18,602 research outputs found

    fVSS: A New Secure and Cost-Efficient Scheme for Cloud Data Warehouses

    Full text link
    Cloud business intelligence is an increasingly popular choice to deliver decision support capabilities via elastic, pay-per-use resources. However, data security issues are one of the top concerns when dealing with sensitive data. In this pa-per, we propose a novel approach for securing cloud data warehouses by flexible verifiable secret sharing, fVSS. Secret sharing encrypts and distributes data over several cloud ser-vice providers, thus enforcing data privacy and availability. fVSS addresses four shortcomings in existing secret sharing-based approaches. First, it allows refreshing the data ware-house when some service providers fail. Second, it allows on-line analysis processing. Third, it enforces data integrity with the help of both inner and outer signatures. Fourth, it helps users control the cost of cloud warehousing by balanc-ing the load among service providers with respect to their pricing policies. To illustrate fVSS' efficiency, we thoroughly compare it with existing secret sharing-based approaches with respect to security features, querying power and data storage and computing costs

    Continuous Variable Quantum State Sharing via Quantum Disentanglement

    Full text link
    Quantum state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multi-partite quantum networks. Quantum state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret state distribution, and a class of "quantum disentangling" protocols for the state reconstruction. We demonstrate a quantum state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, whilst individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F = 0.73. A result achievable only by using quantum resources.Comment: Published, Phys. Rev. A 71, 033814 (2005) (7 figures, 11 pages

    Secret Sharing for Cloud Data Security

    Full text link
    Cloud computing helps reduce costs, increase business agility and deploy solutions with a high return on investment for many types of applications. However, data security is of premium importance to many users and often restrains their adoption of cloud technologies. Various approaches, i.e., data encryption, anonymization, replication and verification, help enforce different facets of data security. Secret sharing is a particularly interesting cryptographic technique. Its most advanced variants indeed simultaneously enforce data privacy, availability and integrity, while allowing computation on encrypted data. The aim of this paper is thus to wholly survey secret sharing schemes with respect to data security, data access and costs in the pay-as-you-go paradigm

    A Lightweight Secure and Resilient Transmission Scheme for the Internet of Things in the Presence of a Hostile Jammer

    Get PDF
    In this article, we propose a lightweight security scheme for ensuring both information confidentiality and transmission resiliency in the Internet-of-Things (IoT) communication. A single-Antenna transmitter communicates with a half-duplex single-Antenna receiver in the presence of a sophisticated multiple-Antenna-Aided passive eavesdropper and a multiple-Antenna-Assisted hostile jammer (HJ). A low-complexity artificial noise (AN) injection scheme is proposed for drowning out the eavesdropper. Furthermore, for enhancing the resilience against HJ attacks, the legitimate nodes exploit their own local observations of the wireless channel as the source of randomness to agree on shared secret keys. The secret key is utilized for the frequency hopping (FH) sequence of the proposed communication system. We then proceed to derive a new closed-form expression for the achievable secret key rate (SKR) and the ergodic secrecy rate (ESR) for characterizing the secrecy benefits of our proposed scheme, in terms of both information secrecy and transmission resiliency. Moreover, the optimal power sharing between the AN and the message signal is investigated with the objective of enhancing the secrecy rate. Finally, through extensive simulations, we demonstrate that our proposed system model outperforms the state-of-The-Art transmission schemes in terms of secrecy and resiliency. Several numerical examples and discussions are also provided to offer further engineering insights

    Efficient and Privacy-Preserving Ride Sharing Organization for Transferable and Non-Transferable Services

    Full text link
    Ride-sharing allows multiple persons to share their trips together in one vehicle instead of using multiple vehicles. This can reduce the number of vehicles in the street, which consequently can reduce air pollution, traffic congestion and transportation cost. However, a ride-sharing organization requires passengers to report sensitive location information about their trips to a trip organizing server (TOS) which creates a serious privacy issue. In addition, existing ride-sharing schemes are non-flexible, i.e., they require a driver and a rider to have exactly the same trip to share a ride. Moreover, they are non-scalable, i.e., inefficient if applied to large geographic areas. In this paper, we propose two efficient privacy-preserving ride-sharing organization schemes for Non-transferable Ride-sharing Services (NRS) and Transferable Ride-sharing Services (TRS). In the NRS scheme, a rider can share a ride from its source to destination with only one driver whereas, in TRS scheme, a rider can transfer between multiple drivers while en route until he reaches his destination. In both schemes, the ride-sharing area is divided into a number of small geographic areas, called cells, and each cell has a unique identifier. Each driver/rider should encrypt his trip's data and send an encrypted ride-sharing offer/request to the TOS. In NRS scheme, Bloom filters are used to compactly represent the trip information before encryption. Then, the TOS can measure the similarity between the encrypted trips data to organize shared rides without revealing either the users' identities or the location information. In TRS scheme, drivers report their encrypted routes, an then the TOS builds an encrypted directed graph that is passed to a modified version of Dijkstra's shortest path algorithm to search for an optimal path of rides that can achieve a set of preferences defined by the riders

    A secure data outsourcing scheme based on Asmuth – Bloom secret sharing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data outsourcing is an emerging paradigm for data management in which a database is provided as a service by third-party service providers. One of the major benefits of offering database as a service is to provide organisations, which are unable to purchase expensive hardware and software to host their databases, with efficient data storage accessible online at a cheap rate. Despite that, several issues of data confidentiality, integrity, availability and efficient indexing of users’ queries at the server side have to be addressed in the data outsourcing paradigm. Service providers have to guarantee that their clients’ data are secured against internal (insider) and external attacks. This paper briefly analyses the existing indexing schemes in data outsourcing and highlights their advantages and disadvantages. Then, this paper proposes a secure data outsourcing scheme based on Asmuth–Bloom secret sharing which tries to address the issues in data outsourcing such as data confidentiality, availability and order preservation for efficient indexing

    Text image secret sharing with hiding based on color feature

    Get PDF
    The Secret Sharing is a scheme for sharing data into n pieces using (k, n) threshold method. Secret Sharing becomes an efficient method to ensure secure data transmission. Some visual cryptography techniques don’t guarantee security transmission because the secret information can be retrieved if the hackers obtain the number of shares. This study present a secret sharing method with hiding based on YCbCr color space. The proposed method is based on hiding the secret text file or image into a number of the cover image. The proposed method passes through three main steps: the first is to convert the secret text file or image and all cover images from RGB to YCbCr, the second step is to convert each color band to binary vector, then divide this band in the secret image into four-part, each part is appended with a binary vector of each cover image in variable locations, the third step is converting the color space from YCbCr to RGB color space and the generated shares, hidden with covers, are ready for transmission over the network. Even if the hackers get a piece of data or even all, they cannot retrieve the whole picture because they do not know where to hide the information. The results of the proposed scheme guarantee sending and receiving data of any length. The proposed method provides more security and reliability when compared with others. It hides an image of size (234x192) pixels with four covers. The MSE result is 3.12 and PSNR is 43.74. The proposed method shows good results, where the correlation between secret and retrieved images is strong ranging from (0.96 to 0.99). In the proposed method the reconstructed image quality is good, where original and reconstructed images Entropy are 7.224, 7.374 respectively
    • …
    corecore