3.7 Pendulum Experiment

For this task a dataset was generated consisting of an ideal 2-d pendulum with no

friction. The simple pendulum provides a very straightforward case from physics

that is both simple to train, yet can exhibit non-stationary behavior depending on

the speed at which the pendulum is swinging. It can be modeled from equation 4.4.

This model is commonly found in most introductory physics texts, including [71].

61

dθ

dt
= ω

dω

dt
= −gsin(θ)

l

(4.4)

If the pendulum is swinging fast enough it will rotate in a complete circle.

However, if the speed is not great enough to counter the effects of gravity, the

pendulum will swing back and forth in both directions. Two datasets were created

using the above equations where initial conditions were set such that in the first

dataset P1 the pendulum swings in a complete circle, see Figure 4.9(a), and in dataset

P2 the pendulum swings back and forth, see Figure 4.9(b). Generating the datasets in

this manner allows us to control exactly when, and to what effect the non-stationarity

occurs within the dataset, which consequently allows us to precisely observe when,

and to what degree, forgetting occurred.

Two separate datasets were generated at velocities that could trigger both

behaviors and training was switched from one dataset to the other while measuring

performance on both. Dataset P1 and P2 were each 250 seconds long for a total of

500 seconds. The dataset was generated using scipy’s odeint [72] function to integrate

the above equations with a sample rate of 30 samples/sec. The initial velocity for

P1 was set to 25.0 meters/sec and to 3.0 meters/sec for P2. Gravity was 9.81

meters/sec2 and the pendulum had length 1.0 meters.

Test Setup

For this problem, the network had to predict sin(θ) and −cos(θ) instead of the state

variables. These variables may create a better representation for the network instead

of predicting θ and ω directly, as the angle θ will contain discontinuities if it is

restricted to be on the interval [0, 2π].

An Elman [22] network with a single hidden layer was used. The network was

shown the input for a single time step in addition to its previous hidden output.

62

The task was to correctly learn to predict sin(θ) and −cos(θ) for the next time step.

The network was initialized with a vector of 0s for the hidden state and provided 10

seconds to initialize the hidden state before training began. The dataset was switched

to P2 at 250.0 seconds, and the hidden layer was again allowed to initialize for 10

seconds before training on P2 began at 260.0 seconds.

Training was halted on each time step, and a test was ran over all of P1 and P2

to measure mean squared prediction errors for P1 and P2. The error measurement

was performed by running the network on P1, and measuring the mean squared

prediction error for each time step, and taking the mean of that for the whole dataset

(hence in Figure 4.10 it is labeled ”Mean of MSE”). The network was again ran on

P2 to generate similar prediction error. The plots in Figure 4.10 show these error

measurements for both P1 and P2.

One potential issue is that the previous time step state has only two inputs

compared to potentially 256 inputs for the Elman network’s previous hidden state. To

balance this ratio, the previous time step’s state inputs were sometimes duplicated.

Otherwise the network may not be able to distinguish those two inputs as being

important out of several hundred total inputs. The number of additional duplicate

input vectors was set as a hyperparameter for all of the network types.

It should be noted that with this test, there is no training or test dataset. There is

only one time series dataset for each regime that is used for both training and testing.

Since the pendulum speed isn’t dynamic or varying, a test set would have been very

similar to the training set and would not have changed the performance. While

predicting a pendulum position is an easy problem to solve with a RNN, it appears

to be a difficult problem for the network to learn to deduce new pendulum behavior

without losing its ability to predict prior behavior, at least when both behavioral

regimes of P1 and P2 were presented only once.

A total of 5 sets of tests were ran. For the first set of tests, the clustering technique

was used as described in Section 4.2.1 with learning rate decay. This first set of

tests included hyperparameters for the number of hidden neurons, the learning rate,

63

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

−1.0

−0.5

0.0

0.5

1.0
sin(θ)
-cos(θ)

(a) P1 Dataset

250.0 250.5 251.0 251.5 252.0 252.5 253.0
Time (s)

−1.0

−0.5

0.0

0.5

1.0
sin(θ)
-cos(θ)

(b) P2 Dataset

Figure 4.9: Sample of P1 and P2 datasets. This plot shows sin(θ) and −cos(θ)
which is the data that is fed to the neural network. The data shown indicates the
relative x and y position of the pendulum if it is swinging around the origin. In 4.9(a)
the pendulum swings completely around in circles. In 4.9(b) however, the pendulum
is swaying back and forth. To see that the pendulum is not swinging around, notice
the y position −cos(θ) does not swing higher than −0.5 units.

number of centroids selected on each feedforward pass, and learning rate decay rate

ζ. The main purpose of the second set of tests was to establish the effectiveness the

learning rate decay parameter was having on the results, so the rate ζ was fixed to

1.0 to effectively disable it. All other hyperparameters were the same as before.

Since it is known that both winner-take-all and maxout networks help with

forgetting, a set of tests were ran with hidden layers that had each of these types

of networks. The hyperparameters for these tests included the learning rate, the

number of hidden nodes, and the number of nodes per group.

To compare to the baseline, a set of tests is included for a regular neural network

with hyperbolic tangent hidden activations. This network had hyperparameters for

the number of hidden neurons and the learning rate. Each set of tests were run 100

times using hyperopt with random hyperparameter selection. The best performing

runs for each set were selected for the plots in Figure 4.10

64

255 260 265 270 275 280 285

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 o

f
M

S
E

P1

P2

(a) Results for cluster-select with learning rate decay

255 260 265 270 275 280 285

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 o

f
M

S
E

P1

P2

(b) Results for cluster-select with no learning rate decay

255 260 265 270 275 280 285

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 o

f
M

S
E

P1

P2

(c) Results for local winner-take-all

255 260 265 270 275 280 285

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 o

f
M

S
E

P1

P2

(d) Results for maxout

255 260 265 270 275 280 285

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
e
a
n
 o

f
M

S
E

P1

P2

(e) Results for regular neural network with tanh activations

Figure 4.10: Illustration of P1 and P2 error rates during training on the recurrent
simple pendulum task

65

246 248 250 252 254
Time (s)

0

50

100

150

200

250

H
id

d
e
n
 N

e
u
ro

n

Figure 4.11: Selected Neurons During the Regime Change

Simulation Results

As shown in Figure 4.10, the clustering technique with weight decay performed very

well. The pendulum occupies the same physical positions in P2 as it does in P1,

meaning that the regime can’t be deduced from the inputs at a specific time step

alone. Even still, this network was able to determine (via recurrence) which regime it

was in and predict the next time step with little error, after only having been trained

on P1 and P2 once. The other network architectures did not manage to successfully

retain both P1 and P2.

The learning rate decay ζ was found to be a very sensitive hyperparameter. Setting

it too low caused the learning rate to decay rapidly and the network failed to learn

anything. Setting it too high (very close to 1.0) effectively disabled the decay and

caused the network to forget P1 when learning P2. It could be argued that this

parameter is dataset dependent. Had the network been trained on a different task, it

would need to be set to a different value. In theory, this parameter may reflect the

sensitivity and delicate balance that stability vs. plasticity has to be tuned for in the

real world. In order to retain prior representations, a learning system has to fixate on

those representations after being exposed for a certain amount of time. The precise

amount of exposure needed depends on the task. The ζ parameter determines the

exposure time the network needs before it permanently retains a particular regime.

66

Figure 4.11 shows a binary plot of which neurons were selected during the regime

change at 250 seconds. This plot was generated from the data for the winning case

with learning rate decay. The black lines mean that a particular neuron was selected

during a particular time (64 neurons were selected out of 256 total). This depiction

shows that there is a substantial overlap between the centroids selected for each

dataset, meaning that centroids selected for P1 are again being selected for P2 which

will cause the network to lose some of the P1 representation. However, the learning

rate decay parameter ζ accounts for this by ensuring the neurons that were selected

for P1 have their learning rates decayed such that their representations can no longer

be destroyed when training on P2. Some new neurons are also being selected which

have not had their learning rate decayed, and are thus able to learn P2 without

interfering with the network’s representation of P1.

67

Chapter 5

Mitigating Catastrophic Forgetting

in Reinforcement Learning

Environments

Reinforcement learning is a challenging scenario in which catastrophic forgetting

naturally occurs. When an agent explores the environment, it does so through a

sequence of observations it acquires. Such a sequence of observations will likely be

temporally correlated in that consecutive observations will be similar. If a neural

network based value function is updated on each time step, then temporal correlations

in the training data will likely trigger catastrophic forgetting.

Even if an agent can overcome the difficulties due to consecutive observations

being correlated and can reach a near optimal policy, it may not be able to maintain

this policy. An optimal policy, by definition, will only follow the optimal trajectory

in the state space, avoiding regions that lead to failure. In many problems, the states

which follow the optimal trajectory only represent a very small subset of the total

state space. As mentioned previously in chapter 2, the work in [38] demonstrates

that training data for an agent must include observations made from non-optimal

states in order for the agent to maintain an optimal trajectory. Essentially, due to

68

catastrophic forgetting, if the agent stops observing non-optimal states, then it will

lose the representations it had previously learned for such failure states, and may

start visiting those states again, which will cause an optimal policy to degrade to a

non-optimal one.

Catastrophic forgetting may manifest as poor or degraded performance in learning

a policy. It may also manifest as an ”unlearning” effect whereby an agent seems to

learn an effective policy but quickly unlearns or regresses to a much poorer policy.

Without some strategy to help with catastrophic forgetting, degraded performance

and unlearning has been noted in [6] [5] [4] [8].

In this chapter, several reinforcement learning test cases involving Markov decision

processes (MDPs) and partially observable MDPs are explored. First we examine an

MDP test case which models a cart-pole system where all of the variables are known.

Next, we investigate POMDP test cases, where the first test case models a cart pole

system with only partial state information. Finally, we explore the pong video game

in the arcade learning environment [18]. The arcade learning environment test case

examines using cluster-select with standard on-policy methods and compares it to the

off-policy deep Q-network (DQN) algorithm with the replay buffer. The cluster-select

network is demonstrated to improve stability in a similar manner to using a replay

buffer, and allows for on-policy training which isn’t possible with a replay buffer.

5.1 Forgetting in MDPs

Fully observable Markov Decision Processes (MDPs) have the property that the full

state of the environment is available to the agent. This section explores catastrophic

forgetting in MDPs by examining a classic reinforcement learning problem involving

a cart-pole system.

69

Table 5.1: Constants for Cart-Pole Test

constant description value

g gravity (m/sec2) 9.81
l pole length(m) 0.5
mp pole mass (kg) 0.01
mc cart mass(kg) 1.0
F horizontal cart force(N) 10, 0, or -10 depending on action

5.1.1 Cart-Pole Experiment

For our study, we considered the classic cart-pole reinforcement learning problem

with no friction. The problem involves a simulated cart on a horizontal track with

a pole attached to it. The action space has been discretized such that a total of 3

actions involve applying a left force, right force, or no force. This essentially produces

bang-bang [73] controls. An episode consists of the cart fixed with the pole initialized

with a small random angle and velocity. An episode proceeds until one of the state

variables either grows too large (within reasonable bounds) or 1000 steps elapses.

The differential equations governing the dynamics of this problem are given in

equations 5.1 and 5.2 below. These equations include several physical constants, such

as mass of the cart and poll as well as the pole length. The values that were selected

for these constants are given in table 5.1. The derivations for the cart-pole equations

can be found in [74].

θ̈ =
gsinθ + cosθ

(
−F+mplθ̇2sinθ

mc+mp

)
l
(

4
3
− mpcos2θ

mc+mp

) (5.1)

ẍ =
F +mpl

(
θ̇2sinθ − θ̈cosθ

)
mc +mp

(5.2)

Bounding the variables was necessary, since a system having no friction would

mean that these state variables could grow unbounded, potentially introducing

numerical stability issues. A negative reward was assigned if the episode ended

prematurely due to one of the state variables exceeding its predetermined bounds.

70

The goal of the task is to balance the pole upright by applying the horizontal forces

to the cart, hence a small positive reward was applied for every frame that the pole

was in an upright position.

Each step of the system was simulated using the Runge-Kutta method of

numerically solving the differential equations that govern the system. Each step

in the simulation consisted of roughly 20 milliseconds of simulated time, such that

50 steps are equivalent to one second. These tests all used the SARSA(0) learning

algorithm with a neural network based value function approximator. One temporal

difference update was performed on the network for every step (no batch updates, or

replay buffers were used). The centroids for the cluster-select network were initialized

randomly and were not moved for this test.

Test Setup

To test each method, a random search was performed over the hyperparameters with

hyperopt [64]. Hyperparameters generally included: the learning rate, a small decay

constant for the learning rate to decay, the number of hidden neurons, the gamma

constant for temporal difference learning, the amount of reward to provide the agent

for balancing the pole relative to the amount of negative reward for going out of

bounds, the initial ε chosen for ε-greedy exploration, and the amount to decay ε.

For cluster-select, there was an additional hyperparameter denoting the number of

neurons to select for a feedforward pass.

Each activation function was examined separately, where reasonable selections for

the hyperparameters were provided for the random search. Upon performing approx-

imately 200 runs for each activation function with a given set of hyperparameters,

those that produced the best results were selected. Note that in the plots, performance

was measured as a function of the total number of steps that the agent was able to

balance the pole and collect reward for an episode.

71

Results

Figure 5.1 provides results for a simple case with tabular value representation. This

particular result had its hyperparameters hand-tuned (i.e. no random searches of

hyperparameters were performed), and it is provided as a simple baseline performance

level. The value function was maintained in a table of 80,000 states where the entry

in the table was obtained as a function of the 4 state variables. Quantization was

performed over the state variables such that the cart position had 10 bins; the cart

velocity, pole angle, and pole angular velocity all had 20 bins. The binning was

performed over the valid ranges of these state variables. The number of bins for each

state variable was a hyperparameter that was hand-tuned. Figure 5.1 also shows a fit

to an exponential curve of the form f(x) = a− b exp(−cx) where a, b, c are constants

pertaining to the fitted curve.

Figure 5.3 illustrates the results for a neural network with linear rectified activation

functions. This activation function produced some agents with the best performance.

Unfortunately, the good performance was unstable, and would often regress as

illustrated in this figure. These agents would learn to balance the pole well, then

suddenly regress to terrible performance. We hypothesize that this sudden regression

is caused by catastrophic forgetting in the hidden layers. Essentially, after the

agent begins to learn to balance the pole well, it is unable to maintain this policy

since the network is no longer being trained on the failure states. Eventually it

drops the pole, and ’unlearns’ the previous captured representation. A plot of

performance for networks with sigmoid and hyperbolic tangent activations is also

provided in Figure 5.4 and Figure 5.5, however these networks did not reach adequate

performance. It is unclear why these particular activation functions failed to deliver

a proficient policy. It is possible that they simply required more training time, or

that a good set of hyperparameters was never found. It is also possible that these

activation functions are a poor match for this particular problem.

72

0 5000 10000 15000 20000
Episode

0

200

400

600

800

1000

Nu
m
be
r o

f S
te
ps

 S
pe

nt
 "b
al
an
cin
g"
 P
ol
e

Tabular Best
Exponential Fit, Variance Adjusted Performance: 0.410217720678

Figure 5.1: Result for a Tabular Qs,a Estimator

0 5000 10000 15000 20000
Episode

0

200

400

600

800

1000

Nu
m
be

r o
f S

te
ps

 S
pe

nt
 "b

al
an

cin
g"

 P
ol
e

Cluster-Select Best #1
Cluster-Select Best #2
Cluster-Select Best #3

Figure 5.2: Result for Cluster-Select Neural Net Qs,a Estimator

On the other hand, the cluster-select technique generally had a much smoother

learning curve. In particular, the learning profile does not exhibit sudden dips

(regressions) in performance, as Figure 5.2 clearly illustrates. In addition, Table 5.2

provides an objective measure of performance expressed as the log of the variance-

adjusted performance. To compute the latter we first fit the performance curve to an

exponential function, as depicted in Figure 5.1. Next, we measure the mean squared

deviation of the original learning curve from the fitted function. Finally, we define

the variance-adjusted performance as the mean of the squared values of the original

learning curve relative to the mean squared deviation from the fitted function. This

metric favors a learner that is both stable in its learning profile as well as reaches a

high performance level.

73

0 5000 10000 15000 20000
Episode

0

200

400

600

800

1000

Nu
m
be

r o
f S

te
ps

 S
pe

nt
 "b

al
an

cin
g"

 P
ol
e

Linear Rectified Best #1
Linear Rectified Best #2
Linear Rectified Best #3

Figure 5.3: Result for a Neural Net Qs,a Estimator with Linear Rectified Activations

0 5000 10000 15000 20000
Episode

0

200

400

600

800

1000

Nu
m
be
r o

f S
te
ps

 S
pe

nt
 "b

al
an

cin
g"
 P
ol
e

Sigmoid Best #1
Sigmoid Best #2
Sigmoid Best #3

Figure 5.4: Result for a Neural Net Qs,a Estimator with Sigmoid Activations

0 5000 10000 15000 20000
Episode

0

200

400

600

800

1000

Nu
m
be

r o
f S

te
ps

 S
pe

nt
 "b

al
an

cin
g"

 P
ol
e

Tanh Best #1
Tanh Best #2
Tanh Best #3

Figure 5.5: Result for a Neural Net Qs,a Estimator with Hyperbolic Tangent
Activations

74

Table 5.2: Summary of Results

Tabular Tanh Sigmoid Linear Cluster-Select
Rectified

Performance 310311 3674 17682 202616 243417
(Mean Squared Sum)

Deviation from 1944 225.4 1083 7618 801.6
Exponential Fit

Log Variance 5.073 2.791 2.793 3.281 5.716
Adjusted Performance

5.2 POMDP Environment

POMDPs represent a more challenging environment in which the agent is not provided

with the full state of the environment. Instead, information is available to the agent in

the form of observations which only contain a partial representation of the full state.

This section investigates two partially observable experiments. The first of which is

a cart-pole experiment which is similar to the MDP cart-pole test case previously

covered, except that a state variable has been removed to create a POMDP. The

second experiment involves the pong video game in the arcade learning environment.

5.2.1 Partially Observable Cart-Pole Experiment

For the partially observable cart-pole simulation, an Elman network with 2 hidden

layers was constructed such that the output from the first hidden layer is fed back

as input for the next time step. The system has 4 state variables: pole angle, pole

angular velocity, cart position, and cart velocity. To make the cart-pole simulation

partially observable, we chose to omit one of the 4 state variables.

The cart pole simulation was similar to the fully observable case described earlier,

however there were several notable improvements to the training methodology. An

eligibility trace update rule was performed, as described in chapter 2. Moreover, the

centroids for cluster-select were moved using an adaptive technique described next.

75

The general problem with moving centroids is that it directly impacts which

neurons are associated with different regions of the input space, thus changing the

representation and distorting previous training. It has been observed that moving

centroids during training results in poor performance, perhaps because of the changing

representation. Unfortunately, online clustering techniques require that the centroids

be updated and moved closer to the data clusters.

The real issue is that centroids can not be moved during training since it invalidates

any prior training. Nevertheless, it may be important to perform online clustering

so the centroids cover the data regions more naturally, instead of being fixed to their

initial random locations. To allow the centroids to be moved closer to the data clusters

without severely affecting performance, a per-neuron ξ term was provided to balance

training the neural network and moving the centroids. The ξ term was initialized at

1 for all neurons. If the neuron j belonged to the set of selected neurons, its ξj term

was decayed by a constant factor ξj = αξj where α is the decay rate. During updates,

the centroids were moved closer to the input which selected them

~cnewj = ~cj + ξj(~cj − ~x), (5.3)

where ~x is the input that selected the centroid, and ~cj is the centroid for neuron j.

The learning rate for the input weights to neuron j was multiplied by 1− ξj, meaning

that when a neuron is first selected, no training occurs on that neuron, but instead

its corresponding centroid is moved closer to the data that selected it. As ξj decays,

the neuron begins to learn, and the centroid slows down and eventually stops moving.

The ξ term, in general allows the network to initialize the centroids before training

commences.

Test Setup and Results

The hyperparameters were similar for the POMDP cart-pole test as for the fully

observable cart-pole experiment. The number of neurons in the first and second

76

0 5000 10000 15000 20000
Episode

0

200

400

600

800

1000

Nu
m

be
r o

f S
te
ps

 S
pe

nt
 "b

al
an

ci
ng

" P
ol

e

POMDP Average over 8 runs
POMDP max over 8 runs
POMDP min over 8 runs
90th percentile region

Figure 5.6: Result for Cluster-Select Neural Net Qs,a Estimator on a POMDP Cart-
pole Test Case

hidden layers were both hyperparameters along with the standard reinforcement

learning hyperparameters as before. In addition, a ξ decay hyperparameter was also

included. For the POMDP cart-pole problem, the hyperparameter search proved

difficult. Approximately 3,000 runs were performed before finding a single run that

performed relatively well.

The good performance of this single run turned out to be reproducible. That is,

upon rerunning with the same hyperparameters but different initialization conditions,

good performance was observed. Figure 5.6 is a plot of performing this run 8 different

times, each with different initialization conditions. The top average score achieved

was 730 steps spent balancing the pole. This result is comparable overall to the fully

observable MDP result.

5.2.2 Arcade Learning Environment Experiment

The arcade learning environment [18] has recently become an extremely popular

benchmark for reinforcement learning. It allows one to run experiments which are

aimed at training agents to play many different Atari 2600 video games. A recent

success has been published by Mnih et al. [8] which uses a deep convolutional network,

77

dubbed the deep Q-network (DQN), that learned to play multiple Atari 2600 video

games.

In the experiment performed here, we attempt to reproduce some of the DQN

work, but on a smaller scale. The experiments are not performed using screen

images of the game, but instead are conducted using an explicit partial state

representation that is extracted from the game’s memory. Even with this simpler

partial representation, the experiment appears to suffer from instabilities which are

likely caused by catastrophic forgetting. We attempt to reproduce the DQN training

algorithm, including the replay buffer, and freezing the value function. The replay-

buffer was compared with a cluster-select network and we demonstrated in this case

that cluster-select outperforms using a replay buffer in both convergence speed and

stability. In running other experiments, we noted that at least some mitigating seems

necessary. Naively using a regular feedforward network with no strategy for mitigating

catastrophic forgetting failed to yield a proficient agent.

Reproducing Deep Q-Network Mitigation Techniques

The work by Mnih et al. [8], introduces the DQN algorithm and includes several

techniques aimed at mitigating forgetting which we attempt to reproduce. Figure 5.7

illustrates the proposed algorithm which is nearly identical to the DQN training

algorithm. Many of the modifications made to Q-learning by DQN were considered

including the use of a replay buffer. In addition, we generate targets from a value

function which is frozen every C steps.

The replay buffer contains sets of state/action transitions and associated rewards

incurred. Every time a transition occurs, its corresponding state, action, and

associated reward is inserted into the replay buffer. A circular data structure is

utilized, such that when it is full, the oldest entries are overwritten by any new

transitions. The Q value estimator network is updated by randomly sampling mini-

batches of transitions from the replay buffer and applying gradient descent with the

Q-learning update rule.

78

Algorithm 3: Q-learning with experience replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with random weights θ−

for episode = 1,M do
for t = 1,T do

With probability ε select a random action at
Otherwise select at = argmaxaQ(ot, a; θ)
Execute action at in emulator and observe reward rt and

observation ot+1

Store transition (ot, at, rt, ot+1) in D
Sample random mini-batch of transitions (oj, aj, rj, oj+1) from D

yj ←

{
rj if episode terminates at next step

rj + γmaxa′Q̂(oj+1, a
′; θ−))2 otherwise

Perform a gradient descent step on (yj −Q(Oj, aj; θ))
2 with respect to

the network parameters θ
Every C steps reset Q̂ = Q

end

end

Figure 5.7: Modified algorithm from deep Q-learning with experience replay.

Similar to [8], a separate target network was provided for generating targets for

the value function. Every C steps, the weights for the current Q-network are copied

to create the Q̂-network. The Q̂-network generates targets that are used for updating

the weights to the Q-network. Using a frozen network to generate targets for value

updates was empirically shown in [8] to greatly improve results. Since changing the

value of one state will likely have an immediate effect on other states, a feedback

effect could occur where changes to the value function could have an immediate effect

on the policy, leading to oscillations or other instabilities. Generating targets from a

separate Q̂-network can help prevent feedback effects, however it has the expense of

potentially slowing training time significantly.

Gradient clipping was implemented, in which updates to the loss function were

bounded to the range (−1, 1). Clipping the gradient prevents large changes from

occurring to the network parameters and is helpful in stabilizing training.

79

Comparison to Cluster-Select

For the cluster-select experiment, the centroids were moved by decaying a ξ parameter

which balanced between learning and moving centroids as described in section 5.2.1.

The standard SARSA(λ) algorithm was employed without the replay buffer. The

use of SARSA means that our technique is on-policy and does not suffer from the

stability issues of off-policy techniques such as Q-learning.

A basic assumption in supervised learning is that the samples are drawn in a

stationary manner. If this assumption is violated, then oscillations in the learning

tend to take place. Generally, a replay buffer can be viewed as a heuristic technique for

imposing stationarity, since the statistics change slowly when sampling randomly from

the past history. While a replay buffer works for mitigating catastrophic forgetting,

cluster-select can be considered an alternative technique. In this work, we wish to

compare both approaches and show that in at least one test case, cluster-select offers

several advantages over a replay buffer.

A replay buffer attempts to mitigate forgetting by storing past history into a large

data structure and replaying from it. One issue is that this approach does not scale,

since as the problem size grows the buffer must be made larger. Moreover, It was

noted earlier in this chapter that an agent must be trained on observations from non-

optimal states in order to maintain an optimal policy. Suppose the agent reaches

an optimal policy through a replay buffer, then only optimal state-actions will be

stored in the buffer. At some point, the optimal states stored in the replay buffer will

overwrite any non-optimal ones, and the neural network may still fail to maintain its

optimal policy due to catastrophic forgetting.

One disadvantage of using a replay buffer is that it only works best with off-

policy techniques. Off-policy learning means that the value function of the greedy

policy is learned while following a non-greedy policy. On-policy learning attempts to

approximate the value of the current policy being followed which may include non-

greedy or exploratory actions. If a replay buffer is combined with on-policy learning,

80

then a transition which is stored in the buffer may reflect an action which would be

taken by an older policy, instead of the current policy. If the value function is updated

with values from transitions which would not be taken by the current policy, then by

definition the agent is not learning the current policy. In practice, updating on such

actions may degrade the current policy or prevent it from being improved.

A replay buffer can not be combined with eligibility traces, which is a consequence

of being limited to off-policy learning. Eligibility traces (covered previously in

chapter 2) can significantly speed up training by allowing credit to be assigned more

than one time step into the past. Eligibility traces only work with on-policy techniques

because the credit can only be assigned into the past for actions that were followed,

since the resulting state trajectory of actions that were not taken is unknown during

training.

In addition to the increased memory requirements, a replay buffer can also impose

significant CPU requirements due to the nature of mini-batch updating. When

training online with SARSA, updates are performed during every step as samples

are received. By contrast, the DQN algorithm performs a whole mini-batch update

for every step.

In the DQN paper [8], generating Q-learning targets from a separate frozen value

function was demonstrated to help improve stability and to obtain better results. In

our case, we are using SARSA instead of Q-learning, which is more stable in general.

We did not see the need to generate targets from a separate frozen value function

when performing on-policy learning.

Even with all of these disadvantages, experience replay was demonstrated to

greatly aid in solving a very difficult problem. We would like to show that cluster-

select, which is an alternative network architecture aimed at mitigating catastrophic

forgetting, can also perform well at the same tasks. Since replay buffers are not being

utilized, cluster-select training can be performed using on-policy techniques which

can be combined with eligibility traces to greatly speed up learning.

81

Test Setup

This test was performed using the arcade learning environment [18] on the Pong video

game. A full episode of pong was played until either the player or the opponent scored

21 points. The score reflected in the plots is the opponent score subtracted from the

player score providing for a range of −21 to 21. Similar to the methodology in the

DQN paper, a step consists of 4 emulated frames in which an action consists of a

button press that is held for the 4 frames of emulation.

The state that was presented to the agent consists of 5 values pulled from the

game’s memory, including the y position of the player paddle, the x and y position of

the ball, and the horizontal and vertical velocity of the ball. This captures much of

the dynamics of the game, however there is still hidden state involving the opponent

position.

As in all other experiments performed thus far, hyperopt [64] was used to perform

a hyperparameter search over many of the parameters. We attempted to be as fair

as possible in comparing cluster-select to the DQN results. For both approaches

we included reinforcement learning hyperparameters, including γ and ε (for ε-greedy

search), learning rate, and a decay parameter for the learning rate. The lower limit

for the learning rate was also a hyperparameter. A reward multiplier hyperparameter

was included to scale the rewards returned by the arcade learning environment.

For the DQN algorithm, we used a network with a single hidden layer of rectified

linear units. The number of hidden units was a hyperparameter which was varied from

64 to 2048. The replay buffer was set to a fixed size of 1,000,000 steps since that was

used in the DQN paper. For the cluster-select experiment, we had hyperparameters

for the number of hidden units, number of centroids to be selected, and the decay

rate for ξ.

82

Results

Since the hyperparameter space was very large, many runs were performed using

a random hyperparameter search over reasonable values. Approximately 3,000

runs were performed for both cluster-select with SARSA and for a standard

feedforward neural network with the DQN algorithm. The actual raw training

curves for both techniques were found to be difficult to interpret. That is, under

both cluster-select and with the DQN algorithm, some of the runs exhibited many

different behaviors, including regressions and instabilities. Perhaps due to poor

hyperparameter initialization, most of the runs failed to converge to a good solution

at all.

The top performers in the hyperparameter search for both the DQN algorithm

and for cluster-select were isolated and compared, particularly in terms of stability

and convergence speed. For convergence speed, the number of episodes it took to

reach a particular score was measured. For stability, the measure is the number of

consecutive episodes a particular run was able to be at or above a particular score. If

a run suffers from catastrophic forgetting, or regresses for other reasons, it will drop

in performance. Stability is measured in the sense that the agent is able to maintain

a particular score without dropping in performance. Both plots were created from

the top 8 performers for both techniques, and the shaded regions illustrate the 90’th

percentile region.

Figure 5.8 is a measure of converge speed for both SARSA with cluster-select and

a standard feedforward neural network with the DQN algorithm. It makes sense that

the DQN algorithm would take longer to converge since it freezes the value function

and only issues an update every 10,000 episodes. By contrast, cluster-select with

SARSA results in an update to the value function at every step. Moreover, cluster-

select with SARSA employs eligibility traces to speed up convergence. The x axis

in this plot reflects the number of episodes elapsed prior to exceeding a particular

score given on the y axis. This plot does not include regressions in performance,

83

which a plot of the actual training curve would include. It only illustrates the time

it took before the technique reached a performance level. As illustrated in the figure,

both cluster-select with SARSA, and the DQN algorithm with the replay buffer were

able to reach an average score of about 20.5, however cluster-select exhibited faster

convergence to higher scores.

Figure 5.9 is a measure of stability. Since regressions or instabilities cause the

training curve to degrade, we chose to plot the number of consecutive episodes during

which the agent maintained a particular score. In this plot, the x axis reflects the

longest consecutive sequence of episodes normalized to 20,000 episodes in which the

agent exceeded a score given on the y axis. For this example, cluster-select exhibits a

more stable profile in that it maintains higher scores for longer durations. To give an

example, suppose a particular run reaches an average score of 20 at episode 15, 000 but

then drops below 20 at episode 16, 000 and never returns to a score of 20. Then the

maximum consecutive number of episodes for a score of 20 would be 1, 000 episodes,

or 0.05 when normalized.

An attempt was also made to train a regular neural network using SARSA and

regular Q-learning, which failed to converge even after a extensive hyperparameter

search. No results are shown for this setting since these experiments failed,

emphasizing the need for some technique for mitigating forgetting. While a

score of approximately 20.5 points was achieved using both techniques, it has

been demonstrated that using a cluster-select neural network based value function

estimator with the on-policy SARSA algorithm outperformed training a regular

neural network with the DQN algorithm in terms of convergence speed and stability.

84

Figure 5.8: Plot of Number of Episodes Before Achieving a Score (Convergence
Speed)

85

Figure 5.9: Number of Consecutive Episodes which were Greater Than a Particular
Score (Stability)

86

Chapter 6

Conclusions

6.1 Summary of Contributions

The work presented here explored catastrophic forgetting in neural networks in the

context of supervised and reinforcement learning. One major contribution was to

develop a mathematical model of catastrophic forgetting which revealed it is primarily

caused by overlapping global representations, where changes to the weights associated

with one region of the input space can negatively affect distant regions. The overlap

was shown to correspond to the magnitude of the dot product between samples in

addition to the dot products between their hidden layer representations. Motivated

to remove this overlap, a technique of partitioning neurons by clustering (dubbed

cluster-select) was introduced.

Cluster-select was first tested in classification and regression settings. The

classification problem was made non-stationary by switching the class labels during

training. Multiple test cases on several classification datasets were considered which

demonstrated cluster-select yielded improved performance. Cluster-select was further

extended by incorporating covariance estimation to utilize Mahalanobis distance

when computing the distance from centroids to sample points resulting in additional

87

improvement. The regression problem involved a simple pendulum which is non-

stationary due to the varying speeds at which the pendulum swings. Cluster-

select was demonstrated to outperform other state-of-the-art techniques on these

classification and regression tasks.

Next, the work shifted to reinforcement learning test cases. Reinforcement

learning is much more realistic in terms of where catastrophic forgetting may actively

be precluding neural networks from being useful in solving difficult problems. Tests

were first performed on a MDP environment with a cart-pole system, demonstrating

that cluster-select produced the most stable training curve compared to other neural

network architectures. Tests were also performed on a POMDP cart-pole problem

illustrating performance comparable to the fully observable case. Finally, the arcade

learning environment test case was developed, in which the DQN algorithm was

reproduced along with its required replay buffer. Cluster-select was demonstrated

to outperform the DQN algorithm in terms of both convergence speed and stability.

6.2 Future Work

Several directions exist in which this work can be extended:

• We hypothesize that clustering should not be performed over the input space,

instead the output space should be used to guide clustering. If a function

has a more complex structure in certain regions, then more neurons need to

be allocated in those regions to provide more resources in learning additional

complexity. If instead, the function is relatively smooth for particular regions,

then only a few neurons should be needed in those regions. The output space

must be used to determine the appropriate locations for the centroids

• Perhaps one way to utilize the output space is to allow the error gradient to guide

where centroids are allocated. In particular, the magnitude of the error gradient

provides information for what the neural network has learned in contrast to what

88

it hasn’t learned. We were able to use the error magnitude in the classification

tests to guide allocation of centroids for novel inputs, however it wasn’t as

straightforward to accomplish this in the regression and in the reinforcement

learning test cases. More work needs to be performed to better understand how

centroid allocation can correspond to estimation errors.

• In reinforcement learning, more investigation is needed to discover better

techniques of tuning the hyperparameter values. Some of our test cases

required 3,000 runs (using random search) before finding an optimal set of

hyperparameters that gave adequate performance. To improve reinforcement

learning such that it is more practical for real world applications, better

techniques need to be developed that aren’t as sensitive to hyperparameters.

• We performed several preliminary tests which utilized Mahalanobis distance

with covariance estimation providing for improvements in our results. This

work could probably be taken even further. We found the Mahalanobis distance

to be slow computationally for high dimensional datasets when calculated on

CPU architectures. Computing distances for multiple neurons scales naturally

to parallel architectures such as GPU architectures. This work could be moved

to GPU architectures for a performance boost, which would enable it to be used

on more challenging problems.

• An analysis of forgetting was performed in chapter 3 in which we attempted to

characterize the upper bound on forgetting when training across two datasets.

The linear case was analyzed since linear networks have been observed to follow

similar training dynamics to nonlinear networks. Future work should analyze

the nonlinear case to explore how forgetting emerges in such scenarios. In

particular, it would be interesting to look at sparse activation functions such

as rectified linear, maxout, or cluster-select networks to analyze how forcing

activations to zero impacts the forgetting phenomenon.

89

6.3 Concluding Remarks

In terms of broader impact, we hope to bring attention to the problem of catastrophic

forgetting. If catastrophic forgetting could be solved in an optimal manner, neural

networks will become the leading approach in solving reinforcement learning as well as

other challenging control problems. More research needs to be performed to discover

better techniques of mitigating catastrophic forgetting, and at the very least, we

hope this work will bring attention to the problem and encourage researchers to find

more solutions. If neural networks can be improved such that they don’t suffer from

forgetting, and learn in a more stable manner from non-stationary data, then they

will become a very powerful component in driving future technologies.

6.4 Publications

The following publications resulted from the work in this dissertation:

• Ben Goodrich and Itamar Arel. Neuron clustering for balancing stability and

plasticity in recurrent neural networks. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, submitted for publication, review pending.

• T. Lancewicki, Ben Goodrich, and Itamar Arel. Sequential covariance-matrix

estimation with application to mitigating catastrophic forgetting. In Machine

Learning and Applications and Workshops (ICMLA), 2015 14th International

Conference on, page to appear. IEEE, 2015.

• Ben Goodrich and Itamar Arel. Mitigating catastrophic forgetting in temporal

difference learning with function approximation. In Proceedings of the 2nd

Multidisciplinary Conference on Reinforcement Learning and Decision Making,

2015.

90

• Ben Goodrich and Itamar Arel. Neuron clustering for mitigating catastrophic

forgetting in feedforward neural networks. In Computational Intelligence in

Dynamic and Uncertain Environments (CIDUE), 2014 IEEE Symposium on,

pages 62–68. IEEE, 2014.

• Ben Goodrich and Itamar Arel. Unsupervised neuron selection for mitigating

catastrophic forgetting in neural networks. In Circuits and Systems

(MWSCAS), 2014 IEEE 57th International Midwest Symposium on, pages 997–

1000. IEEE, 2014.

• Ben Goodrich and Itamar Arel. Reinforcement learning based visual attention

with application to face detection. In Computer Vision and Pattern Recognition

Workshops (CVPRW), 2012 IEEE Computer Society Conference on, pages 19–

24. IEEE, 2012.

• Ben Goodrich and Itamar Arel. Consolidated actor critic reinforcement learning

model applied to face detection. In Proceedings of the 50th Annual Southeast

Regional Conference, pages 379–380. ACM, 2012.

• Nicole Pennington, Ben Goodrich, and Itamar Arel. Contrasting infant

perception data with a reinforcement learning visual search model. In BICA,

pages 282–287, 2011.

91

Bibliography

92

[1] O.-M. Moe-Helgesen and H. Stranden, “Catastophic forgetting in neural

networks,” Dept. Comput. & Information Sci., Norwegian Univ. Science &

Technology (NTNU), Trondheim, Norway, Tech. Rep, 2005. 1, 22

[2] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Efficient backprop,” in Neural

Networks: Tricks of the trade, G. Orr and M. K., Eds. Springer, 1998. 1, 4, 5,

8, 24, 44

[3] J. A. Boyan and A. W. Moore, “Generalization in reinforcement learning: Safely

approximating the value function,” in Advances in Neural Information Processing

Systems 7. MIT Press, 1995, pp. 369–376. 2, 28

[4] J. R. N. Forbes, “Reinforcement learning for autonomous vehicles,” Ph.D.

dissertation, UNIVERSITY of CALIFORNIA, 2002. 2, 69

[5] S. Weaver, L. Baird, and M. Polycarpou, “Preventing unlearning during online

training of feedforward networks,” in Intelligent Control (ISIC), 1998. Held

jointly with IEEE International Symposium on Computational Intelligence in

Robotics and Automation (CIRA), Intelligent Systems and Semiotics (ISAS),

Proceedings, 1998, pp. 359–364. 2, 69

[6] V. U. Cetina, “Multilayer perceptrons with radial basis functions as value

functions in reinforcement learning.” in ESANN, 2008, pp. 161–166. 2, 28, 69

[7] V. Uc-Cetina, “A novel reinforcement learning architecture for continuous state

and action spaces,” Advances in Artificial Intelligence, vol. 2013, p. 7, 2013. 2

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level

93

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.

529–533, 2015. 2, 3, 26, 29, 69, 77, 78, 79, 81

[9] Y. N. Dauphin and Y. Bengio, “Big neural networks waste capacity,” arXiv

preprint arXiv:1301.3583, 2013. 2

[10] R. Ratcliff, “Connectionist models of recognition memory: constraints imposed

by learning and forgetting functions.” Psychological review, vol. 97, no. 2, p. 285,

1990. 2, 18, 26

[11] R. M. French, “Using semi-distributed representations to overcome catastrophic

forgetting in connectionist networks,” in In Proceedings of the 13th Annual

Cognitive Science Society Conference. Erlbaum, 1991, pp. 173–178. 2, 22

[12] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,” Connection

Science, vol. 7, no. 2, pp. 123–146, 1995. 2, 26

[13] R. M. French, “Pseudo-recurrent connectionist networks: An approach to

the’sensitivity-stability’dilemma,” Connection Science, vol. 9, no. 4, pp. 353–

380, 1997. 2, 27

[14] B. Ans and S. Rousset, “Avoiding catastrophic forgetting by coupling two

reverberating neural networks,” Comptes Rendus de l’Académie des Sciences-

Series III-Sciences de la Vie, vol. 320, no. 12, pp. 989–997, 1997. 2

[15] R. Coop, A. Mishtal, and I. Arel, “Ensemble learning in fixed expansion layer

networks for mitigating catastrophic forgetting,” IEEE transactions on neural

networks and learning systems, 2013. 2, 24, 27

[16] R. K. Srivastava, J. Masci, S. Kazerounian, F. Gomez, and J. Schmidhuber,

“Compete to compute,” in Advances in Neural Information Processing Systems,

2013, pp. 2310–2318. 2, 24, 25, 49

94

[17] I. J. Goodfellow, M. Mirza, X. Da, A. Courville, and Y. Bengio, “An empirical

investigation of catastrophic forgeting in gradient-based neural networks,” arXiv

preprint arXiv:1312.6211, 2013. 2, 18, 25, 49, 53

[18] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning

environment: An evaluation platform for general agents,” Journal of Artificial

Intelligence Research, vol. 47, pp. 253–279, 06 2013. 3, 69, 77, 82

[19] S. Haykin, “Neural networks: a comprehensive foundation 2nd edition,” Upper

Saddle River, NJ, the US: Prentice Hall, 1999. 4, 7

[20] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley &

Sons,, 1999. 4

[21] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

5

[22] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp.

179–211, 1990. 10, 47, 62

[23] P. J. Werbos, “Backpropagation through time: what it does and how to do it,”

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990. 10

[24] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” Neural Networks, IEEE Transactions on, vol. 5,

no. 2, pp. 157–166, 1994. 10

[25] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” arXiv preprint arXiv:1211.5063, 2012. 10

[26] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT

Press, 1998. 11, 15

95

[27] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp.

279–292, 1992. 13

[28] A. Robins, “Sequential learning in neural networks: A review and a discussion

of pseudorehearsal based methods,” Intelligent Data Analysis, vol. 8, no. 3, pp.

301–322, 2004. 18, 47

[29] R. French, “Dynamically constraining connectionist networks to produce

distributed, orthogonal representations to reduce catastrophic interference,”

1994. 22

[30] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable functional

interpolation and adaptive networks,” DTIC Document, Tech. Rep., 1988. 23

[31] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,

“Maxout networks,” arXiv preprint arXiv:1302.4389, 2013. 24, 25

[32] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation of

feature detectors,” arXiv preprint arXiv:1207.0580, 2012. 25

[33] N. Srivastava, “Improving neural networks with dropout,” Ph.D. dissertation,

University of Toronto, 2013. 25

[34] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there are

complementary learning systems in the hippocampus and neocortex: insights

from the successes and failures of connectionist models of learning and memory.”

Psychological review, vol. 102, no. 3, p. 419, 1995. 27

[35] G. Tesauro, “Temporal difference learning and td-gammon,” Communications of

the ACM, vol. 38, no. 3, pp. 58–68, 1995. 28

96

[36] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with

function approximation,” Automatic Control, IEEE Transactions on, vol. 42,

no. 5, pp. 674–690, 1997. 28

[37] C. Gaskett, D. Wettergreen, and A. Zelinsky, “Q-learning in continuous state

and action spaces,” in Australian Joint Conference on Artificial Intelligence.

Springer, 1999, pp. 417–428. 28, 29

[38] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in

International Conference on Artificial Intelligence and Statistics, 2010, pp. 661–

668. 28, 68

[39] M. Riedmiller, “Neural fitted q iteration–first experiences with a data efficient

neural reinforcement learning method,” in Machine Learning: ECML 2005.

Springer, 2005, pp. 317–328. 29

[40] S. Grossberg, “How does a brain build a cognitive code?” in Studies of Mind

and Brain. Springer, 1982, pp. 1–52. 30

[41] W. C. Abraham and A. Robins, “Memory retention–the synaptic stability versus

plasticity dilemma,” Trends in neurosciences, vol. 28, no. 2, pp. 73–78, 2005. 30

[42] R. M. French and A. Ferrara, “Modeling time perception in rats: Evidence for

catastrophic interference in animal learning,” in Proceedings of the 21st Annual

Conference of the Cognitive Science Conference. Citeseer, 1999, pp. 173–178.

30

[43] L. Buhry, A. H. Azizi, and S. Cheng, “Reactivation, replay, and preplay: how it

might all fit together,” Neural plasticity, vol. 2011, 2011. 30

[44] M. S. Nokia, M. Penttonen, and J. Wikgren, “Hippocampal ripple-contingent

training accelerates trace eyeblink conditioning and retards extinction in

rabbits,” The Journal of Neuroscience, vol. 30, no. 34, pp. 11 486–11 492, 2010.

30

97

[45] A. S. Dave and D. Margoliash, “Song replay during sleep and computational

rules for sensorimotor vocal learning,” Science, vol. 290, no. 5492, pp. 812–816,

2000. 30

[46] W. E. Skaggs, B. L. McNaughton, M. Permenter, M. Archibeque, J. Vogt, D. G.

Amaral, and C. A. Barnes, “Eeg sharp waves and sparse ensemble unit activity

in the macaque hippocampus,” Journal of neurophysiology, vol. 98, no. 2, pp.

898–910, 2007. 30

[47] H. F. Ólafsdóttir, C. Barry, A. B. Saleem, D. Hassabis, and H. J. Spiers,

“Hippocampal place cells construct reward related sequences through unexplored

space,” Elife, vol. 4, p. e06063, 2015. 30

[48] D. Margoliash and M. F. Schmidt, “Sleep, off-line processing, and vocal

learning,” Brain and language, vol. 115, no. 1, pp. 45–58, 2010. 30

[49] B. Goodrich and I. Arel, “Unsupervised neuron selection for mitigating

catastrophic forgetting in neural networks,” in Circuits and Systems (MWSCAS),

2014 IEEE 57th International Midwest Symposium on. IEEE, 2014, pp. 997–

1000. 31

[50] ——, “Neuron clustering for mitigating catastrophic forgetting in feedforward

neural networks,” in Computational Intelligence in Dynamic and Uncertain

Environments (CIDUE), 2014 IEEE Symposium on. IEEE, 2014, pp. 62–68. 31

[51] ——, “Mitigating catastrophic forgetting in temporal difference learning with

function approximation,” in Proceedings of the 2nd Multidisciplinary Conference

on Reinforcement Learning and Decision Making, 2015. 31

[52] E. Knudsen et al., “Sensitive periods in the development of the brain and

behavior,” Cognitive Neuroscience, Journal of, vol. 16, no. 8, pp. 1412–1425,

2004. 33

98

[53] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks,” arXiv preprint

arXiv:1312.6120, 2013. 33

[54] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array:

a structure for efficient numerical computation,” Computing in Science &

Engineering, vol. 13, no. 2, pp. 22–30, 2011. 40

[55] MATLAB, version 8.4 (R2014B). Natick, Massachusetts: The MathWorks Inc.,

2014. 40

[56] P. J. Bickel and E. Levina, “Regularized estimation of large covariance matrices,”

The Annals of Statistics, vol. 36, no. 1, pp. pp. 199–227, 2008. 41

[57] A. Rohde and A. B. Tsybakov, “Estimation of high-dimensional low-rank

matrices,” Ann. Statist., vol. 39, no. 2, pp. 887–930, 04 2011. 41

[58] G. S. Babu and S. Suresh, “Meta-cognitive neural network for classification

problems in a sequential learning framework,” Neurocomputing, vol. 81, pp. 86 –

96, 2012. 41

[59] E. Manitsas, R. Singh, B. Pal, and G. Strbac, “Distribution system state

estimation using an artificial neural network approach for pseudo measurement

modeling,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 1888–1896,

Nov 2012. 42

[60] S. Young, J. Lu, J. Holleman, and I. Arel, “On the impact of approximate

computation in an analog destin architecture,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 25, no. 5, pp. 934–946, May 2014. 42

[61] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral control

approach to reinforcement learning,” J. Mach. Learn. Res., vol. 11, pp. 3137–

3181, Dec. 2010. 42

99

[62] T. Lancewicki, B. Goodrich, and I. Arel, “Sequential covariance-matrix

estimation with application to mitigating catastrophic forgetting,” in Machine

Learning and Applications and Workshops (ICMLA), 2015 14th International

Conference on. IEEE, 2015, p. to appear. 42

[63] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed.

Cambridge, MA, USA: MIT Press, 1998. 44

[64] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model

search: Hyperparameter optimization in hundreds of dimensions for vision

architectures,” in Proceedings of The 30th International Conference on Machine

Learning, 2013, pp. 115–123. 48, 71, 82

[65] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,” 1998. 49,

50

[66] J. Rennie. 20 newsgroups dataset. [Online]. Available: http://people.csail.mit.

edu/jrennie/20Newsgroups/ 49, 55

[67] J. Ramos, “Using tf-idf to determine word relevance in document queries,” in In

Proceedings of the First Instructional Conference on Machine Learning., 2013.

55

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011. 56

[69] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. 59

[70] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco, “Reservoir computing

compensates slow response of chemosensor arrays exposed to fast varying gas

100

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/

concentrations in continuous monitoring,” Sensors and Actuators B: Chemical,

vol. 215, pp. 618–629, 2015. 60

[71] P. M. Fishbane, S. G. Gasiorowicz, and S. T. Thornton, Physics. Prentice-Hall,

2005. 61

[72] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python,” 2001–, [Online; accessed 2014-10-18]. [Online]. Available:

http://www.scipy.org/ 62

[73] R. Bellman, I. Glicksberg, and O. Gross, “On the’bang-bang’control problem,”

DTIC Document, Tech. Rep., 1955. 70

[74] R. V. Florian, “Correct equations for the dynamics of the cart-pole system,”

Center for Cognitive and Neural Studies (Coneural), Romania, 2007. 70

101

http://www.scipy.org/

Vita

Benjamin Frederick Goodrich was born in Knoxville, TN on Febuary 26th 1985. He

was home schooled growing up, and took a strong personal interest in programming

computers from a young age. In May 2006 he received an Associates of Applied

Science degree in Computer Science and Information Technology from Pellissippi

State Technical Community College. Then, he attended The University of Tennessee

where he earned his Bachelor of Science degree in Computer Engineering in May

2011. He has worked internships at B&W Y-12, and at Broadcom in San Jose, CA.

In 2011 he began his studies as a graduate student at the University of Tennessee

where he focused on machine learning and reinforcement learning. In December 2015,

he earned his PhD in computer engineering also from the University of Tennesssee.

102

	Neuron Clustering for Mitigating Catastrophic Forgetting in Supervised and Reinforcement Learning
	Recommended Citation

	Front Matter
	Title
	Acknowledgements
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	2 Background and Related Work
	2.1 Neural Networks
	2.1.1 Artificial Neuron Model
	2.1.2 FeedForward Network
	2.1.3 Recurrent Neural Networks

	2.2 Reinforcement Learning
	2.2.1 Fully Observable MDPs
	2.2.2 Reinforcement Learning Problem
	2.2.3 Partially Observable MDPs
	2.2.4 Q-Learning
	2.2.5 SARSA(0)

	2.3 Catastrophic Forgetting Overview
	2.3.1 Defining Catastrophic Forgetting
	2.3.2 Existing Network Architectures
	2.3.3 Catastrophic Forgetting in Control Problems

	3 A Neuron Clustering Approach
	3.1 Motivation
	3.2 Analysis
	3.3 The Cluster-Select Approach
	3.3.1 Feedforward Implementation Details
	3.3.2 Covariance Estimation

	4 Mitigating Catastrophic Forgetting in Classifier and Regression Problems
	4.1 Feedforward with Cluster-Select
	4.2 Recurrent Network
	4.2.1 Online Non-stationary Task
	4.2.2 Recurrent Training Details

	4.3 Simulation Results and Analysis
	4.3.1 MNIST Experiment
	4.3.2 MNIST Experiment with Noise
	4.3.3 20 Newsgroups Experiment
	4.3.4 Autoassociative Encoder Experiment
	4.3.5 Reduced MNIST Experiment
	4.3.6 Experiment with Gas Sensor Array Dataset
	4.3.7 Pendulum Experiment

	5 Mitigating Catastrophic Forgetting in Reinforcement Learning Environments
	5.1 Forgetting in MDPs
	5.1.1 Cart-Pole Experiment

	5.2 POMDP Environment
	5.2.1 Partially Observable Cart-Pole Experiment
	5.2.2 Arcade Learning Environment Experiment

	6 Conclusions
	6.1 Summary of Contributions
	6.2 Future Work
	6.3 Concluding Remarks
	6.4 Publications

	Bibliography
	Vita

