580 research outputs found

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs

    Linearity and Noise Improvement Techniques Employing Low Power in Analog and RF Circuits and Systems

    Get PDF
    The implementation of highly integrated multi-bands and multi-standards reconfigurable radio transceivers is one of the great challenges in the area of integrated circuit technology today. In addition the rapid market growth and high quality demands that require cheaper and smaller solutions, the technical requirements for the transceiver function of a typical wireless device are considerably multi-dimensional. The major key performance metrics facing RFIC designers are power dissipation, speed, noise, linearity, gain, and efficiency. Beside the difficulty of the circuit design due to the trade-offs and correlations that exist between these parameters, the situation becomes more and more challenging when dealing with multi-standard radio systems on a single chip and applications with different requirements on the radio software and hardware aiming at highly flexible dynamic spectrum access. In this dissertation, different solutions are proposed to improve the linearity, reduce the noise and power consumption in analog and RF circuits and systems. A system level design digital approach is proposed to compensate the harmonic distortion components produced by transmitter circuits’ nonlinearities. The approach relies on polyphase multipath scheme uses digital baseband phase rotation pre-distortion aiming at increasing harmonic cancellation and power consumption reduction over other reported techniques. New low power design techniques to enhance the noise and linearity of the receiver front-end LNA are also presented. The two proposed LNAs are fully differential and have a common-gate capacitive cross-coupled topology. The proposed LNAs avoids the use of bulky inductors that leads to area and cost saving. Prototypes are implemented in IBM 90 nm CMOS technology for the two LNAs. The first LNA covers the frequency range of 100 MHz to 1.77 GHz consuming 2.8 mW from a 2 V supply. Measurements show a gain of 23 dB with a 3-dB bandwidth of 1.76 GHz. The minimum NF is 1.85 dB while the input return loss is greater than 10 dB across the entire band. The second LNA covers the frequency range of 100 MHz to 1.6 GHz. A 6 dBm third-order input intercept point, IIP3, is measured at the maximum gain frequency. The core consumes low power of 1.55 mW using a 1.8 V supply. The measured voltage gain is 15.5 dB with a 3-dB bandwidth of 1.6 GHz. The LNA has a minimum NF of 3 dB across the whole band while achieving an input return loss greater than 12 dB. Finally, A CMOS single supply operational transconductance amplifier (OTA) is reported. It has high power supply rejection capabilities over the entire gain bandwidth (GBW). The OTA is fabricated on the AMI 0.5 um CMOS process. Measurements show power supply rejection ratio (PSRR) of 120 dB till 10 KHz. At 10 MHz, PSRR is 40 dB. The high performance PSRR is achieved using a high impedance current source and two noise reduction techniques. The OTA offers a very low current consumption of 25 uA from a 3.3 V supply

    Advanced High Efficiency Architectures for Next Generation Wireless Communications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    NOVEL COMPACT NARROW-LINEWIDTH MID-INFRARED LASERS FOR SENSING APPLICATIONS

    Get PDF
    The mid-infrared (2-14 μm) spectral region contains the strong absorption lines of many important molecular species, which make this region crucial for several well-know applications such as spectroscopy, chemical and biochemical sensing, security, and industrial monitoring. To fully exploit this region through absorption spectroscopic techniques, compact and low-cost narrow-linewidth (NLW) mid-infrared (MIR) laser sources are of primary importance. This thesis is focused on three novel compact NLW MIR lasers: demonstration and characterization of a new glass-based spherical microlaser, investigation of the performance of a novel fiber laser, and the design of a monolithic laser on a silicon chip. Starting with fabrication of spherical microcavities based on MIR transparent materials, I showed the feasibility of achieving quality factors of more than 10 million in whispering- gallery mode (WGM) microresonators made of different types of fluoride glasses. Next using Erbium doped ZBLAN glass spherical microresonators, I demonstrated a new ultra- low threshold NLW MIR microlaser. In particular, all aspects of this room temperature continuous-wave (CW) microlaser with a wavelength of 2.71 μm are carefully characterized and studied and the origin of the measured mode structure and polarization is described using a simple analysis. To amplify the output power of this laser, I designed and fabricated a MIR fiber amplifier with a record gain of about 30 dB at 2.71 μm that facilitated the characterization process and boosted the MIR power level to usable level while preserving the laser linewidth. To demonstrate the application of MIR microresonators and microlasers, I studied intracavity absorption spectroscopy based on active and passive high quality WGM MIR microlasers and microresonators. I also estimated the sensitivity and detection limit of gas sensors based on these devices. The outcome of my analysis shows that ppm level sensitivity should be achievable using both active and passive microresonators. Next, I modeled the performance of two newly proposed configurations for NLW MIR generation based on stimulated Raman scattering. First, I studied a new family of Raman fiber lasers that are capable of generating any NLW MIR line in the 2.5-9.5 μm spectral region. I demonstrated the feasibility of this MIR laser family, calculated the threshold conditions, identified the condition for its single-mode operation, and laid the foundation for the first experimental demonstration of such lasers. Finally, I explored the performance of silicon-based on-chip Raman lasers and the parameters that have prevented expanding their wavelength to MIR range. Using the outcomes of this study, I proposed and then analyzed a new architecture for on-chip silicon Raman lasers capable of generating single NLW lines around 3.2 μm with sub-mW threshold pump power

    Low Complexity DPD for Multi-Band Radio over Fiber Transmission Systems

    Get PDF
    The increasing demand for broadband wireless transmission in the modern internet has led to the proposal and standardization of the fifth-generation (5G) mobile communication system, which offers massive device connectivity, high bit rates, low latency, and cost sustainability. However, maintaining a high transmission rate as well as low latency is difficult to achieve simultaneously, which requires some state-of-art fronthaul transmission techniques. Therefore, radio over fiber (RoF) with different approaches like digital RoF (D-RoF), analog RoF (A-RoF), and delta-sigma modulation based RoF (DSM-RoF) for 5G fronthaul transmission has been introduced. Those RoF techniques may significantly reduce complexity and power consumption at base stations, but the extra electric to optic (E/O), optic to electric (O/E) converters and power amplifiers could introduce extra nonlinearity into the system. Moreover, ultra-broadband or multi-band ultra-broadband signal is introduced in 5G to further increase the transmission rate, which further increases the impact of the nonlinearity. Therefore, broadband linearization techniques are necessary for RoF fronthaul transmission systems due to the fragile of the signal and the inherent nonlinear distortions introduced by RoF link. To reduce the degradation of nonlinearity for RoF link, digital predistortion (DPD) techniques have been extensively researched to address these challenges. In a multi-band or multi-dimensional RoF system, multi-band DPD is required. Multi-dimensional DPD should be able to suppress the internal distortion within each band/dimension but also inter-distortion between different bands/dimensions. Unfortunately, the dimension higher than 3 causes a high calculation complexity to get the DPD function coefficients. There have been lots of efforts that have been made to obtain less-complexity DPD with better accuracy for multi-band or multidimensional signals. However, very limited DPD techniques have been proposed in simplifying the fundamental linearization function for bands exceeding four. Thus, the multi-band/multidimensional DPD has not been really got in used in commercial products because of the high complexity, high cost and high-power consumption. Thus, a simplified linearization approach for multi-band DPD is still needed. In this thesis, a new low-complexity multidimensional DPD is introduced. This proposed DPD introduces a simplified DPD function, which evolves from the conventional memory polynomial function. Compared with the conventional multi-dimensional DPD, this proposed approach has lower complexity increased with the increase of signal bands or dimensions, nonlinearity orders, and memory effect depth. For example, the conventional DPD function needs a total of 40040 coefficients for the 6-band signals with a nonlinearity order of 10 and a memory depth of 5. However, this proposed low-complexity DPD function needs 640 coefficients. A substantial reduction in complexity is clearly observed. The performance of the proposed DPD is evaluated by both simulation and experiments. An up to 6-band 64-QAM orthogonal frequency division multiplexing (OFDM) signal with each band of 200 MHz in simulations and an up to 5-band 20 MHz 64-QAM OFDM signal in experiments are used. The performance is evaluated in the means of error vector magnitude (EVM) of the received signal. The average improvement of EVM in simulation for 3-band, 4-band, 5-band and 6-band signals is 19.97 dB, 18.65 dB, 16.64 dB and 15.44 dB, respectively. The average improvement of EVM in experiments for 4-band and 5-band signals is 5.67 dB and 8.1 dB, respectively. The above results prove that the proposed DPD can significantly reduce the complexity and provide good linearization

    Exceeding octave tunable Terahertz waves with zepto-second level timing noise

    Full text link
    Spectral purity of any millimeter wave (mmW) source is of the utmost interest in low-noise applications. Optical synthesis via photomixing is an attractive source for such mmWs, which usually involves expensive spectrally pure lasers with narrow linewidths approaching monochromaticity due to their inherent fabrication costs or specifications. Here, we report an alternative option for enhancing the spectral purity of inexpensive semiconductor diode lasers via a self-injection locking technique through corresponding Stokes waves from a fiber Brillouin cavity exhibiting greatly improved phase noise levels and large wavelength tunability of ~1.8 nm. We implement a system with two self-injected diode lasers on a common Brillouin cavity aimed at difference frequency generation in the mmW and THz region. We generate tunable sub-mmW (0.3 and 0.5 THz) waves by beating the self-injected two wavelength Stokes light on a uni-travelling carrier photodiode and characterize the noise performance. The sub-mmW features miniscule timing noise levels in the zepto-second (zs.Hz^-0.5) scale outperforming the state of the art dissipative Kerr soliton based micro-resonator setups while offering broader frequency tunability. These results suggest a viable inexpensive alternative for mmW sources aimed at low-noise applications featuring lab-scale footprints and rack-mounted portability while paving the way for chip-scale photonic integration.Comment: 31 page

    Low-Power Slew-Rate Boosting Based 12-Bit Pipeline ADC Utilizing Forecasting Technique in the Sub-ADCS

    Get PDF
    The dissertation presents architecture and circuit solutions to improve the power efficiency of high-speed 12-bit pipelined ADCs in advanced CMOS technologies. First, the 4.5bit algorithmic pipelined front-end stage is proposed. It is shown that the algorithmic pipelined ADC requires a simpler sub-ADC and shows lower sensitivity to the Multiplying DAC (MDAC) errors and smaller area and power dissipation in comparison to the conventional multi-bit per stage pipelined ADC. Also, it is shown that the algorithmic pipelined architecture is more tolerant to capacitive mismatch for the same input-referred thermal noise than the conventional multi-bit per stage architecture. To take full advantage of these properties, a modified residue curve for the pipelined ADC is proposed. This concept introduces better linearity compared with the conventional residue curve of the pipelined ADC; this approach is particularly attractive for the digitization of signals with large peak to average ratio such as OFDM coded signals. Moreover, the minimum total required transconductance for the different architectures of the 12-bit pipelined ADC are computed. This helps the pipelined ADC designers to find the most power-efficient architecture between different topologies based on the same input-referred thermal noise. By employing this calculation, the most power efficient architecture for realizing the 12-bit pipelined ADC is selected. Then, a technique for slew-rate (SR) boosting in switched-capacitor circuits is proposed in the order to be utilized in the proposed 12-bit pipelined ADC. This technique makes use of a class-B auxiliary amplifier that generates a compensating current only when high slew-rate is demanded by large input signal. The proposed architecture employs simple circuitry to detect the need of injecting current at the output load by implementing a Pre-Amp followed by a class-B amplifier, embedded with a pre-defined hysteresis, in parallel with the main amplifier to boost its slew phase. The proposed solution requires small static power since it does not need high dc-current at the output stage of the main amplifier. The proposed technique is suitable for high-speed low-power multi-bit/stage pipelined ADC applications. Both transistor-level simulations and experimental results in TSMC 40nm technology reduces the slew-time for more than 45% and shorts the 1% settling time by 28% when used in a 4.5bit/stage pipelined ADC; power consumption increases by 20%. In addition, the technique of inactivating and disconnecting of the sub-ADC’s comparators by forecasting the sign of the sampled input voltage is proposed in the order to reduce the dynamic power consumption of the sub-ADCs in the proposed 12-bit pipelined ADC. This technique reduces the total dynamic power consumption more than 46%. The implemented 12-bit pipelined ADC achieves an SNDR/SFDR of 65.9/82.3 dB at low input frequencies and a 64.1/75.5 dB near Nyquist frequency while running at 500 MS/s. The pipelined ADC prototype occupies an active area of 0.9 mm^2 and consumes 18.16 mW from a 1.1 V supply, resulting in a figure of merit (FOM) of 22.4 and a 27.7 fJ/conversion-step at low-frequency and Nyquist frequency, respectively
    • …
    corecore