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Abstract This paper presents a novel dynamic ensemble 

learning (DEL) algorithm for designing ensemble of neural 

networks (NN). DEL algorithm determines the size of 

ensemble, the number of individual NNs employing a 

constructive strategy, the number of hidden nodes of 

individual NNs employing a constructive-pruning strategy, and 

different training samples for individual NN’s learning. For 

diversity, negative correlation learning has been introduced 

and also variation of training samples has been made for 

individual NN that provide better learning from the whole 

training samples. The major benefits of the proposed DEL 

compared to existing ensemble algorithms are 1) automatic 

design of ensemble; 2) maintaining accuracy and diversity of 

NNs at the same time; and 3) minimum number of parameters 

to be defined by user. DEL algorithm is applied to a set of 

real-world classification problems such as the cancer, diabetes, 

heart disease, thyroid, credit card, glass, gene, horse, letter 

recognition, mushroom, and soybean datasets. It has been 

confirmed by experimental results that DEL produces dynamic 

NN ensembles of appropriate architecture and diversity that 

demonstrate good generalization ability. 

 

Keywords Neural network ensemble, back-propagation algorithm, 

negative correlation learning, constructive algorithms, pruning 

algorithms. 

 

1 Introduction 

Neural network (NN) structures have been used for knowledge 

representation [1], modeling [2, 3, 4], prediction [5, 6], design 

automation [7], classification [8, 9], identification [10] and 

nonlinear control [11] applications in many domains. All these 

applications mainly used monolithic structure for NN. In a 

monolithic structure, the NN is represented by a single NN 

architecture for the whole task to be performed [12, 13, 14]. 
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Scalability is a major impairment for monolithic NN for a wide 

range of applications. Incremental learning is also not possible 

as the addition of new elements to NN requires retraining of 

the NN with old and new data [15, 16]. An inevitable 

phenomenon in the retraining of NN is the catastrophic 

forgetting (also known as crosstalk), which was first reported 

by McCloskey and Cohen [17]. Two types of crosstalk 

phenomena can get exposed during retraining: temporal and 

spatial crosstalk. In temporal crosstalk, learned knowledge is 

lost during retraining of a new task. In spatial crosstalk, NN 

cannot learn two or more tasks simultaneously [18]. Kemker et 

al. [19] demonstrated that catastrophic forgetting problem in 

incremental learning paradigm has not been resolved despite 

many claims and showed methods of measuring such 

catastrophic forgetting can be measured. A number of attempts 

has been made to mitigate the phenomenon such as 

regularization, rehearsal and pseudorehearsal, life-long 

learning based dynamic combination, dual-memory models 

and ensemble methods [16, 20-23]. A collection or committee 

of individual NNs can also be advantageous for addition of a 

new NN to store new knowledge mitigating forgetting 

phenomena where tasks can be subdivided [24]. Instead of 

employing a large NN for a complex problem, the researchers 

are impressed by the idea of decomposing the problem into 

smaller subtasks leading to smaller architecture, shorter 

training time and increased performance [24, 25]. NN 

ensemble-based classifier can also improve generalization 

ability [25, 26].  The structure of an NN ensemble is illustrated 

in Figure 1.  Each NN in the ensemble (1 through n) is first 

trained on the training instances. The output of the ensembles 

is calculated from the predicted outputs, iO , ni ,,2,1 = , 

of the individual NNs [26]. The challenge here is to design a 

learning algorithm for ensemble NN. The initial weights, 

topology of NNs, training datasets, and training algorithms 

also play decisive roles in the design of ensembles [23, 25]. 

The approaches to designing ensembles constitute by varying 

these parameters.   

Many algorithms similar to NN ensembles [25] have been 

reported in the literature such as mixer of experts [27], 

boosting [28] and bagging [29]. The main drawbacks of these 

algorithms are manual design and predefined number of 

neurons in the hidden layer and the number of NNs in an 

ensemble.  

In general, ensemble and modular approaches are employed 

for combining NNs. The ensemble approach attempts to 
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generate a reliable and accurate output by combining the 

outputs of a set of trained NNs rather than selecting the best 

NN. Whereas the modular approach strives to have each NN 

as self−contained or autonomous [14, 24]. In modular 

approach, the problem is divided into a number of tasks. Each 

task is assigned to an individual NN to be accomplished. It is 

not possible to know the best size of NN a priori. The size of 

NN is defined by the number of layers and the number of 

neurons in each layer. Moreover, the backpropagation (BP) 

[30, 31] algorithm is not useful for training NN unless the 

topology is known.  Therefore, finding the correct topology is 

the foremost design issue. In order to define the topology of an 

NN, a number of parameters such as the number of layers, 

number of hidden neurons, activation functions, and degree of 

connectivity have to be determined. A second issue is to 

determine the training parameters that include the initial 

weights of the NN, the learning rate, acceleration term, 

momentum term and weight update rule. The choice of the 

topological and training parameters has significant impact on 

the training time and the performance of the NN. 

Unfortunately, there is no straightforward method of selecting 

the parameters rather the designer has to depend on the expert 

knowledge or employ empirical method.  
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Fig. 1: A neural networks ensemble 

The performance of NNs in an ensemble is dependent on a 

number of factors such as (i) the topology of the NNs and the 

initial structure; (ii) the training method; (iii) the learning rate; 

(iv) the input and output representations and (v) the content of 

the training sample [32]. Eventually, the numbers of NNs and 

the number of neurons in the hidden layers in NNs determine 

the performance of an ensemble. In most of the cases, these are 

predefined by human experts based on available a priori 

information. Formal learning theory is used to estimate the size 

of the ensemble system based on the complexity and the 

examples required learning the particular function. In such 

cases, the generalization error becomes high if the number of 

examples is small. Consequently, choosing appropriate NN 

topology is still something of an art. The data examples play a 

crucial role in learning where learning is sensitive to initial 

weights and learning parameters [33, 34, 35].  

The purpose of this research is to design an NN ensemble 

that addresses the following issues: (i) automatic determination 

of NN ensemble architecture (i.e. the number of NNs in the 

ensemble), (ii) automatic determination of the size of 

individual NNs (i.e., the number of hidden neurons in 

individual NNs) and (iii) variation of training examples for 

each individual NN’s better learning. Real-world classification 

problems are used to verify the effectiveness and the 

generalization ability of the ensemble.   

The paper is organized as follows: Section 2 presents the 

related works. Section 3 contains the description of DEL 

algorithm. Section 4 presents the datasets description, 

experimental results and comparison. Section 5 presents a 

discussion. Some conclusions are made in Section 6.        

2 Related Works 

In ensemble learning, the individual NNs are called base 

learners. They are single classifiers, which are trained and 

combined together to ease individual errors and crop 

generalization independently. Hitherto, efforts have been made 

to design ensemble by combining NNs based on either the 

accuracy or the diversity [25, 36, 37]. There are evidences that 

accurate and diverse NNs can produce a good ensemble that 

distribute errors over different regions of the input space [38, 

39]. Rosen [40] proposed an ensemble-learning algorithm that 

also trains individual NNs sequentially where the individual 

NNs minimize training errors as well as de-correlate previous 

training errors. Sequential training of an NN does not affect 

the NNs that were previously trained, which is a major 

disadvantage in ensemble learning. Consequently, there is no 

correlation between the errors of the individual NNs [41]. The 

topology of the mixtures-of-experts (ME) [27] can produce 

biased individual NNs which may be negatively correlated 

[32]. The disadvantage of ME is that it needs a separate gating 

NN and also can not provide a balance control over the bias-

variance-covariance tradeoff [34]. 

A two-stage design approach is employed in most of the 

architectures mentioned above where individual NNs are 

generated first followed by combining them. As the 

combination stage does not provide any feedback to design 

stage, some individual NNs designed independently may not 

contribute significantly to the ensemble [34]. Therefore, some 

researchers proposed a one-stage design process and used a 

penalty term into the error function of each NN. The 

researchers also proposed simultaneous and interactive 

training for all NNs in the ensemble instead of independent 

and sequential training [41]. NNs with negative correlation can 

be created by reassuring specialization and cooperation among 

the NNs in an ensemble. This will enable NNs learning the 

different regions of training data space and ensure the 

ensemble learns the whole data space.    

To ensure interaction between NNs and simultaneous 

learning in an ensemble, some researchers employed 

evolutionary computing [32]. Liu et al. [32] applied 
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evolutionary algorithm for ensemble learning of NNs with 

negative correlation. This approach can determine the optimal 

number of NNs and the combinations of NNs in an ensemble 

using fitness sharing mechanism.  

Chen and Yao [33] employed multi-objective genetic 

algorithm [42] for regularized NCL optimizing errors of the 

base NNs and their diversity in ensemble. Mousavi and 

Eftekhari [43] proposed static ensemble selection and deploys 

the popular multi-objective genetic algorithm NSGA-II [42]. 

This combination of static ensemble selection and NSGA-II 

ensures selecting the best classifiers and their optimal 

combination.  

There are two other widely popular approaches to ensemble 

learning, namely, Constructive NN Ensemble (CNNE) [44] 

and Pruning NN Ensemble (PNNE) [45]. CNNE determines 

the number of NNs in the ensemble and the hidden neurons of 

the individual NNs by employing negative correlation learning 

(NCL) [34, 41] in an incremental fashion. On the other hand, 

PNNE employs a competitive decay approach. PNNE uses a 

neuron cooperation function in each NN for the hidden 

neurons and a selective deletion of NNs in the ensemble based 

on the criterion of over-fitting. PNNE employs NCL to ensure 

diversity of the NNs in the ensemble.  

Islam et al. [29] proposed two incremental learning 

algorithms for NNs in ensemble using NCL: NegBagg and 

NegBoost. NegBagg fixes the number of hidden neurons of 

NNs in ensemble by constructive method. NegBoost also uses 

constructive method to fix the number of hidden neurons of 

NNs as well as the number of NNs in the ensemble. 

Yin et al. [46] proposed a two-stage hierarchical approach 

to ensemble learning called Dynamic Ensemble of Ensembles 

(DE2). DE2 comprises component classifiers and interim 

ensembles. The final DE2 is obtained by weighted averaging. 

Cruz et al. [47] used a two-phase dynamic ensemble selection 

(DES) framework. In the first phase, DES extracts meta-

features from training data. In the second phase, DES uses a 

meta-classifier to estimate the competence of the base 

classifier to be added to the ensemble.  

Chen and Yao [48] show that NCL considers the entire 

ensemble as a single machine with the objective of minimising 

the mean square error (MSE) and NCL does not employ 

regularisation while training. They proposed a regularised 

NCL (RNCL) incorporating a regularisation term for the 

ensemble which enables the RNCL decomposing the training 

objectives into sub-objectives each of which is implemented 

by an individual NN. RNCL shows improved performance 

over the NCL even when noise level is higher in datasets.   

Semi-supervised learning is the mechanism of learning 

using large amount of unlabelled data and small amount of 

labelled data. Chen and Wang [49] proposed a Semi-

supervised boosting framework taking three assumptions such 

as smoothness, cluster and manifold into consideration where 

they used a cost function comprising the margin cost on 

labelled data and the regularization penalty on unlabelled data. 

Experiments on benchmarks and real-world classification 

reveal constant improvement by the algorithm. Semi-

supervised learning is a widely popular method due to its 

higher accuracy at a lower effort.   
The generalization of an ensemble is related to the accuracy 

of the base NNs and the diversity among NNs [37, 38]. Higher 

accuracy for the base NNs leads to lower diversity among 

them. To strike a balance of the dilemma between accuracy 

and diversity in an ensemble, Chen et al. [50] proposed a semi-

supervised NCL (semiNCL) where a correlation penalty term 

on labelled and unlabeled data is incorporated into the cost 

function of each individual NNs in the ensemble.   

Though the semi-supervised learning has been very 

successful for labelled and unlabelled data, its generalisation 

ability is sensitive to incorrect labelled data. To mitigate this 

limitation, Soares et al. [51] proposed a cluster-based boosting 

(CBoost) with cluster regularization. In CBoost, the base NNs 

in the ensemble jointly performs a cluster-based semi-

supervised optimisation. Extensive experimentation shows that 

the CBoost has significant generalisation ability over the other 

ensembles.   

Recently, Rafiei and Adeli [52] reported a new neural 

dynamic classification algorithm. A comprehensive review of 

multiple classifier systems based on the dynamic selection of 

classifiers was reported by Britto et al. [53]. Recent 

developments in ensemble methods are analysed by Ren et al. 

[54]. Cruz et al. [55] reported a review on the recent advances 

on dynamic classifier selection techniques. Dynamic 

mechanism is used in the generalisation phase in those studies, 

while the dynamic mechanism is employed in the training 

phase in DEL.   

3 Dynamic Ensemble Learning (DEL) 

3.1 Main Steps of the Algorithm 

Unlike fixed ensemble architecture, DEL automatically 

determines the number base learner NNs and their 

architectures in an ensemble during the training phase. The 

DEL algorithm is presented in 8 steps in the sequel. The flow 

diagram of the DEL algorithm is shown in Figure 2.   

Step 1: Create an ensemble with minimum architecture 

comprising two NNs. Each NN consists of an input, two 

hidden and an output layer. The number of neurons in the 

input and output layers is determined by the system. Next, 

apply a constructive algorithm [56] based on Ash’s [57] 

dynamic node creation method for the first (later on the odd 

number NNs in sequence in the ensemble) NN training. 

Initially, this NN starts with a small architecture containing 

one node in each hidden layer. For the second (later on even 

number NNs in sequence in the ensemble) NN training, apply 

Reed’s pruning algorithm [58]. In the pruning phase of NN 

training, the number of neurons in the hidden layer is larger 

than necessary (i.e. it starts with a bulky architecture). 

Initialize the connection weights for each NN randomly within 

a small interval.  

Step 2: Create separate training examples for each NN of 

the ensemble. In general, subsets of training examples for 

individual NNs are created by randomly picking from the main 

set of the training examples. In this work, training sets are 
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created in such a way that if one NN learns from training 

examples from the first to the last, other NN learns from the 

last to the first of the same training examples.  

Step 3: Train the NNs in the ensemble partially on the 

examples for a fixed number of epochs specified by the user 

using NCL [34, 41] regardless of whether the NNs converge or 

not [59]. 

Step 4: Compute the training error Ei for the ith NN in the 

ensemble according to the following rule:  
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where maxO is the maximum value and 
minO is the minimum 

value of the target outputs respectively, N  is the total number 

of examples, S is the number of output neurons, d(n, s) is the 

desired output and Fi(n, s) is the actual output of the neuron 

s in the nth training data. The rule in Eq. (1) is a combination 

of the rule proposed by Reed [58] and NCL for an NN error.  

The error Ei is independent of the size of the training examples 

and the number of output neurons.  

Step 5: Compute the ensemble error E where E is the 

average of Ei of the base learner NNs. If E is small and 

acceptable, the ensemble architecture is believed to have the 

highest generalization ability and output the final ensemble. If 

E is not acceptable, then either the ensemble architecture or 

the individual base learner NNs undergo change.  

Step 6: Check the neuron addition and/or deletion criterion 

of individual NNs. In this criterion, hidden neurons are added 

or deleted if the error of individual NNs does not change after 

a specified number of epochs chosen by the user (see Section 

3.2). If the criterion is not met, then the individual NNs are not 

good enough and the ensemble undergo addition of new 

learner NN.  

Step 7: Add and/or delete hidden neurons to/from the NNs 

to meet the addition and/or deletion criterion (see Section 3.2) 

and continue training using NCL. 

Step 8: Add a new NN to the ensemble (see Section 3.3) if 

the previous NN addition improves the performance of the 

ensemble. Initialize and create different training set for the 

new NN as in step 2. Go to step 3 for further training of the 

ensemble. 

The above-mentioned procedure (steps 1-8) is implemented 

in DEL that determines the architecture of ensemble. For 

example, the networks in Fig. 1 work as follows: network 1 

has 2 hidden layers, uses constructive algorithm for node 

addition, and trains examples from first to last. On the 

contrary, network 2 has 2 hidden layers, uses pruning 

algorithm for node deletion, and trains examples from last to 

first. Then network 3 has a single hidden layer, uses 

constructive algorithm for node addition, and trains using 

examples from first to last. Similarly, network 4 has a single 

hidden layer, uses pruning algorithm for node deletion, and 

trains using examples from last to first and so on. The idea of 

varying the training examples is to enable the NNs to learn 

different regions of the data distribution. Major components of 

DEL are the addition/deletion of hidden neurons to/from 

leaners NNs and addition of NN to ensemble described in 

sections 3.2-3.4.  

3.2 Nodes Addition/Deletion to/from Individual NNs   

Both constructive and pruning algorithms provide some 

benefits as well as some drawbacks. At the training period of 

individual NNs, there may be some portions which may be 

critical or stable either for constructive or pruning algorithms. 

If all the NNs in the ensemble learn either only by constructive 

or only by pruning algorithm, then their learning will be very 

similar.  

Even though NCL forces the NNs to learn from different 

regions of the data space, the learning will not be perfect if the 

NNs in the ensemble have the same architecture. Different 

architectures of the NNs in the ensemble will provide a 

different weight on the accuracy and diversity, which justifies 

the deployment of the hybrid ‘constructive−pruning strategy’ 

in DEL.   

3.3 NN Addition to the Ensemble 

In DEL, constructive algorithm is used to add NNs in the 

ensemble. New NNs are added to the ensemble if the previous 

addition improves the performance of the ensemble. This 

addition process continues until the minimum ensemble error 

criterion has been met.  
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Fig. 2 Flow diagram of the DEL algorithm 
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3.4 Different Training Sets for Individual NNs  

Varying the examples into different training sets enables 

efficient learning and can help the ensemble learning from the 

whole training examples. Training sets are varied by 

maintaining one important criterion i.e., training sets should 

have appropriate number of examples so that individual NNs 

obtain the necessary information for learning.  

In DEL, if the first NN in the ensemble learns from odd-

positioned training examples, the second one learns from even-

positioned training examples, and the third one learns from 

other training examples in a similar fashion. In some cases, 

subsets of training examples are created just by partitioning or 

by randomly selecting. The pseudocode of DEL algorithm is 

shown in Algorithm 1. 

 

Algorithm 1: DEL algorithm 

Step 1: Create ensemble with minimum architecture 

1.  Create an ensemble comprising 2 NNs with minimum 

architecture of 1 input-2 hidden-1 output layers 

2.  Number of neurons in input and output layer is 

determined by the system 

3.  Apply Ash’s constructive algorithm for dynamic node 

creation for the first NN training 

4.  Apply Reed’s pruning algorithm for the second NN 

training  

Step 2: Create training examples 

1.  Create separate training examples for each NN 

Step 3: Training NNs in ensemble 

1. Train NNs partially for fixed number of epochs using 

NCL 

Step 4: Compute training error 

1. Compute the training error Ei for the ith NN using Eq. 

(1) 

Step 5: Compute ensemble error 

1. Compute the ensemble error E 

2. If E < acceptable  

3.  Output final ensemble 

 Endif 

Step 6: Check node addition/deletion criterion 

1. If (addition/deletion criterion is not met) 

2.      Add NN to ensemble  

3.  Go to Step 2 

4. Else 

5.    Add/delete hidden nodes to NN 

6.  Go to Step 3 

7. Endif 

4 Experimental Analysis  

The effectiveness and performance of DEL are verified on 

real-world benchmark problems. The datasets of the selected 

benchmark problems are taken from the UCI machine learning 

repository [60]. 

Different tests were carried out on DEL algorithm with 

varying parameter settings. For setting the correlation strength 

parameter  to nonzero, the DEL performs as described in 

section 3. For the correlation strength parameter  equal to 

zero, it is the individual NN’s independent training. The 

independent training is performed using standard 

backpropagation algorithm [30]. 

The learning rate and correlation strength parameter  were 

chosen between [0.05, 1.0] and [0.1, 1.0] respectively. The 

initial weights for NNs were randomly generated within the 

interval of [−0.5, 0.5]. The winner-takes-all method of 

classification is used. Both the majority voting method and the 

simple averaging method are used for computing the 

generalization ability of the DEL. Medical and non-medical 

datasets described in sections 3.1 and 3.2 are used in the 

experimentation. Table 1 shows the summary of benchmark 

datasets.  

4.1 Medical Datasets 

The medical datasets comprise four data sets from medical 

domain: the cancer, the diabetes, the heart disease and the 

thyroid dataset. These data sets have some characteristics in 

common:  

• DEL uses the similar input attributes that an expert uses 

for diagnosis.  

• The datasets pose a classification problem, which the DEL 

has to classify to a number of classes or predict a set of 

quantities.  

• Acquisition of examples from human subjects is 

expensive, which results in small datasets for training.  

• Very often the datasets have missing values of attributes 

and contain a small sample of noisy data [59], which make 

the classification or prediction challenging. 

4.1.1 The Breast Cancer Dataset 

The breast cancer dataset comprising 699 examples. 458 

examples are benign and 241 examples are malignant. There 

are 9 attributes of a tumor collected from expensive 

microscopic examinations. The attributes relate to the 

thickness of clumps, the uniformity of cell size and shape, the 

amount of marginal adhesion, and the frequency of bare 

nuclei. The problem is to classify the tumor as either benign or 

malignant. 

4.1.2 The diabetes dataset 

The diabetes dataset comprising 768 examples of which 500 

belong to class 1 and 268 belong to class 2. Datasets are 

collected from female patients of 21 years of age or older and 

of Pima Indian heritage. There are 8 attributes to be classified 

as either “tested positive for diabetes” or “tested not positive 

for diabetes”.  

4.1.3 The Heart Disease Dataset 

The heart disease datasets comprise 920 examples. The 

datasets are collected from expensive medical tests on patients. 

There are 35 attributes to be classified as presence or absence 

of heart disease.  

4.1.4 The Thyroid Dataset 

The thyroid disease dataset comprises 7200 examples 

collected from patients through clinical tests. There are 21 
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attributes to be classified in three classes, i.e. normal, hyper-

function and subnormal function. 92% of the patients are 

normal, which insists that the classifier accuracy must be 

significantly higher than 92%.  

 

4.2 Non-medical Datasets 

The non-medical datasets comprise seven data sets from 

different other domains: the credit card, glass, gene, horse, 

letter, mushroom and soybean dataset. 

 

4.2.1 The credit card dataset 

The credit card dataset comprises 690 examples collected 

from real credit card applications by customers with a good 

mix of numerical and categorical attributes. There are 51 

attributes to be classified as credit card granted or not granted 

by the bank. 44% of the examples in the datasets are positive. 

The datasets also contain 5% missing values in the examples.    

4.2.2 The Glass Dataset 

The classification of glass dataset is used for forensic 

investigations. The datasets comprise 214 examples collected 

from chemical analysis of glass splinters. There are 70, 76, 17, 

13, and 19 examples for 6 classes respectively. The datasets 

contain 9 attributes of continuous value to be classified into 6 

classes.    

4.2.3 The Gene Dataset 

The gene dataset comprises 3175 examples of intron/exon 

boundaries of DNA sequences elements or nucleotide. A 

nucleotide is a four-valued nominal attribute and encoded 

binary i.e. {-1, 1}. There are 120 attributes to be classified into 

three classes: exon/intron (EI) boundary, intronexon (IE) 

boundary, or none of these. EI boundary is called donor and IE 

boundary is called acceptor. 25% examples of the dataset are 

donors and 25% examples are acceptors.   

4.2.4 The Horse Dataset 

The horse dataset comprises 364 examples of horse colic. 

Colic is an abdominal pain in horses, which can result in death. 

There are 58 attributes collected from veterinary examination 

to be classified into three classes: horse will survive, die or 

euthanized. The dataset contains 62% examples of survival, 

24% examples of death, and 14% examples of euthanized. 

About 30% of the values in the dataset are missing, which 

poses challenges in classification.  

4.2.5 The Letter Recognition Dataset 

Alphabet consists of 26 letters and recognition of letters is a 

large classification problem. It is a tough benchmark problem 

for the DEL algorithm. The dataset contains 20,000 examples 

of digitized patterns. Each example was converted into 16 

numerical attributes (i.e. real valued vector), which are to be 

classified into 26 classes.  

4.2.6 The Mushroom Dataset 

The mushroom dataset comprising 8124 examples based on 

hypothetical observations of mushroom species described in a 

book. There are 125 attributes of the mushrooms collected 

based on the shape, color, odor, and habitat. 30% of the 

examples have one missing attribute value. 48% of examples 

are poisonous. The classifier has to categorize the mushrooms 

as edible or poisonous.   

4.2.7 The Soybean Dataset 

The soybean dataset comprises 683 examples collected from 

the descriptions of beans. The attributes are based on the 

normal size and color of leaf, the size of spots on leaf, hallow 

spots, normal growth of plant, the rooted roots, and the plant’s 

life history, treatment of seeds, and the air temperature. There 

are 82 attributes to be classified into 19 diseases of soybeans. 

There are missing values of attributes in most of the examples.  
Table 1: Summary of benchmark datasets  

Dataset No. 

examples 

Attributes Classes Training 

set 

Test 

set 

Cancer 699 9 2 349 175 

Diabetes 768 8 2 384 192 

Heart 920 35 2 460 230 

Thyroid 7200 21 3 3600 1800 

Credit C 690 51 2 345 172 

Glass 214 9 6 107 53 

Gene 3175 120 3 1588 793 

Horse 364 58 3 182 91 

Letter 20000 16 26 16000 4000 

Mushroom 8124 125 2 4062 2031 

Soybean 683 82 19 342 171 

4.3 Experimental Setup 

Datasets are divided into training and testing sets and no 

validation set is used in the experimentation. The classification 

error rate is calculated according to:  

PTT

PCPTT
Ci

..

...
100

−
=                            (2) 

where T.T.P denotes the total number of test patterns and 

C.P denotes the total number of correctly classified patterns. 

The numbers of examples in the training and test sets are 

chosen based on the reported works in the literature so that a 

comparison of results is possible. The size of the training and 

testing sets used in DEL are shown in Table 1.    

4.4 Experimental Results 

A summary of the experimental results of the DEL algorithm 

carried on 11 datasets described in Sections 4.1 and 4.2 is 

presented in Table 2. The classification error is defined as the 

percentage of wrong classifications in the test set defined by 

Eq. 2. Table 3 shows the comparison of DEL with its 

component individual networks in terms of classification error 

rates for glass dataset. It shows the error rates for glass 

datasets are relatively higher than the other datasets. This is 

due to the error rates of the individual NNs that led to higher 

error rate of the ensemble. Table 4(a) shows the accuracy of 

NNs and the common intersection and the diversity of the NNs 

of ensemble for the glass dataset is shown in Table 4(b). The 

accuracy  means the correct response sets of the individual 

NNs whereas the diversity   means the number of different 

examples correctly classified by individual NNs. If Si is the 



 

 

 

7 

correct response set of the i-th NN in the testing set, i is the 

size of Si, and 
1, 2, ,i i ik is the size of the set 

1 2 , ,i i ikS S S  , then the diversity  of the ensemble is 

1, 2, ,i i i ik =  . For the glass dataset, DEL produced an 

ensemble of four NNs (N1, N2, N3, and N4).  The sizes of the 

correct responses are S1=37, S2=33, S3=36, and S4=36. The 

large variations in accuracies are caused by the incremental 

learning used by DEL. The ensemble started with N1 and N2 

and trained them. When the two failed to achieve a successful 

ensemble, DEL added N3 and N4 at a final step. The size of 

1 2 3 4S S S S   was only 29 resulting in diversity =8 

among N1, N2, N3, and N4.  

It is demonstrated here that the DEL uses a smaller number 

of training cycles to find the dynamic ensemble architecture 

with a small classification error. For example, for the glass 

dataset DEL with dynamic architecture produces a final 

ensemble with only four individual networks. Only five hidden 

nodes were added to individual networks training with 

constructive algorithm and two hidden nodes were deleted 

from individual networks’ while training with a pruning 

algorithm. DEL achieved a classification error of 26.415% for 

this dataset. According to the comparison with other 

algorithms shown in Table 9, DEL achieves the lowest 

percentage of classification error.   

 To demonstrate how a hidden neuron’s output changes 

during the entire training period, the hidden neurons’ output 

for the cancer dataset is shown in Fig. 3. Constructive 

algorithm was used for training one network. The individual 

network started the training with one node in its first hidden 

layer and two nodes in its second hidden layer. During the 

training period four nodes were added to the first hidden layer 

of the network and nodes in second hidden layer were kept 

fixed at two nodes. The outputs stabilize and the convergence 

curve becomes smooth after about 100 iterations indicating 

that the learning may not require a very large number of 

iterations.  

Fig. 4 shows the training error profile of ensemble for 

cancer, heart disease, glass, and soybean datasets. Two from 

medical and two from non-medical datasets are chosen. During 

the intermediate period of the training, individual networks 

were added to the ensemble by constructive strategy, hidden 

nodes were added as well as deleted from corresponding 

individual networks using a hybrid constructive−pruning 

strategy. For example, for cancer dataset in Fig. 4, the 

ensemble started with two individual networks with 

architecture (9−4−2−2) and (9−12−2−2). The NN architecture 

(9−4−2−2) has 9 inputs, two hidden layers with 4 and 2 

neurons respectively and 2 outputs. The NN architecture 

(9−12−2−2) has 9 inputs, two hidden layers with 12 and 2 

neurons respectively and 2 outputs. Constructive algorithms 

for individual network (9−4−2−2) and pruning algorithm for 

individual network (9−12−2−2) were applied during training. 

During the training, individual NNs with architectures (9−4−2) 

and (9−12−2) were added to the ensemble. Hidden nodes were 

added to individual networks (9−4−2−2) and (9−4−2) as 

constructive algorithms were used to train them.  Hidden nodes 

were deleted from individual networks (9−12−2−2) and 

(9−4−2) as these two were trained using pruning algorithm. 

After addition of individual networks and hidden nodes by 

constructive strategy and deletion of hidden nodes by pruning 

strategy, the final ensemble with individual NN architectures 

of (9−8−2−2), (9−10−2−2), (9−8−2), (9−10−2) was attained. 

Figs 5(a)-(b) show the training error profiles of individual 

NNs with constructive algorithm. For example, Fig. 5 (a) 

shows the curves of individual networks for which constructive 

algorithms were applied starting with architectures (9−4−2−2) 

(indicated by solid line) and (9−4−2) (indicated by dash line) 

for cancer dataset. At the intermediate period of training, 

hidden nodes were added to individual networks by the 

dynamic node creation (DNC) method until this node addition 

increased the performance of the ensemble. Finally, all these 

constructive networks in the ensemble completed training with 

(9−8−2−2) and (9−8−2) architectures. Solid lines indicate NNs 

with 2 hidden layers and dash lines indicate NN with single 

hidden layer from Fig 5 to Fig 8.   

Fig. 6(a)-(b) show training error profiles of individual NNs 

with pruning algorithm. The pruning algorithm has an impact 

on error profiles which is visible from the non-smooth curves.   

Fig. 6(a) shows the curves of individual NNs applied to cancer 

dataset starting with (9−12−2−2) and (9−12−2) architectures. 

At the intermediate training period, hidden nodes were deleted 

from individual networks by the sensitivity calculation method 

until this node deletion increased the performance of the 

ensemble. Finally, all these pruning networks in the ensemble 

end up training with (9−10−2−2) and (9−10−2) architectures. 

Fig. 7(a)-(b) show the curves of hidden nodes addition to the 

individual NNs training applying constructive algorithm. In 

this case, individual networks with small architecture started 

training and at the intermediate training period, hidden nodes 

were added to the first hidden layer of the individual network 

sensitivity by the dynamic node creation method. For example, 

Fig. 7(a) shows the curves of the hidden nodes addition to 

individual networks trained using constructive algorithm for 

cancer dataset. Here the individual network started training 

with (9−4−2−2) and (9−4−2) architectures and finally end up 

training with (9−8−2−2) and (9−8−2) architectures. 

 Fig. 8(a)-(b) show the curves of the hidden nodes deletion 

from the individual NNs training applying pruning algorithm. 

Individual networks with architecture larger than necessary 

started training in this case and at the intermediate training 

period, hidden nodes that deem not necessary were deleted 

from the first hidden layer of the individual network by the 

sensitivity calculation method. 

Hidden node with the lowest sensitivity was deleted. If the 

deleted node does not posse lowest sensitivity, then the 

weights were restored. For example, Fig. 8(a) shows the curves 

of hidden nodes deletion from individual networks training by 

pruning algorithm for cancer dataset. Individual networks here 
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started training with (9−12−2−2) and (9−12−2) architectures 

and finally completed training with (9−10−2−2) and (9−10−2) 

architectures.  

 

 

Table 2: Results obtained applying the proposed learning model for 11 benchmark datasets. 

Dataset Ensemble Epoch Error 

Initial Final Training Classification 

Cancer 9-4-2-2 

9-12-2-2 

(9-8-2-2), (9-10-2-2), (9-8-2), (9-10-2) 113 0.01 0.571 

Diabetes 8-4-4-2 

8-9-4-2  

(8-8-4-2), (8-7-4-2), (8-8-2), (8-7-2), (8-8-2), (8-7-2) 212 5.00 22.917   

Heart Disease 35-9-2-2 

35-13-2-2  

(35-12-2-2), (35-11-2-2), (35-12-2), (35-11-2), (35-10-2) 85 4.00 15.652 

Thyroid 21-8-3-3 

21-18-2-3  

(21-12-3-3), (21-16-2-3), (21-12-3), (21-16-3), (21-12-3), (21-16-3) 400 0.71 4.444 

Credit Card 51-10-2-2 

51-28-2-2  

(51-13-2-2), (51-26-2-2), (51-13-2), (51-26-2), (51-13-2) 350 0.77 12.209 

Glass 9-5-7-6 

9-11-7-6 

(9-10-7-6), (9-9-7-6), (9-10-6), (9-9-6) 300 3.74 26.415 

Gene 120-14-5-3 

120-18-6-3 

(120-17-5-3), (120-16-6-3), (120-18-3), (120-16-3) 275 0.05 10.971 

Horse 58-13-2-3 

58-18-2-3  

      (58-17-2-3), (58-16-2-3), (58-17-3), (58-16-3), (58-17-3) 350 6.50 23.077 

Letter 

Recognition 

16-20 -23 -26 

16-24 -23 -26 

(16-23 -23 -26), (16-22 -23 -26), (16-23 -26), (16-22 -26) 215 0.004 12.2 

Mushroom 125-1-2-2 

125-7-2-2  

(125-4-2-2), (125-6-2-2), (125-4-2) 95 0.002 0.591 

Soybean 82-22-7-19 

82-26-8-19  

(82-25-7-19), (82-24-8-19), (82-25-19), (82-24-19), (82-25-19) 261 0.0006 4.094 

 

Table 3: Comparison of ensemble’s classification error with its component 

NNs for the glass database. 

Ensemble  NN Architecture Classification error 

Ensemble (9−10−7−6), (9−9−7−6), 

(9−11−6), (9−9−6) 

26.415 

NN1 9−10−7−6 30.189 

NN2 9−9−7−6 37.736 

NN3 9−11−6 32.075 

NN4 9−9−6 32.075 

Table 4: For the test datasets of glass problem: (a) the accuracy and 

intersection of NNs; (b) the measure of diversity of these individual NNs. 

[61]. 

1 = 37 2 = 33 3 = 36 4 = 36 

12 = 33 13 = 34 14 = 34 23 = 30 

24 = 30 34 = 34 123 = 30 124 = 30 

134 = 33 234 = 30 1234 = 29  

(a)Accuracy of NNs 

 

12 = 4 13 = 5 14 = 5 23 = 9 

24 = 9 34 = 4 123 = 7 124 = 7 

134 = 5 234 = 5 1234 = 9  

 (b) Diversity of NNs in ensemble 
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Fig 3. The hidden nodes output of a network with initial architecture 

(9−4−2−2) and final architecture (9−8−2−2) for the cancer datasets. 
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Fig 4.  The error profile of the ensemble: cancer dataset; glass dataset; 

soybean dataset and heart disease dataset.  
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(b) 

Fig. 5. The error of the individual networks for constructive algorithm: (a) for 

the cancer dataset; (b) for the heart disease dataset.  Solid line indicates NN 

with 2 hidden layers and dash line indicates NN with single hidden layer 

(shown in Table 2).   
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     (b) 

Fig. 6: The error of the individual networks for pruning algorithm: (a) for the 

cancer dataset; (b) for the heart disease dataset. Solid line indicates NN with 2 

hidden layers and dash line indicates NN with single hidden layer (shown in 

Table 2).  

 

Figs 9(a)-(b) show the curves of individual networks 

addition during the training period. Individual networks were 

added to the ensemble applying constructive strategy. Initially 

the number of NNs in the ensemble was two. When addition 

increased the performance of the ensemble, the number was 

increased. For example, Fig. 9(a) shows the curve of 

individual network addition to the ensemble for cancer dataset. 

The curve shows that network addition to the ensemble 

completed training with four networks.     

 

4.5 Correlations among the Individual NNs 

In Tables 5-7, ijCor  means correlation between individual 

networks j  and i in the ensemble.  
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    (b) 

Fig. 7: Hidden nodes addition for individual networks training with 

constructive algorithm: (a) for the cancer dataset; (b) for the glass dataset. 

Solid line indicates NN with 2 hidden layers and dash line indicates NN with 

single hidden layer (shown in Table 2).  
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                                 (b) 

Fig. 8: Hidden nodes deletion for individual networks training with 

constructive algorithm: (a) for the cancer dataset; (b) for the glass dataset. 

Solid line indicates NN with 2 hidden layers and dash line indicates NN with 

single hidden layer (shown in Table 2).  
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                                  (b) 
Fig. 9: Individual network addition in the ensemble at the training period: (a) 

for the cancer dataset; (b) for the soybean dataset  
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Table 5 Correlation of Networks for the cancer dataset for =0.1, =0.2. In 

this case iteration continued 116.  In ensemble individual networks required is 

4. 

Cor12 = 0.018309 Cor13 = 0.021606  Cor14 = 0.019284 

Cor23 = 0.017636 Cor24 = 0.015741 Cor34 = 0.018576 

 

Table 6 Correlation of Networks for the cancer dataset for  = 0.1,  = 1.0. 

Cor12 = (−0.006913) Cor13 = 0.013130 Cor14 = (−0.017219) 

Cor23 = (−0.006320) Cor24 = (−0.005632) Cor34 = (−0.005960) 

The distinguishable difference between Tables 5 and 6 is the 

negative correlation strength parameter  = 0.2, so that the 

correlation between any two networks is positive in Table 5. 

But in Table 6, the negative strength correlation parameter is  

= 1.0 so that in almost all cases the value of correlation 

between any two networks is negative. 
 

Table 7 Correlation of individual networks for the diabetes dataset for =0.1, 

=0.3. In this case iteration continued 212.  In the ensemble number of 

individual networks required to complete training was 6. 

 

Cor12 = 0.018343 Cor13 = 0.016651 Cor14 = 0.015793 

Cor15 = 0.017334  Cor16 = 0.015708 Cor23 = 0.022907 

Cor24 = 0.021727  Cor25 = 0.023847 Cor26 = 0.021609 

Cor34 = 0.019722  Cor35 = 0.021647 Cor36 = 0.019616 

Cor45 = 0.020531  Cor46 = 0.018605 Cor56 = 0.020420 

 

Table 8 Correlation of Networks for the diabetes dataset for =0.1, =1.0.  

Cor12 = 0.024974 Cor13 = 0.006464 Cor14 = 0.000086 

Cor15 = 0.029325 Cor16 = (−0.015724) Cor23 = 0.007256 

Cor24 = 0.000096 Cor25 = 0.032919 Cor26 = (−0.017651) 

Cor34 = 0.000025 Cor35 = 0.008520 Cor36 = (−0.004569) 

Cor45 = 0.000113 Cor46 = (−0.000060) Cor56 = (−0.020727) 

The distinguishable difference between Tables 7 and 8 is the 

negative correlation strength parameter  = 0.2 in Table 7 so 

that the correlation between any two networks is positive. But 

in the case of Table 8 the negative correlation strength 

parameter is  = 1.0, which results in negative correlation 

between any two networks in many cases.   

4.6 Comparison 

To verify the performance of DEL algorithm, the results are 

compared with popular empirical study of ensemble network 

by Opitz and Maclin [62], a semisupervised ensemble learning 

algorithm i.e., SemiNCL by Chen et al. [50], and a fully semi-

supervised ensemble approach to multiclass semi-supervised 

classification in two versions i.e. CBoost-Sup and CBoost-

Semi by Soares et al. [51]. Opitz and Maclin have studied a 

number of networks such as a simple NN, an ensemble with 

varying initial weights, Bagging ensemble, and Boosting 

ensemble. They used resampling based on Arcing and Ada 

method. A confidence level of 95% can be achieved by an 

ensemble method than a single-component classifier [34]. 

Opitz and Maclin didn’t apply Thyroid, Gene, Horse and 

Mushroom data sets in their experiments, therefore, the results 

are not available for comparison and marked as ‘-‘ in the table. 

Chen et al. [50] and Soares et al. [51] both have presented test 

errors by mean ± standard deviation % with 5%, 10%, and 

20% of labeled data. They also didn’t apply Cancer, Diabetics, 

Heart, Thyroid, Gene, Letter, Mushroom and Soybean data 

sets in their experiments, therefore, the results are not available 

for comparison and marked as ‘-‘ in the table. 

5 Discussions 

Most of the existing ensemble learning methods uses 

trail−and−error method to determine the number and 

architecture of NNs in the ensemble. Most of them use a two-

stage design process for designing an ensemble. In the first 

stage, individual NNs are created and in the second stage these 

NNs are combined. In the ensemble, the number of NNs and 

the number of hidden neurons in the individual networks are 

predefined and fixed. These existing methods use two cost 

functions for designing the ensemble. One is for the accuracy 

and another is for diversity. In most of the existing ensemble 

methods, individual NNs are trained independently or 

sequentially rather than simultaneously, which lead to loss of 

interaction among NNs in the ensemble. In ensemble training, 

previously trained network is not affected. 

In DEL, we presented a dynamic approach to determine the 

topology of an ensemble. This dynamic approach determines 

the number and architecture of the individual NNs in the 

ensemble. Such a dynamic approach is entirely new to 

designing NN ensemble. In DEL, better diversity among the 

NNs has also been maintained. In DEL, constructive strategy 

has been used for automatic determination of the number of 

NNs and constructive−pruning strategy has been used for 

automatic determination of the architecture of NNs in the 

ensemble. The hybrid constructive−pruning strategy has 

provided better diversity for the whole ensemble (Table 4b). 

NCL has been used for diversity of NNs in the ensemble 

encouraging individual networks to learn different regions and 

aspects of data space. But, if different NNs attempt to learn 

different regions with inaccurate architecture, learning will 

also be insufficient or improper by this attempt. Different 

training sets for individual networks are created which also 

help maintaining diversity among the NNs in the ensemble 

(Table 4b). In some cases, different training sets were created 

by variation of training examples and in other cases by random 

choice of the training examples. As NN is a kind of unstable 

learning, random redistribution of the training samples has 

provided better learning in the case of an unstable learning. 

Both three and four layered individual networks were used to 

design the ensemble.  

DEL uses a minimum number of parameters i.e. only one 

correlation strength parameter . An incremental training 

approach has been used in DEL because even after choosing 

the appropriate architecture of the ensemble, DEL has to be 

trained several times for finding the correct value of the 

learning rate parameter and the correlation strength parameter  

. DEL uses only one cost function (the ensemble error E) 
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during training, not two cost functions, one for accuracy and 

the one for diversity used in some other ensemble method in 

the literature. DEL uses a one-stage design process. Individual 

networks are created and combined at the same design stage. 

The advantage of DEL is that it does not need any separate 

gating block. DEL uses the parameter  as a balancing 

mechanism for bias−variance−covariance tradeoff. Since DEL 

generates uncorrelated networks in the ensemble, individual 

networks in this ensemble are well-diversified. 

DEL algorithm uses both simple averaging and majority 

voting combination methods. For some problems simple 

averaging method performed better and for some other 

problems majority voting method performed better. Though 

problem dependent, the choice of the correlation strength 

parameter  is important in DEL. To delete hidden nodes from 

individual networks in an ensemble, initially a network larger 

than necessary is considered. But, assessing the initial size of 

the NN is challenging, which is still an unknown parameter in 

DEL algorithm.  

6 Conclusions 

DEL is a new algorithm for designing and training NN 

ensembles. Traditional way of ensemble designing is still a 

manual trial-and-error process, whereas DEL is an automatic 

design approach. The number of NNs and their architectures 

are determined by DEL algorithm.    

The major benefits of the proposed DEL algorithm 

compared to existing ensemble algorithms are 1) automatic 

creation of ensemble architectures; 2) preservation of accuracy 

and diversity among the NNs in the ensemble; and 3) 

minimum number of parameters specified by designer. 

DEL emphasizes both accuracy and diversity of NNs in 

ensemble to improve the performance. Constructive and 

constructive-pruning strategies are used in DEL to achieve the 

accuracy of individual NNs. To maintain diversity of NNs, 

NCL and different training sets are used. The performance of 

DEL algorithm was confirmed on benchmark problems. In 

almost all cases, DEL outperformed the others. However, the 

performance of DEL needs to be evaluated further on some 

regression and time series problems.  
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Table 9 Test set error rates for the datasets: comparison of DEL with results of (i) a single NN classifier (Stan); (ii) an ensemble created by varying random initial weights (Simp); (iii) an ensemble created by 

Bagging method; (iv) an ensemble created by Arcing method, (v) an ensemble created by Ada method [63], (vi) a semisupervised ensemble learning algorithm i.e., SemiNCL [50], and (vii) a cluster-based boosting 

(CBoost) ensemble in two versions i.e. CBoost-Sup and CBoost-Semi [51]. 

 

Dataset DEL     Stan          Simp          Bag            Arc        Ada (with % of labeled data) 

SemiNCL [45] CBoost-Sup [46] CBoost-Semi [46] 

5% 10% 20% 5% 10% 20% 5% 10% 20% 

Cancer 0.571   3.4             3.5              3.4              3.8        4.0 − − − − − − − − − 

Diabetes 22.917   23.9          23.0            22.8            24.4       23.3 − − − − − − − − − 

Heart d 15.562   18.6       17.4            17.0           20.7           21.1  − − − − − − − − − 

Thyroid 4.444       −               −                   −             −            − − − − − − − − − − 

Credit C 12.209   14.8        13.7            13.8           15.8        15.7 15.87 ± 

3.73 

14.68 ± 

2.84 

14.10 ± 

2.58 

21.47 ± 

3.47 

19.96 ± 

2.67 

18.35 ± 

3.03 

18.67 ± 

1.26 

16.18 ± 

2.73 

15.82 ± 

3.44 

Glass 26.415   38.6        35.2             33.1          32.0         31.1 − − − 38.96 ± 

12.01 

19.01 ± 

7.31 

18.84 ± 

6.88 

36.31 ± 

10.36 

19.54 ± 

4.57 

20.32 ± 

7.66 

Gene 10.971    −                −                 −                 −           − − − − − − − − − − 

Horse 23.077    −                −                 −                 −           − 36.59 ± 

6.30 

33.82 ± 

4.97 

32.80 ± 

5.22 

25.87 ± 

6.27 

23.45 ± 

5.23 

29.11 ± 

4.99 

26.23 ± 

6.17 

22.52 ± 

5.19 

29.12 ± 

5.04 

Letter 12.2   18.0           12.8           10.5          5.7           6.3 − − − − − − − − − 

Mushroom 0.591     −                −               −                −               − − − − − − − − − − 

Soybean 4.094   9.2         6.7              6.9              6.7              6.3 − − − − − − − − − 
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