

1

Abstract This paper presents a novel dynamic ensemble

learning (DEL) algorithm for designing ensemble of neural

networks (NN). DEL algorithm determines the size of

ensemble, the number of individual NNs employing a

constructive strategy, the number of hidden nodes of

individual NNs employing a constructive-pruning strategy, and

different training samples for individual NN’s learning. For

diversity, negative correlation learning has been introduced

and also variation of training samples has been made for

individual NN that provide better learning from the whole

training samples. The major benefits of the proposed DEL

compared to existing ensemble algorithms are 1) automatic

design of ensemble; 2) maintaining accuracy and diversity of

NNs at the same time; and 3) minimum number of parameters

to be defined by user. DEL algorithm is applied to a set of

real-world classification problems such as the cancer, diabetes,

heart disease, thyroid, credit card, glass, gene, horse, letter

recognition, mushroom, and soybean datasets. It has been

confirmed by experimental results that DEL produces dynamic

NN ensembles of appropriate architecture and diversity that

demonstrate good generalization ability.

Keywords Neural network ensemble, back-propagation algorithm,

negative correlation learning, constructive algorithms, pruning

algorithms.

1 Introduction

Neural network (NN) structures have been used for knowledge

representation [1], modeling [2, 3, 4], prediction [5, 6], design

automation [7], classification [8, 9], identification [10] and

nonlinear control [11] applications in many domains. All these

applications mainly used monolithic structure for NN. In a

monolithic structure, the NN is represented by a single NN

architecture for the whole task to be performed [12, 13, 14].

1Department of Computer Science and Engineering, Khulna

University of Engineering and Technology, Khulna, Bangladesh, Tel:

8801714-087-216, e-mail: rokib@cse.kuet.ac.bd.
2School of Computing, Engineering and Intelligent Systems,

Ulster University, BT48 7JL, Londonderry, UK, Tel:

+44(0)2871675340, e-mail: nh.siddique@ulster.ac.uk.
3Department of Civil, Environmental and Geodetic Engineering,

the Ohio State University, Columbia, CO 80309 USA, e-mail:

adeli.1@osu.edu.

*Corresponding author

Scalability is a major impairment for monolithic NN for a wide

range of applications. Incremental learning is also not possible

as the addition of new elements to NN requires retraining of

the NN with old and new data [15, 16]. An inevitable

phenomenon in the retraining of NN is the catastrophic

forgetting (also known as crosstalk), which was first reported

by McCloskey and Cohen [17]. Two types of crosstalk

phenomena can get exposed during retraining: temporal and

spatial crosstalk. In temporal crosstalk, learned knowledge is

lost during retraining of a new task. In spatial crosstalk, NN

cannot learn two or more tasks simultaneously [18]. Kemker et

al. [19] demonstrated that catastrophic forgetting problem in

incremental learning paradigm has not been resolved despite

many claims and showed methods of measuring such

catastrophic forgetting can be measured. A number of attempts

has been made to mitigate the phenomenon such as

regularization, rehearsal and pseudorehearsal, life-long

learning based dynamic combination, dual-memory models

and ensemble methods [16, 20-23]. A collection or committee

of individual NNs can also be advantageous for addition of a

new NN to store new knowledge mitigating forgetting

phenomena where tasks can be subdivided [24]. Instead of

employing a large NN for a complex problem, the researchers

are impressed by the idea of decomposing the problem into

smaller subtasks leading to smaller architecture, shorter

training time and increased performance [24, 25]. NN

ensemble-based classifier can also improve generalization

ability [25, 26]. The structure of an NN ensemble is illustrated

in Figure 1. Each NN in the ensemble (1 through n) is first

trained on the training instances. The output of the ensembles

is calculated from the predicted outputs, iO , ni ,,2,1 = ,

of the individual NNs [26]. The challenge here is to design a

learning algorithm for ensemble NN. The initial weights,

topology of NNs, training datasets, and training algorithms

also play decisive roles in the design of ensembles [23, 25].

The approaches to designing ensembles constitute by varying

these parameters.

Many algorithms similar to NN ensembles [25] have been

reported in the literature such as mixer of experts [27],

boosting [28] and bagging [29]. The main drawbacks of these

algorithms are manual design and predefined number of

neurons in the hidden layer and the number of NNs in an

ensemble.

In general, ensemble and modular approaches are employed

for combining NNs. The ensemble approach attempts to

A Dynamic Ensemble Learning Algorithm for

Neural Networks

1Kazi Md. Rokibul Alam, 2*Nazmul Siddique, 3Hojjat Adeli

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287024385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:adeli.1@osu.edu
mailto:adeli.1@osu.edu

2

generate a reliable and accurate output by combining the

outputs of a set of trained NNs rather than selecting the best

NN. Whereas the modular approach strives to have each NN

as self−contained or autonomous [14, 24]. In modular

approach, the problem is divided into a number of tasks. Each

task is assigned to an individual NN to be accomplished. It is

not possible to know the best size of NN a priori. The size of

NN is defined by the number of layers and the number of

neurons in each layer. Moreover, the backpropagation (BP)

[30, 31] algorithm is not useful for training NN unless the

topology is known. Therefore, finding the correct topology is

the foremost design issue. In order to define the topology of an

NN, a number of parameters such as the number of layers,

number of hidden neurons, activation functions, and degree of

connectivity have to be determined. A second issue is to

determine the training parameters that include the initial

weights of the NN, the learning rate, acceleration term,

momentum term and weight update rule. The choice of the

topological and training parameters has significant impact on

the training time and the performance of the NN.

Unfortunately, there is no straightforward method of selecting

the parameters rather the designer has to depend on the expert

knowledge or employ empirical method.

Combined network output

Ensemble output

Input

O1

NN1

O2 On

ô

…

NN2 NNn

Fig. 1: A neural networks ensemble

The performance of NNs in an ensemble is dependent on a

number of factors such as (i) the topology of the NNs and the

initial structure; (ii) the training method; (iii) the learning rate;

(iv) the input and output representations and (v) the content of

the training sample [32]. Eventually, the numbers of NNs and

the number of neurons in the hidden layers in NNs determine

the performance of an ensemble. In most of the cases, these are

predefined by human experts based on available a priori

information. Formal learning theory is used to estimate the size

of the ensemble system based on the complexity and the

examples required learning the particular function. In such

cases, the generalization error becomes high if the number of

examples is small. Consequently, choosing appropriate NN

topology is still something of an art. The data examples play a

crucial role in learning where learning is sensitive to initial

weights and learning parameters [33, 34, 35].

The purpose of this research is to design an NN ensemble

that addresses the following issues: (i) automatic determination

of NN ensemble architecture (i.e. the number of NNs in the

ensemble), (ii) automatic determination of the size of

individual NNs (i.e., the number of hidden neurons in

individual NNs) and (iii) variation of training examples for

each individual NN’s better learning. Real-world classification

problems are used to verify the effectiveness and the

generalization ability of the ensemble.

The paper is organized as follows: Section 2 presents the

related works. Section 3 contains the description of DEL

algorithm. Section 4 presents the datasets description,

experimental results and comparison. Section 5 presents a

discussion. Some conclusions are made in Section 6.

2 Related Works

In ensemble learning, the individual NNs are called base

learners. They are single classifiers, which are trained and

combined together to ease individual errors and crop

generalization independently. Hitherto, efforts have been made

to design ensemble by combining NNs based on either the

accuracy or the diversity [25, 36, 37]. There are evidences that

accurate and diverse NNs can produce a good ensemble that

distribute errors over different regions of the input space [38,

39]. Rosen [40] proposed an ensemble-learning algorithm that

also trains individual NNs sequentially where the individual

NNs minimize training errors as well as de-correlate previous

training errors. Sequential training of an NN does not affect

the NNs that were previously trained, which is a major

disadvantage in ensemble learning. Consequently, there is no

correlation between the errors of the individual NNs [41]. The

topology of the mixtures-of-experts (ME) [27] can produce

biased individual NNs which may be negatively correlated

[32]. The disadvantage of ME is that it needs a separate gating

NN and also can not provide a balance control over the bias-

variance-covariance tradeoff [34].

A two-stage design approach is employed in most of the

architectures mentioned above where individual NNs are

generated first followed by combining them. As the

combination stage does not provide any feedback to design

stage, some individual NNs designed independently may not

contribute significantly to the ensemble [34]. Therefore, some

researchers proposed a one-stage design process and used a

penalty term into the error function of each NN. The

researchers also proposed simultaneous and interactive

training for all NNs in the ensemble instead of independent

and sequential training [41]. NNs with negative correlation can

be created by reassuring specialization and cooperation among

the NNs in an ensemble. This will enable NNs learning the

different regions of training data space and ensure the

ensemble learns the whole data space.

To ensure interaction between NNs and simultaneous

learning in an ensemble, some researchers employed

evolutionary computing [32]. Liu et al. [32] applied

3

evolutionary algorithm for ensemble learning of NNs with

negative correlation. This approach can determine the optimal

number of NNs and the combinations of NNs in an ensemble

using fitness sharing mechanism.

Chen and Yao [33] employed multi-objective genetic

algorithm [42] for regularized NCL optimizing errors of the

base NNs and their diversity in ensemble. Mousavi and

Eftekhari [43] proposed static ensemble selection and deploys

the popular multi-objective genetic algorithm NSGA-II [42].

This combination of static ensemble selection and NSGA-II

ensures selecting the best classifiers and their optimal

combination.

There are two other widely popular approaches to ensemble

learning, namely, Constructive NN Ensemble (CNNE) [44]

and Pruning NN Ensemble (PNNE) [45]. CNNE determines

the number of NNs in the ensemble and the hidden neurons of

the individual NNs by employing negative correlation learning

(NCL) [34, 41] in an incremental fashion. On the other hand,

PNNE employs a competitive decay approach. PNNE uses a

neuron cooperation function in each NN for the hidden

neurons and a selective deletion of NNs in the ensemble based

on the criterion of over-fitting. PNNE employs NCL to ensure

diversity of the NNs in the ensemble.

Islam et al. [29] proposed two incremental learning

algorithms for NNs in ensemble using NCL: NegBagg and

NegBoost. NegBagg fixes the number of hidden neurons of

NNs in ensemble by constructive method. NegBoost also uses

constructive method to fix the number of hidden neurons of

NNs as well as the number of NNs in the ensemble.

Yin et al. [46] proposed a two-stage hierarchical approach

to ensemble learning called Dynamic Ensemble of Ensembles

(DE2). DE2 comprises component classifiers and interim

ensembles. The final DE2 is obtained by weighted averaging.

Cruz et al. [47] used a two-phase dynamic ensemble selection

(DES) framework. In the first phase, DES extracts meta-

features from training data. In the second phase, DES uses a

meta-classifier to estimate the competence of the base

classifier to be added to the ensemble.

Chen and Yao [48] show that NCL considers the entire

ensemble as a single machine with the objective of minimising

the mean square error (MSE) and NCL does not employ

regularisation while training. They proposed a regularised

NCL (RNCL) incorporating a regularisation term for the

ensemble which enables the RNCL decomposing the training

objectives into sub-objectives each of which is implemented

by an individual NN. RNCL shows improved performance

over the NCL even when noise level is higher in datasets.

Semi-supervised learning is the mechanism of learning

using large amount of unlabelled data and small amount of

labelled data. Chen and Wang [49] proposed a Semi-

supervised boosting framework taking three assumptions such

as smoothness, cluster and manifold into consideration where

they used a cost function comprising the margin cost on

labelled data and the regularization penalty on unlabelled data.

Experiments on benchmarks and real-world classification

reveal constant improvement by the algorithm. Semi-

supervised learning is a widely popular method due to its

higher accuracy at a lower effort.
The generalization of an ensemble is related to the accuracy

of the base NNs and the diversity among NNs [37, 38]. Higher

accuracy for the base NNs leads to lower diversity among

them. To strike a balance of the dilemma between accuracy

and diversity in an ensemble, Chen et al. [50] proposed a semi-

supervised NCL (semiNCL) where a correlation penalty term

on labelled and unlabeled data is incorporated into the cost

function of each individual NNs in the ensemble.

Though the semi-supervised learning has been very

successful for labelled and unlabelled data, its generalisation

ability is sensitive to incorrect labelled data. To mitigate this

limitation, Soares et al. [51] proposed a cluster-based boosting

(CBoost) with cluster regularization. In CBoost, the base NNs

in the ensemble jointly performs a cluster-based semi-

supervised optimisation. Extensive experimentation shows that

the CBoost has significant generalisation ability over the other

ensembles.

Recently, Rafiei and Adeli [52] reported a new neural

dynamic classification algorithm. A comprehensive review of

multiple classifier systems based on the dynamic selection of

classifiers was reported by Britto et al. [53]. Recent

developments in ensemble methods are analysed by Ren et al.

[54]. Cruz et al. [55] reported a review on the recent advances

on dynamic classifier selection techniques. Dynamic

mechanism is used in the generalisation phase in those studies,

while the dynamic mechanism is employed in the training

phase in DEL.

3 Dynamic Ensemble Learning (DEL)

3.1 Main Steps of the Algorithm

Unlike fixed ensemble architecture, DEL automatically

determines the number base learner NNs and their

architectures in an ensemble during the training phase. The

DEL algorithm is presented in 8 steps in the sequel. The flow

diagram of the DEL algorithm is shown in Figure 2.

Step 1: Create an ensemble with minimum architecture

comprising two NNs. Each NN consists of an input, two

hidden and an output layer. The number of neurons in the

input and output layers is determined by the system. Next,

apply a constructive algorithm [56] based on Ash’s [57]

dynamic node creation method for the first (later on the odd

number NNs in sequence in the ensemble) NN training.

Initially, this NN starts with a small architecture containing

one node in each hidden layer. For the second (later on even

number NNs in sequence in the ensemble) NN training, apply

Reed’s pruning algorithm [58]. In the pruning phase of NN

training, the number of neurons in the hidden layer is larger

than necessary (i.e. it starts with a bulky architecture).

Initialize the connection weights for each NN randomly within

a small interval.

Step 2: Create separate training examples for each NN of

the ensemble. In general, subsets of training examples for

individual NNs are created by randomly picking from the main

set of the training examples. In this work, training sets are

4

created in such a way that if one NN learns from training

examples from the first to the last, other NN learns from the

last to the first of the same training examples.

Step 3: Train the NNs in the ensemble partially on the

examples for a fixed number of epochs specified by the user

using NCL [34, 41] regardless of whether the NNs converge or

not [59].

Step 4: Compute the training error Ei for the ith NN in the

ensemble according to the following rule:

= =

+−
−

=
N

n

ii

S

S

i snPsnFsnd
SN

OO
E

1

2

1

minmax)],()),(),([(
.

100

(1)

where maxO is the maximum value and
minO is the minimum

value of the target outputs respectively, N is the total number

of examples, S is the number of output neurons, d(n, s) is the

desired output and Fi(n, s) is the actual output of the neuron

s in the nth training data. The rule in Eq. (1) is a combination

of the rule proposed by Reed [58] and NCL for an NN error.

The error Ei is independent of the size of the training examples

and the number of output neurons.

Step 5: Compute the ensemble error E where E is the

average of Ei of the base learner NNs. If E is small and

acceptable, the ensemble architecture is believed to have the

highest generalization ability and output the final ensemble. If

E is not acceptable, then either the ensemble architecture or

the individual base learner NNs undergo change.

Step 6: Check the neuron addition and/or deletion criterion

of individual NNs. In this criterion, hidden neurons are added

or deleted if the error of individual NNs does not change after

a specified number of epochs chosen by the user (see Section

3.2). If the criterion is not met, then the individual NNs are not

good enough and the ensemble undergo addition of new

learner NN.

Step 7: Add and/or delete hidden neurons to/from the NNs

to meet the addition and/or deletion criterion (see Section 3.2)

and continue training using NCL.

Step 8: Add a new NN to the ensemble (see Section 3.3) if

the previous NN addition improves the performance of the

ensemble. Initialize and create different training set for the

new NN as in step 2. Go to step 3 for further training of the

ensemble.

The above-mentioned procedure (steps 1-8) is implemented

in DEL that determines the architecture of ensemble. For

example, the networks in Fig. 1 work as follows: network 1

has 2 hidden layers, uses constructive algorithm for node

addition, and trains examples from first to last. On the

contrary, network 2 has 2 hidden layers, uses pruning

algorithm for node deletion, and trains examples from last to

first. Then network 3 has a single hidden layer, uses

constructive algorithm for node addition, and trains using

examples from first to last. Similarly, network 4 has a single

hidden layer, uses pruning algorithm for node deletion, and

trains using examples from last to first and so on. The idea of

varying the training examples is to enable the NNs to learn

different regions of the data distribution. Major components of

DEL are the addition/deletion of hidden neurons to/from

leaners NNs and addition of NN to ensemble described in

sections 3.2-3.4.

3.2 Nodes Addition/Deletion to/from Individual NNs

Both constructive and pruning algorithms provide some

benefits as well as some drawbacks. At the training period of

individual NNs, there may be some portions which may be

critical or stable either for constructive or pruning algorithms.

If all the NNs in the ensemble learn either only by constructive

or only by pruning algorithm, then their learning will be very

similar.

Even though NCL forces the NNs to learn from different

regions of the data space, the learning will not be perfect if the

NNs in the ensemble have the same architecture. Different

architectures of the NNs in the ensemble will provide a

different weight on the accuracy and diversity, which justifies

the deployment of the hybrid ‘constructive−pruning strategy’

in DEL.

3.3 NN Addition to the Ensemble

In DEL, constructive algorithm is used to add NNs in the

ensemble. New NNs are added to the ensemble if the previous

addition improves the performance of the ensemble. This

addition process continues until the minimum ensemble error

criterion has been met.

Change

architecture?
No

Final

ensemble

architecture

Create initial

ensemble

architecture

Create different

training sets for

NNs

Training NNs

using Negative

Correlation

learning

Compute

ensemble error

Add NN to

ensemble

Yes

Add and /or

delete hidden

nodes

Yes

No

Successful?

Successful?

Fig. 2 Flow diagram of the DEL algorithm

5

3.4 Different Training Sets for Individual NNs

Varying the examples into different training sets enables

efficient learning and can help the ensemble learning from the

whole training examples. Training sets are varied by

maintaining one important criterion i.e., training sets should

have appropriate number of examples so that individual NNs

obtain the necessary information for learning.

In DEL, if the first NN in the ensemble learns from odd-

positioned training examples, the second one learns from even-

positioned training examples, and the third one learns from

other training examples in a similar fashion. In some cases,

subsets of training examples are created just by partitioning or

by randomly selecting. The pseudocode of DEL algorithm is

shown in Algorithm 1.

Algorithm 1: DEL algorithm

Step 1: Create ensemble with minimum architecture

1. Create an ensemble comprising 2 NNs with minimum

architecture of 1 input-2 hidden-1 output layers

2. Number of neurons in input and output layer is

determined by the system

3. Apply Ash’s constructive algorithm for dynamic node

creation for the first NN training

4. Apply Reed’s pruning algorithm for the second NN

training

Step 2: Create training examples

1. Create separate training examples for each NN

Step 3: Training NNs in ensemble

1. Train NNs partially for fixed number of epochs using

NCL

Step 4: Compute training error

1. Compute the training error Ei for the ith NN using Eq.

(1)

Step 5: Compute ensemble error

1. Compute the ensemble error E

2. If E < acceptable

3. Output final ensemble

 Endif

Step 6: Check node addition/deletion criterion

1. If (addition/deletion criterion is not met)

2. Add NN to ensemble

3. Go to Step 2

4. Else

5. Add/delete hidden nodes to NN

6. Go to Step 3

7. Endif

4 Experimental Analysis

The effectiveness and performance of DEL are verified on

real-world benchmark problems. The datasets of the selected

benchmark problems are taken from the UCI machine learning

repository [60].

Different tests were carried out on DEL algorithm with

varying parameter settings. For setting the correlation strength

parameter to nonzero, the DEL performs as described in

section 3. For the correlation strength parameter equal to

zero, it is the individual NN’s independent training. The

independent training is performed using standard

backpropagation algorithm [30].

The learning rate and correlation strength parameter were

chosen between [0.05, 1.0] and [0.1, 1.0] respectively. The

initial weights for NNs were randomly generated within the

interval of [−0.5, 0.5]. The winner-takes-all method of

classification is used. Both the majority voting method and the

simple averaging method are used for computing the

generalization ability of the DEL. Medical and non-medical

datasets described in sections 3.1 and 3.2 are used in the

experimentation. Table 1 shows the summary of benchmark

datasets.

4.1 Medical Datasets

The medical datasets comprise four data sets from medical

domain: the cancer, the diabetes, the heart disease and the

thyroid dataset. These data sets have some characteristics in

common:

• DEL uses the similar input attributes that an expert uses

for diagnosis.

• The datasets pose a classification problem, which the DEL

has to classify to a number of classes or predict a set of

quantities.

• Acquisition of examples from human subjects is

expensive, which results in small datasets for training.

• Very often the datasets have missing values of attributes

and contain a small sample of noisy data [59], which make

the classification or prediction challenging.

4.1.1 The Breast Cancer Dataset

The breast cancer dataset comprising 699 examples. 458

examples are benign and 241 examples are malignant. There

are 9 attributes of a tumor collected from expensive

microscopic examinations. The attributes relate to the

thickness of clumps, the uniformity of cell size and shape, the

amount of marginal adhesion, and the frequency of bare

nuclei. The problem is to classify the tumor as either benign or

malignant.

4.1.2 The diabetes dataset

The diabetes dataset comprising 768 examples of which 500

belong to class 1 and 268 belong to class 2. Datasets are

collected from female patients of 21 years of age or older and

of Pima Indian heritage. There are 8 attributes to be classified

as either “tested positive for diabetes” or “tested not positive

for diabetes”.

4.1.3 The Heart Disease Dataset

The heart disease datasets comprise 920 examples. The

datasets are collected from expensive medical tests on patients.

There are 35 attributes to be classified as presence or absence

of heart disease.

4.1.4 The Thyroid Dataset

The thyroid disease dataset comprises 7200 examples

collected from patients through clinical tests. There are 21

6

attributes to be classified in three classes, i.e. normal, hyper-

function and subnormal function. 92% of the patients are

normal, which insists that the classifier accuracy must be

significantly higher than 92%.

4.2 Non-medical Datasets

The non-medical datasets comprise seven data sets from

different other domains: the credit card, glass, gene, horse,

letter, mushroom and soybean dataset.

4.2.1 The credit card dataset

The credit card dataset comprises 690 examples collected

from real credit card applications by customers with a good

mix of numerical and categorical attributes. There are 51

attributes to be classified as credit card granted or not granted

by the bank. 44% of the examples in the datasets are positive.

The datasets also contain 5% missing values in the examples.

4.2.2 The Glass Dataset

The classification of glass dataset is used for forensic

investigations. The datasets comprise 214 examples collected

from chemical analysis of glass splinters. There are 70, 76, 17,

13, and 19 examples for 6 classes respectively. The datasets

contain 9 attributes of continuous value to be classified into 6

classes.

4.2.3 The Gene Dataset

The gene dataset comprises 3175 examples of intron/exon

boundaries of DNA sequences elements or nucleotide. A

nucleotide is a four-valued nominal attribute and encoded

binary i.e. {-1, 1}. There are 120 attributes to be classified into

three classes: exon/intron (EI) boundary, intronexon (IE)

boundary, or none of these. EI boundary is called donor and IE

boundary is called acceptor. 25% examples of the dataset are

donors and 25% examples are acceptors.

4.2.4 The Horse Dataset

The horse dataset comprises 364 examples of horse colic.

Colic is an abdominal pain in horses, which can result in death.

There are 58 attributes collected from veterinary examination

to be classified into three classes: horse will survive, die or

euthanized. The dataset contains 62% examples of survival,

24% examples of death, and 14% examples of euthanized.

About 30% of the values in the dataset are missing, which

poses challenges in classification.

4.2.5 The Letter Recognition Dataset

Alphabet consists of 26 letters and recognition of letters is a

large classification problem. It is a tough benchmark problem

for the DEL algorithm. The dataset contains 20,000 examples

of digitized patterns. Each example was converted into 16

numerical attributes (i.e. real valued vector), which are to be

classified into 26 classes.

4.2.6 The Mushroom Dataset

The mushroom dataset comprising 8124 examples based on

hypothetical observations of mushroom species described in a

book. There are 125 attributes of the mushrooms collected

based on the shape, color, odor, and habitat. 30% of the

examples have one missing attribute value. 48% of examples

are poisonous. The classifier has to categorize the mushrooms

as edible or poisonous.

4.2.7 The Soybean Dataset

The soybean dataset comprises 683 examples collected from

the descriptions of beans. The attributes are based on the

normal size and color of leaf, the size of spots on leaf, hallow

spots, normal growth of plant, the rooted roots, and the plant’s

life history, treatment of seeds, and the air temperature. There

are 82 attributes to be classified into 19 diseases of soybeans.

There are missing values of attributes in most of the examples.
Table 1: Summary of benchmark datasets

Dataset No.

examples

Attributes Classes Training

set

Test

set

Cancer 699 9 2 349 175

Diabetes 768 8 2 384 192

Heart 920 35 2 460 230

Thyroid 7200 21 3 3600 1800

Credit C 690 51 2 345 172

Glass 214 9 6 107 53

Gene 3175 120 3 1588 793

Horse 364 58 3 182 91

Letter 20000 16 26 16000 4000

Mushroom 8124 125 2 4062 2031

Soybean 683 82 19 342 171

4.3 Experimental Setup

Datasets are divided into training and testing sets and no

validation set is used in the experimentation. The classification

error rate is calculated according to:

PTT

PCPTT
Ci

..

...
100

−
= (2)

where T.T.P denotes the total number of test patterns and

C.P denotes the total number of correctly classified patterns.

The numbers of examples in the training and test sets are

chosen based on the reported works in the literature so that a

comparison of results is possible. The size of the training and

testing sets used in DEL are shown in Table 1.

4.4 Experimental Results

A summary of the experimental results of the DEL algorithm

carried on 11 datasets described in Sections 4.1 and 4.2 is

presented in Table 2. The classification error is defined as the

percentage of wrong classifications in the test set defined by

Eq. 2. Table 3 shows the comparison of DEL with its

component individual networks in terms of classification error

rates for glass dataset. It shows the error rates for glass

datasets are relatively higher than the other datasets. This is

due to the error rates of the individual NNs that led to higher

error rate of the ensemble. Table 4(a) shows the accuracy of

NNs and the common intersection and the diversity of the NNs

of ensemble for the glass dataset is shown in Table 4(b). The

accuracy means the correct response sets of the individual

NNs whereas the diversity means the number of different

examples correctly classified by individual NNs. If Si is the

7

correct response set of the i-th NN in the testing set, i is the

size of Si, and
1, 2, ,i i ik is the size of the set

1 2 , ,i i ikS S S , then the diversity of the ensemble is

1, 2, ,i i i ik = . For the glass dataset, DEL produced an

ensemble of four NNs (N1, N2, N3, and N4). The sizes of the

correct responses are S1=37, S2=33, S3=36, and S4=36. The

large variations in accuracies are caused by the incremental

learning used by DEL. The ensemble started with N1 and N2

and trained them. When the two failed to achieve a successful

ensemble, DEL added N3 and N4 at a final step. The size of

1 2 3 4S S S S was only 29 resulting in diversity =8

among N1, N2, N3, and N4.

It is demonstrated here that the DEL uses a smaller number

of training cycles to find the dynamic ensemble architecture

with a small classification error. For example, for the glass

dataset DEL with dynamic architecture produces a final

ensemble with only four individual networks. Only five hidden

nodes were added to individual networks training with

constructive algorithm and two hidden nodes were deleted

from individual networks’ while training with a pruning

algorithm. DEL achieved a classification error of 26.415% for

this dataset. According to the comparison with other

algorithms shown in Table 9, DEL achieves the lowest

percentage of classification error.

 To demonstrate how a hidden neuron’s output changes

during the entire training period, the hidden neurons’ output

for the cancer dataset is shown in Fig. 3. Constructive

algorithm was used for training one network. The individual

network started the training with one node in its first hidden

layer and two nodes in its second hidden layer. During the

training period four nodes were added to the first hidden layer

of the network and nodes in second hidden layer were kept

fixed at two nodes. The outputs stabilize and the convergence

curve becomes smooth after about 100 iterations indicating

that the learning may not require a very large number of

iterations.

Fig. 4 shows the training error profile of ensemble for

cancer, heart disease, glass, and soybean datasets. Two from

medical and two from non-medical datasets are chosen. During

the intermediate period of the training, individual networks

were added to the ensemble by constructive strategy, hidden

nodes were added as well as deleted from corresponding

individual networks using a hybrid constructive−pruning

strategy. For example, for cancer dataset in Fig. 4, the

ensemble started with two individual networks with

architecture (9−4−2−2) and (9−12−2−2). The NN architecture

(9−4−2−2) has 9 inputs, two hidden layers with 4 and 2

neurons respectively and 2 outputs. The NN architecture

(9−12−2−2) has 9 inputs, two hidden layers with 12 and 2

neurons respectively and 2 outputs. Constructive algorithms

for individual network (9−4−2−2) and pruning algorithm for

individual network (9−12−2−2) were applied during training.

During the training, individual NNs with architectures (9−4−2)

and (9−12−2) were added to the ensemble. Hidden nodes were

added to individual networks (9−4−2−2) and (9−4−2) as

constructive algorithms were used to train them. Hidden nodes

were deleted from individual networks (9−12−2−2) and

(9−4−2) as these two were trained using pruning algorithm.

After addition of individual networks and hidden nodes by

constructive strategy and deletion of hidden nodes by pruning

strategy, the final ensemble with individual NN architectures

of (9−8−2−2), (9−10−2−2), (9−8−2), (9−10−2) was attained.

Figs 5(a)-(b) show the training error profiles of individual

NNs with constructive algorithm. For example, Fig. 5 (a)

shows the curves of individual networks for which constructive

algorithms were applied starting with architectures (9−4−2−2)

(indicated by solid line) and (9−4−2) (indicated by dash line)

for cancer dataset. At the intermediate period of training,

hidden nodes were added to individual networks by the

dynamic node creation (DNC) method until this node addition

increased the performance of the ensemble. Finally, all these

constructive networks in the ensemble completed training with

(9−8−2−2) and (9−8−2) architectures. Solid lines indicate NNs

with 2 hidden layers and dash lines indicate NN with single

hidden layer from Fig 5 to Fig 8.

Fig. 6(a)-(b) show training error profiles of individual NNs

with pruning algorithm. The pruning algorithm has an impact

on error profiles which is visible from the non-smooth curves.

Fig. 6(a) shows the curves of individual NNs applied to cancer

dataset starting with (9−12−2−2) and (9−12−2) architectures.

At the intermediate training period, hidden nodes were deleted

from individual networks by the sensitivity calculation method

until this node deletion increased the performance of the

ensemble. Finally, all these pruning networks in the ensemble

end up training with (9−10−2−2) and (9−10−2) architectures.

Fig. 7(a)-(b) show the curves of hidden nodes addition to the

individual NNs training applying constructive algorithm. In

this case, individual networks with small architecture started

training and at the intermediate training period, hidden nodes

were added to the first hidden layer of the individual network

sensitivity by the dynamic node creation method. For example,

Fig. 7(a) shows the curves of the hidden nodes addition to

individual networks trained using constructive algorithm for

cancer dataset. Here the individual network started training

with (9−4−2−2) and (9−4−2) architectures and finally end up

training with (9−8−2−2) and (9−8−2) architectures.

 Fig. 8(a)-(b) show the curves of the hidden nodes deletion

from the individual NNs training applying pruning algorithm.

Individual networks with architecture larger than necessary

started training in this case and at the intermediate training

period, hidden nodes that deem not necessary were deleted

from the first hidden layer of the individual network by the

sensitivity calculation method.

Hidden node with the lowest sensitivity was deleted. If the

deleted node does not posse lowest sensitivity, then the

weights were restored. For example, Fig. 8(a) shows the curves

of hidden nodes deletion from individual networks training by

pruning algorithm for cancer dataset. Individual networks here

8

started training with (9−12−2−2) and (9−12−2) architectures

and finally completed training with (9−10−2−2) and (9−10−2)

architectures.

Table 2: Results obtained applying the proposed learning model for 11 benchmark datasets.

Dataset Ensemble Epoch Error

Initial Final Training Classification

Cancer 9-4-2-2

9-12-2-2

(9-8-2-2), (9-10-2-2), (9-8-2), (9-10-2) 113 0.01 0.571

Diabetes 8-4-4-2

8-9-4-2

(8-8-4-2), (8-7-4-2), (8-8-2), (8-7-2), (8-8-2), (8-7-2) 212 5.00 22.917

Heart Disease 35-9-2-2

35-13-2-2

(35-12-2-2), (35-11-2-2), (35-12-2), (35-11-2), (35-10-2) 85 4.00 15.652

Thyroid 21-8-3-3

21-18-2-3

(21-12-3-3), (21-16-2-3), (21-12-3), (21-16-3), (21-12-3), (21-16-3) 400 0.71 4.444

Credit Card 51-10-2-2

51-28-2-2

(51-13-2-2), (51-26-2-2), (51-13-2), (51-26-2), (51-13-2) 350 0.77 12.209

Glass 9-5-7-6

9-11-7-6

(9-10-7-6), (9-9-7-6), (9-10-6), (9-9-6) 300 3.74 26.415

Gene 120-14-5-3

120-18-6-3

(120-17-5-3), (120-16-6-3), (120-18-3), (120-16-3) 275 0.05 10.971

Horse 58-13-2-3

58-18-2-3

 (58-17-2-3), (58-16-2-3), (58-17-3), (58-16-3), (58-17-3) 350 6.50 23.077

Letter

Recognition

16-20 -23 -26

16-24 -23 -26

(16-23 -23 -26), (16-22 -23 -26), (16-23 -26), (16-22 -26) 215 0.004 12.2

Mushroom 125-1-2-2

125-7-2-2

(125-4-2-2), (125-6-2-2), (125-4-2) 95 0.002 0.591

Soybean 82-22-7-19

82-26-8-19

(82-25-7-19), (82-24-8-19), (82-25-19), (82-24-19), (82-25-19) 261 0.0006 4.094

Table 3: Comparison of ensemble’s classification error with its component

NNs for the glass database.

Ensemble NN Architecture Classification error

Ensemble (9−10−7−6), (9−9−7−6),

(9−11−6), (9−9−6)

26.415

NN1 9−10−7−6 30.189

NN2 9−9−7−6 37.736

NN3 9−11−6 32.075

NN4 9−9−6 32.075

Table 4: For the test datasets of glass problem: (a) the accuracy and

intersection of NNs; (b) the measure of diversity of these individual NNs.

[61].

1 = 37 2 = 33 3 = 36 4 = 36

12 = 33 13 = 34 14 = 34 23 = 30

24 = 30 34 = 34 123 = 30 124 = 30

134 = 33 234 = 30 1234 = 29

(a)Accuracy of NNs

12 = 4 13 = 5 14 = 5 23 = 9

24 = 9 34 = 4 123 = 7 124 = 7

134 = 5 234 = 5 1234 = 9

 (b) Diversity of NNs in ensemble

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

H
id

d
e
n
 n

o
d
e
 o

u
tp

u
t

Fig 3. The hidden nodes output of a network with initial architecture

(9−4−2−2) and final architecture (9−8−2−2) for the cancer datasets.

9

0 50 100 150
0

2

4

6

8

10

12

14

16

18

Iterations

T
ra

in
in

g
 e

rr
o
r

Cancer

Glass

Soybean

Heart disease

Fig 4. The error profile of the ensemble: cancer dataset; glass dataset;

soybean dataset and heart disease dataset.

0 20 40 60 80 100 120
4

5

6

7

8

9

10

11

12

13

14

Iterations

T
ra

in
in

g
 e

rr
o
r

(a)

0 20 40 60 80 100 120
10

11

12

13

14

15

16

17

18

19

Iterations

T
ra

in
in

g
 e

rr
o
r

(b)

Fig. 5. The error of the individual networks for constructive algorithm: (a) for

the cancer dataset; (b) for the heart disease dataset. Solid line indicates NN

with 2 hidden layers and dash line indicates NN with single hidden layer

(shown in Table 2).

0 20 40 60 80 100 120
0

2

4

6

8

10

12

Iterations

T
ra

in
in

g
 e

rr
o
r

 (a)

0 20 40 60 80 100 120 140 160 180
10

11

12

13

14

15

16

17

18

19

Iterations

T
ra

in
in

g
 e

rr
o
r

 (b)

Fig. 6: The error of the individual networks for pruning algorithm: (a) for the

cancer dataset; (b) for the heart disease dataset. Solid line indicates NN with 2

hidden layers and dash line indicates NN with single hidden layer (shown in

Table 2).

Figs 9(a)-(b) show the curves of individual networks

addition during the training period. Individual networks were

added to the ensemble applying constructive strategy. Initially

the number of NNs in the ensemble was two. When addition

increased the performance of the ensemble, the number was

increased. For example, Fig. 9(a) shows the curve of

individual network addition to the ensemble for cancer dataset.

The curve shows that network addition to the ensemble

completed training with four networks.

4.5 Correlations among the Individual NNs

In Tables 5-7, ijCor means correlation between individual

networks j and i in the ensemble.

10

0 20 40 60 80 100 120
3

4

5

6

7

8

9

Iterations

N
o
.

H
id

d
e
n
 N

o
d
e
s

 (a)

0 20 40 60 80 100 120 140 160
4

5

6

7

8

9

10

11

12

Iterations

N
o
.

H
id

d
e
n
 N

o
d
e
s

 (b)

Fig. 7: Hidden nodes addition for individual networks training with

constructive algorithm: (a) for the cancer dataset; (b) for the glass dataset.

Solid line indicates NN with 2 hidden layers and dash line indicates NN with

single hidden layer (shown in Table 2).

0 20 40 60 80 100 120
9

9.5

10

10.5

11

11.5

12

12.5

13

Iterations

N
o
.

H
id

d
e
n
 N

o
d
e
s

 (a)

0 50 100 150 200 250 300
8

8.5

9

9.5

10

10.5

11

11.5

12

Iterations

N
o
.

H
id

d
e
n
 N

o
d
e
s

 (b)

Fig. 8: Hidden nodes deletion for individual networks training with

constructive algorithm: (a) for the cancer dataset; (b) for the glass dataset.

Solid line indicates NN with 2 hidden layers and dash line indicates NN with

single hidden layer (shown in Table 2).

0 20 40 60 80 100 120
1

1.5

2

2.5

3

3.5

4

4.5

5

Iterations

N
o
.

H
id

d
e
n
 N

o
d
e
s

 (a)

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Iterations

N
o
.

H
id

d
e
n
 N

o
d
e
s

 (b)
Fig. 9: Individual network addition in the ensemble at the training period: (a)

for the cancer dataset; (b) for the soybean dataset

11

Table 5 Correlation of Networks for the cancer dataset for =0.1, =0.2. In

this case iteration continued 116. In ensemble individual networks required is

4.

Cor12 = 0.018309 Cor13 = 0.021606 Cor14 = 0.019284

Cor23 = 0.017636 Cor24 = 0.015741 Cor34 = 0.018576

Table 6 Correlation of Networks for the cancer dataset for = 0.1, = 1.0.

Cor12 = (−0.006913) Cor13 = 0.013130 Cor14 = (−0.017219)

Cor23 = (−0.006320) Cor24 = (−0.005632) Cor34 = (−0.005960)

The distinguishable difference between Tables 5 and 6 is the

negative correlation strength parameter = 0.2, so that the

correlation between any two networks is positive in Table 5.

But in Table 6, the negative strength correlation parameter is

= 1.0 so that in almost all cases the value of correlation

between any two networks is negative.

Table 7 Correlation of individual networks for the diabetes dataset for =0.1,

=0.3. In this case iteration continued 212. In the ensemble number of

individual networks required to complete training was 6.

Cor12 = 0.018343 Cor13 = 0.016651 Cor14 = 0.015793

Cor15 = 0.017334 Cor16 = 0.015708 Cor23 = 0.022907

Cor24 = 0.021727 Cor25 = 0.023847 Cor26 = 0.021609

Cor34 = 0.019722 Cor35 = 0.021647 Cor36 = 0.019616

Cor45 = 0.020531 Cor46 = 0.018605 Cor56 = 0.020420

Table 8 Correlation of Networks for the diabetes dataset for =0.1, =1.0.

Cor12 = 0.024974 Cor13 = 0.006464 Cor14 = 0.000086

Cor15 = 0.029325 Cor16 = (−0.015724) Cor23 = 0.007256

Cor24 = 0.000096 Cor25 = 0.032919 Cor26 = (−0.017651)

Cor34 = 0.000025 Cor35 = 0.008520 Cor36 = (−0.004569)

Cor45 = 0.000113 Cor46 = (−0.000060) Cor56 = (−0.020727)

The distinguishable difference between Tables 7 and 8 is the

negative correlation strength parameter = 0.2 in Table 7 so

that the correlation between any two networks is positive. But

in the case of Table 8 the negative correlation strength

parameter is = 1.0, which results in negative correlation

between any two networks in many cases.

4.6 Comparison

To verify the performance of DEL algorithm, the results are

compared with popular empirical study of ensemble network

by Opitz and Maclin [62], a semisupervised ensemble learning

algorithm i.e., SemiNCL by Chen et al. [50], and a fully semi-

supervised ensemble approach to multiclass semi-supervised

classification in two versions i.e. CBoost-Sup and CBoost-

Semi by Soares et al. [51]. Opitz and Maclin have studied a

number of networks such as a simple NN, an ensemble with

varying initial weights, Bagging ensemble, and Boosting

ensemble. They used resampling based on Arcing and Ada

method. A confidence level of 95% can be achieved by an

ensemble method than a single-component classifier [34].

Opitz and Maclin didn’t apply Thyroid, Gene, Horse and

Mushroom data sets in their experiments, therefore, the results

are not available for comparison and marked as ‘-‘ in the table.

Chen et al. [50] and Soares et al. [51] both have presented test

errors by mean ± standard deviation % with 5%, 10%, and

20% of labeled data. They also didn’t apply Cancer, Diabetics,

Heart, Thyroid, Gene, Letter, Mushroom and Soybean data

sets in their experiments, therefore, the results are not available

for comparison and marked as ‘-‘ in the table.

5 Discussions

Most of the existing ensemble learning methods uses

trail−and−error method to determine the number and

architecture of NNs in the ensemble. Most of them use a two-

stage design process for designing an ensemble. In the first

stage, individual NNs are created and in the second stage these

NNs are combined. In the ensemble, the number of NNs and

the number of hidden neurons in the individual networks are

predefined and fixed. These existing methods use two cost

functions for designing the ensemble. One is for the accuracy

and another is for diversity. In most of the existing ensemble

methods, individual NNs are trained independently or

sequentially rather than simultaneously, which lead to loss of

interaction among NNs in the ensemble. In ensemble training,

previously trained network is not affected.

In DEL, we presented a dynamic approach to determine the

topology of an ensemble. This dynamic approach determines

the number and architecture of the individual NNs in the

ensemble. Such a dynamic approach is entirely new to

designing NN ensemble. In DEL, better diversity among the

NNs has also been maintained. In DEL, constructive strategy

has been used for automatic determination of the number of

NNs and constructive−pruning strategy has been used for

automatic determination of the architecture of NNs in the

ensemble. The hybrid constructive−pruning strategy has

provided better diversity for the whole ensemble (Table 4b).

NCL has been used for diversity of NNs in the ensemble

encouraging individual networks to learn different regions and

aspects of data space. But, if different NNs attempt to learn

different regions with inaccurate architecture, learning will

also be insufficient or improper by this attempt. Different

training sets for individual networks are created which also

help maintaining diversity among the NNs in the ensemble

(Table 4b). In some cases, different training sets were created

by variation of training examples and in other cases by random

choice of the training examples. As NN is a kind of unstable

learning, random redistribution of the training samples has

provided better learning in the case of an unstable learning.

Both three and four layered individual networks were used to

design the ensemble.

DEL uses a minimum number of parameters i.e. only one

correlation strength parameter . An incremental training

approach has been used in DEL because even after choosing

the appropriate architecture of the ensemble, DEL has to be

trained several times for finding the correct value of the

learning rate parameter and the correlation strength parameter

. DEL uses only one cost function (the ensemble error E)

12

during training, not two cost functions, one for accuracy and

the one for diversity used in some other ensemble method in

the literature. DEL uses a one-stage design process. Individual

networks are created and combined at the same design stage.

The advantage of DEL is that it does not need any separate

gating block. DEL uses the parameter as a balancing

mechanism for bias−variance−covariance tradeoff. Since DEL

generates uncorrelated networks in the ensemble, individual

networks in this ensemble are well-diversified.

DEL algorithm uses both simple averaging and majority

voting combination methods. For some problems simple

averaging method performed better and for some other

problems majority voting method performed better. Though

problem dependent, the choice of the correlation strength

parameter is important in DEL. To delete hidden nodes from

individual networks in an ensemble, initially a network larger

than necessary is considered. But, assessing the initial size of

the NN is challenging, which is still an unknown parameter in

DEL algorithm.

6 Conclusions

DEL is a new algorithm for designing and training NN

ensembles. Traditional way of ensemble designing is still a

manual trial-and-error process, whereas DEL is an automatic

design approach. The number of NNs and their architectures

are determined by DEL algorithm.

The major benefits of the proposed DEL algorithm

compared to existing ensemble algorithms are 1) automatic

creation of ensemble architectures; 2) preservation of accuracy

and diversity among the NNs in the ensemble; and 3)

minimum number of parameters specified by designer.

DEL emphasizes both accuracy and diversity of NNs in

ensemble to improve the performance. Constructive and

constructive-pruning strategies are used in DEL to achieve the

accuracy of individual NNs. To maintain diversity of NNs,

NCL and different training sets are used. The performance of

DEL algorithm was confirmed on benchmark problems. In

almost all cases, DEL outperformed the others. However, the

performance of DEL needs to be evaluated further on some

regression and time series problems.

Compliance with ethical standards

Conflict of interest: The authors declare that they have no

conflict of interest.

13

Table 9 Test set error rates for the datasets: comparison of DEL with results of (i) a single NN classifier (Stan); (ii) an ensemble created by varying random initial weights (Simp); (iii) an ensemble created by

Bagging method; (iv) an ensemble created by Arcing method, (v) an ensemble created by Ada method [63], (vi) a semisupervised ensemble learning algorithm i.e., SemiNCL [50], and (vii) a cluster-based boosting

(CBoost) ensemble in two versions i.e. CBoost-Sup and CBoost-Semi [51].

Dataset DEL Stan Simp Bag Arc Ada (with % of labeled data)

SemiNCL [45] CBoost-Sup [46] CBoost-Semi [46]

5% 10% 20% 5% 10% 20% 5% 10% 20%

Cancer 0.571 3.4 3.5 3.4 3.8 4.0 − − − − − − − − −

Diabetes 22.917 23.9 23.0 22.8 24.4 23.3 − − − − − − − − −

Heart d 15.562 18.6 17.4 17.0 20.7 21.1 − − − − − − − − −

Thyroid 4.444 − − − − − − − − − − − − − −

Credit C 12.209 14.8 13.7 13.8 15.8 15.7 15.87 ±

3.73

14.68 ±

2.84

14.10 ±

2.58

21.47 ±

3.47

19.96 ±

2.67

18.35 ±

3.03

18.67 ±

1.26

16.18 ±

2.73

15.82 ±

3.44

Glass 26.415 38.6 35.2 33.1 32.0 31.1 − − − 38.96 ±

12.01

19.01 ±

7.31

18.84 ±

6.88

36.31 ±

10.36

19.54 ±

4.57

20.32 ±

7.66

Gene 10.971 − − − − − − − − − − − − − −

Horse 23.077 − − − − − 36.59 ±

6.30

33.82 ±

4.97

32.80 ±

5.22

25.87 ±

6.27

23.45 ±

5.23

29.11 ±

4.99

26.23 ±

6.17

22.52 ±

5.19

29.12 ±

5.04

Letter 12.2 18.0 12.8 10.5 5.7 6.3 − − − − − − − − −

Mushroom 0.591 − − − − − − − − − − − − − −

Soybean 4.094 9.2 6.7 6.9 6.7 6.3 − − − − − − − − −

14

References

[1] Y. Li, B. Wei, Y. Liub, L. Yao, H. Chena, J. Yu, and W. Zhu,

“Incorporating knowledge into neural network for text

representation,” Expert Systems with Applications, Vol. 96, pp. 103–

114, 2018.

[2] S. Hooshdar and H. Adeli, H., “Toward Intelligent Variable

Message Signs in Freeway Work Zones: A Neural Network Model”,

Journal of Transportation Engineering, ASCE, Vol. 130(1), pp. 83-

93, 2004.

[3] D. L. Yu and J. B. Gomm, “Enhanced Neural Network

Modelling for a Real Multi-variable Chemical Process,” Neural

Computing & Applications, Vol. 10(4), pp 289–299, 2002.

[4] C. Cengiz and E. Köse, “Modelling of color perception of

different eye colors using artificial neural networks,” Neural

Computing & Applications, Vol. 23(7-8), pp. 2323-2332, 2013.

[5] A. Panakkat and H. Adeli, “Neural Network Models for

Earthquake Magnitude Prediction using Multiple Seismicity

Indicators,” International Journal of Neural Systems, Vol. 17(1), pp.

13-33, 2007.

[6] Z. Ahmad and J. Zhang, “Bayesian selective combination of

multiple neural networks for improving long-range predictions in

nonlinear process modelling,” Neural Computing & Applications,

Vol. 14(1), pp. 78-87, 2005.

[7] A.R. Tashakori and H. Adeli, “Optimum Design of Cold-Formed

Steel Space Structures Using Neural Dynamic Model,” Journal of

Constructional Steel Research, Vol. 58(12), pp. 1545-1566, 2002.

[8] A. Gotsopoulos, H. Saarimaki, E. Glerean, I. P. Jaaskelainen, M.

Sams, L. Nummenmaa, J. Lampinen “Reproducibility of importance

extraction methods in neural network-based fMRI classification,”

NeuroImage, Vol. 181, pp. 44–54, 2018.

[9] J. J. M. Sá Junior, A. R. Backes, O. M. Bruno, “Randomized

neural network-based descriptors for shape classification,”

Neurocomputing, Vol. 312, pp. 201–209, 2018.

[10] J. A. R. Vargas, W. Pedrycz, E. M. Hemerly, “Improved

learning algorithm for two-layer neural networks for identification of

nonlinear systems,” Neurocomputing, Vol. 329, pp. 86–96, 2019.

[11] F. Fourati, “Multiple neural control and stabilization,” Neural

Computing & Applications, Vol. 29(12), pp. 1435-1442, 2018.

[12] F. Masulli and G. Valentini, “Effectiveness of error correcting

output coding methods in ensemble and monolithic learning

machines,” Formal Pattern Analysis & Applications, Vol. 6(4),

pp. 285–300, 2004.

[13] R. Srinivasana, C. Wang, W. K. Ho, K. W. Lim, “Neural

network systems for multi-dimensional temporal pattern

classification,” Computers and Chemical Engineering, Vol. 29, pp.

965–981, 2005.

[14] T. A. Choudhury, C. C. Berndt, Z. Man, “Modular

implementation of artificial neural network in predicting in-flight

particle characteristics of an atmospheric plasma spray process,”

Engineering Applications of Artificial Intelligence, Vol. 45, pp. 57–

70, 2015.

[15] N. E. Sharkey, and A. J. Sharkey, “An analysis of catastrophic

interference,” Connection Science 7, pp.301–329, 1995.

[16] A. Gepperth, and C. Karaoguz, “A bio-inspired incremental

learning architecture for applied perceptual problems,” Cognitive

Computation 8(5), pp. 924–934, 2016.

[17] M. McCloskey, and N. J. Cohen, “Catastrophic interference in

connectionist networks: The sequential learning problem,” Psych. of

Learning & Motivation 24:109–165, 1989.

[18] R. M. French, “Catastrophic Forgetting in Connectionist

Networks,” Trends in Cognitive Sciences, Vol. 3(4), pp. 128–135,

1999.

[19] R. Kemker, M. McClure, A. Abitino, T. L. Hayes, and C.

Kanan, “Measuring Catastrophic Forgetting in Neural Networks,”

The Thirty-Second AAAI Conference on Artificial Intelligence

(AAAI-18), February 2–7, 2018, New Orleans Riverside, New

Orleans, Louisiana, USA, pp. 3390-3398, 2018.

[20] A. Robins, “Catastrophic forgetting, rehearsal and

pseudorehearsal,” Connection Science 7(2), pp. 123–146, 1995.

[21] B. Ren, H. Wang, J. Li, and H. Gao, H. “Life-long learning

based on dynamic combination model,” Applied Soft Computing 56,

pp. 398–404, 2017.

[22] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G.

Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-

Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell,

“Overcoming catastrophic forgetting in neural networks,” Proc. of

the National Academy of Sciences, Vol. 114 (13), pp. 3521-3526,

2017.

[23] R. Coop, A. Mishtal, and I. Arel, “Ensemble learning in fixed

expansion layer networks for mitigating catastrophic forgetting,”

IEEE Transaction on Neural Networks and Learning Systems, Vol.

24(10), pp.1623–1634, 2013.

[24] A. J. C. Sharkey, “On combining artificial neural nets,”

Connection Science, Special Issue on Combining Artificial Neural:

Ensemble Approaches, Vol. 8 (3&4): 299−313, 1996.

[25] L. K. Hansen and P. Salamon, “Neural network ensembles,”

IEEE Transaction on Pattern Analysis and Machine Intelligence,

Vol. 12(10), pp. 993−1000, 1990.

[26] P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, “Neural

Network Ensembles: Evaluation of Aggregation Algorithms,”

Artificial Intelligence, Vol. 163, pp. 139-162, 2005.

[27] R. A. Jacobs, “Bias ∕ Variance Analyses of Mixtures−of−experts

Architectures,” Neural Computation, Vol. 9, pp. 369−383, 1997.

[28] T. Hancock and H. Mamitsuka, “Boosted Network Classifiers

for Local Feature Selection,” IEEE Transaction on Neural Networks

and Learning Systems, Vol. 23(11), pp. 1767–1778, 2012.

[29] M. M. Islam, X. Yao, S. M. S. Nirjon, M.A. Islam, and K.

Murase, “Bagging and Boosting Negatively Correlated Neural

Networks,” IEEE Transactions on Systems, Man, and Cybernetics—

Part B: Cybernetics, Vol. 38(3), pp. 771−784, 2008.

[30] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. “Learning

representations by back-propagating errors”, Nature, 323(6088), pp.

533–536, 1986.

[31] N. H. Siddique and M. O. Tokhi, “Training Neural Networks:

Backpropagation vs Genetic Algorithms,” Proceedings of the

International Joint Conference on Neural Networks (IJCNN’01), 15-

19 July 2001, Washington, DC, USA, 2001, pp. 2673-2678, 2001.

[32] Y. Liu, X. Yao and T. Higuchi, “Evolutionary Ensembles with

Negative Correlation Learning,” IEEE Transactions on Evolutionary

Computation, vol. 4, pp. 380−387, 2000.

[33] H. Chen and X. Yao, “Multiobjective neural network ensembles

based on regularized negative correlation learning,” IEEE

Transaction on Knowledge and Data Engineering, vol. 22(12), pp.

1738–1751, 2010.

[34] Y. Liu and X. Yao, “Ensemble Learning via Negative

Correlation,” Neural Networks,” Vol. 12(10), pp. 1399−1404, 1999.

[35] G. Giacinto and F. Roli, “Design of effective neural network

ensembles for image classification purposes,” Image Vis. Comput.,

vol. 19(9–10), pp. 699–707, 2001.

[36] S. Hashem, “Optimal linear combinations of neural networks,”

Neural Networks, vol. 10(4), pp. 599–614, 1997.

[37] E. K. Tang, P. N. Suganthan, and X. Yao, “An analysis of

diversity measures,” Machine Learning, vol. 65(1), pp. 247–271,

2006.

[38] G. Brown, J. L. Wyatt, and P. Tino, “Managing diversity in

regression ensembles,” Journal of Machine Learning Research, vol.

6, pp. 1621–1650, 2005.

15

[39] M. L. Zhang and Z. H. Zhou, “Exploiting unlabeled data to

enhance ensemble diversity,” Data Mining and Knowledge

Discovery, vol. 26(1), pp. 98–129, 2013.

[40] B. Rosen, “Ensemble learning using de-correlated neural

networks,” Connection Science, Special Issue on Combining

Artificial Neural: Ensemble Approaches, Vol. 8 (3-4), pp. 373−384,

1996.

[41] Y. Liu and X. Yao, “Simultaneous training of negatively

correlated neural networks in an ensemble,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 29, pp.

716−725, 1999.

[42] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and

elitist multi-objective genetic algorithm: NSGA-II”, IEEE

Transactions on Evolutionary Computation, 6(2), pp. 182–197,

2002.

[43] R. Mousavi and M. Eftekhari, “A new ensemble learning

methodology based on hybridization of classifier ensemble selection

approaches”, Applied Soft Computing, Vol. 37, pp. 652–666, 2015.

[44] M. M. Islam, X. Yao and K. Murase, “A constructive algorithm

for training cooperative neural network ensembles,” IEEE

Transactions on Neural Networks, 14 (4), pp. 820−834, 2003.

[45] M. Shahjahan and K. Murase, “A Pruning Algorithm for

Training Cooperative Neural Network Ensembles” IEICE

Transaction on Information & Systems, Vol.E89–D, No.3, pp.

1257−1269, 2006.

[46] X. C. Yin, K. Huang, and H. W. Hao, “DE2: Dynamic ensemble

of ensembles for learning non-stationary data”, Neurocomputing,

Vol. 165, pp. 14–22, 2015.

[47] R. M. O. Cruz, R. Sabourin, G. D. C. Cavalcanti, T. I. Ren,

“META-DES: A dynamic ensemble selection framework using meta-

learning”, Pattern Recognition, Vol. 48, pp. 1925–1935, 2015.

[48] H. Chen and X. Yao, “Regularized negative correlation learning

for neural network ensembles,” IEEE Transaction on Neural

Networks, vol. 20(12), pp. 1962–1979, 2009.

[49] K. Chen and S. Wang, “Semi-supervised learning via

regularized boosting working on multiple semi-supervised

assumptions,” IEEE Transaction on Pattern Analysis and Machine

Intelligence, vol. 33(1), pp. 129–143, 2011.

[50] H. Chen, B. Jiang, and X. Yao “Semisupervised Negative

Correlation Learning,” IEEE Transactions on Neural Networks and

Learning Systems, Vol. 29(11), pp. 5366-5379, 2018.

[51] R. G. Soares, H. Chen, and X. Yao, “A cluster-based semi-

supervised ensemble for multiclass classification,” IEEE

Transactions on Emerging Topics in Computational Intelligence,

Vol. 1(6), pp.408-420, 2017.

[52] M. H. Rafiei, and H. Adeli, “A New Neural Dynamic

Classification Algorithm,” IEEE Transactions on Neural Networks

and Learning Systems, Vol. 28:12, 2017.

[53] A. S. Britto, R. Sabourin, L. E.S. Oliveira, “Dynamic selection

of classifiers—A comprehensive review,” Pattern Recognition, Vol.

47(11), pp. 3665-3680, 2014.

[54] Y. Ren, L. Zhang and P. N. Suganthan, “Ensemble

Classification and Regression-Recent Developments, Applications

and Future Directions,” IEEE Computational Intelligence Magazine,

vol. 11(1), pp. 41-53, 2016.

[55] R.M.O. Cruz, R. Sabourin, G.D.C. Cavalcanti, “Dynamic

classifier selection: recent advances and perspectives,” Information

Fusion, 41, pp. 195-216, 2018.

[56] T.Y. Kwok, and D.Y. Yeung, “Constructive algorithms for

structure learning in feed forward neural networks for regression

problems,” IEEE Transactions on Neural Networks, Vol. 8, pp.

630−645, 1997.

[57] T. Ash, “Dynamic node creation in backpropagation networks”,

Connection Science, Vol. 1(4), pp. 365-75, 1989.

[58] R. Reed, “Pruning algorithms−a survey,” IEEE Transactions on

Neural Networks, Vol 4(5), pp 740−747, 1993.

[59] L. Prechelt, “Automatic early stopping using cross validation:

Quantifying the criteria,” Neural Networks, vol. 11(4), pp. 761–767,

1998.

[60] M. Lichman, “UCI Machine Learning Repository

http://archive.ics.uci.edu/ml”, School of Information and Computer

Science, University of California, Irvine, CA, 2013.

[61] L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in

Classifier Ensembles and Their Relationship with the Ensemble

Accuracy,” Machine Learning, 51, pp. 181–207, 2003.

[62] D. Opitz and R. Maclin, “Popular Ensemble Methods: An

Empirical Study,” Journal of Artificial Intelligence Research, Vol.

11, pp. 169−198, 1999.

[63] A. J. C. Sharkey and N. E. Sharkey, “Combining diverse neural

nets,” Connection Science, The Knowledge Engineering Review, Vol.

12(3), pp. 231−247, 1997.

