
A secure data outsourcing scheme based on Asmuth-Bloom secret

sharing

Yusuf I. M.1, Mustafa Kaiiali1, Adib Habbal2, Wazan A. S.3, Auwal S. I.1

1Department of Computer Engineering, Mevlana University, Konya, Turkey

idrisawaa@gmail.com, mkaiiali@mevlana.edu.tr, engrausan@gmail.com

2 InterNetWorks Research Lab, School of Computing,

Universiti Utara Malaysia, 06010 UUM Sintok, Kedah Malaysia

adib@uum.edu.my

3 Institut de Recherche en Informatique de Toulouse(irit), France

ahmad-samer.wazan@irit.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/287585887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A secure data outsourcing scheme based on Asmuth-Bloom secret

sharing

Data outsourcing is an emerging paradigm for data management in which a

database is provided as a service by third party service providers. One of the major

benefits of offering database as a service is to provide organizations, which are

unable to purchase expensive hardware and software to host their databases, with

efficient data storage accessible online at a cheap rate. Despite that, several issues

of data confidentiality, integrity, availability and efficient indexing of users’

queries at the server side have to be addressed in the data outsourcing paradigm.

Service providers have to guarantee that their clients’ data is secured against

internal (insider) and external attacks. This paper briefly analyses the existing

indexing schemes in data outsourcing and highlights their advantages and

disadvantages. Then it proposes a secure data outsourcing scheme based on

Asmuth-Bloom secret sharing which tries to address the issues in data outsourcing

such as data confidentiality, availability and order preservation for efficient

indexing.

Keywords: data outsourcing; indexing; secret sharing.

Introduction

The rapid increase in the amount of data held by organizations has drastically increased

the cost of in-house data management. Services providers that share resources across

different organizations are therefore required in order to reduce the cost [1]. In-house data

management cost was estimated to be 5-10 times higher than the initial acquisition cost

[2].

Despite the economic advantage of data outsourcing, it faces a lot of challenges

to get widespread acceptance [3]. Data owners are cautious to place their secret

information under the control of a third party without the guarantee of having an efficient

and robust service that manages the information in a secure and privacy preserving

manner. Studies have shown that users’ secret information stored at the premises of

service providers is susceptible to insider attacks; for example employees of online social

network can know which profiles a user has visited [4]. Some may sell their users data to

third party companies who can use them for commercial purposes [5]. In addition,

governments may have a direct access to users’ private information through collaboration

with service providers, as revealed in 2013 by one of the NSA contractors Edward

Snowden [6, 7]. For data outsourcing to take over in-house data management, these issues

have to be adequately addressed.

The prominent techniques used in securing outsourced data are Data encryption

[8], Homomorphic encryption [9], Secret Sharing algorithms and Private Information

Retrieval (PIR) [10].

Encryption has been a traditional solution to the issue of confidentiality. However,

performing database manipulations operations such as insert, update, delete and query on

an outsourced encrypted data imposes an extra overhead due to the several encryption

and decryption processes that need to take place at the client side [11-14].

In homomorphic encryption, data processing operations are performed on an

encrypted outsourced data at the server side while the client only verifies the correctness

of the answer without spending much computational effort [15]. This reduces the

overhead of encryption and decryption processes that have to be performed at the client

side. However, homomorphic encryption is considered to be computationally expensive

due to its dependence on public key cryptosystems [10].

Apart from data confidentiality, another important issue is data availability.

“Downtime can cripple work flow and impose substantial cost - from time and money

spent on repairs to lapses in productivity to the inability to meet service levels and

compliance mandates” [16]. Data availability is usually achieved by duplicating the data

and storing it at different servers [10]. Secret sharing schemes and Information Dispersal

Algorithms (IDAs) [17] are used to provide data availability.

Secret sharing [18] refers to a method of distributing a secret to a group of

participants each of whom is allocated a share of the secret [19]. There are several types

of secret sharing schemes. The most basic types are the threshold schemes, where only

the cardinality of the set of shares matters [19, 20]. In other words, given a secret S,

and n shares, any set of t out of n shares is a set with the smallest cardinality from which

the secret can be recovered [21], in the sense that any set of (t-1) shares is not enough to

give S. This is known as a threshold access structure and is also known as (t, n)

threshold secret sharing scheme [22]. Several secret sharing schemes have been

employed in [2, 10, 23] to provide data availability for outsourced data.

In PIR protocols, the queries performed by the client on the database are hidden

from the service provider. One trivial but inefficient way to achieve PIR is for the server

to send the entire encrypted database to the client. Then the client has to decrypt and

execute the query locally. This provides privacy but introduces communication latency

and computational overhead on the client especially for large databases [24].

Due to this, many approaches were designed to enable an efficient execution of

different types of queries on an encrypted data e.g. encryption based indexing [8],

homomorphic encryption [9], partition based indexing [25], hash based indexing [26],

B+ tree indexing [25], and order preservation encryption [27] (order preservation is a very

important aspect in a data outsourcing scenario, in order to support comparison

operations to be directly applied on encrypted/shared data at the server side without the

need to retrieve and decrypt it at the client side).

Apart from providing data as a service, the data outsourcing model has been

incorporated in many real-time applications to solve users’ privacy issues. As an

example, several data outsourcing paradigms have been proposed to address the privacy

issue that exists in Online Social Networks [28, 29] such as flyByNight [5], faceCloak

[30] and Cloud-based OSN projects [31].

 This paper proposes a new data outsourcing scheme based on Asmuth-Bloom

Secret Sharing (ABSS) [32]. ABSS is a threshold scheme based on the Chinese

Remainder Theorem. It requires O(r) modular operations to recover a shared data as

compared with other secret sharing schemes such as Shamir Secret Sharing which is

sensitive to error and uses an interpolation formula that requires O(rlog2r) operations.

ABSS is secure in the sense that no useful information can be recovered out of (r - 1)

shares. ABSS can be modified to include the option of checking the validity of the shared

outsourced data before recovery [32]. For the previously mentioned advantages of ABSS,

this paper proposes a new data outsourcing scheme based on ABSS that addresses several

security challenges existing in data outsourcing, namely, availability, confidentiality and

order preservation efficiently. There are other schemes that offer one [8, 9] or two [19,

21] of these characteristics, however, our proposed scheme supports all three

characteristics in an efficient and computationally less expensive manner.

The rest of this paper is organized as follows: Section II discusses the data

outsourcing model. Section III gives a detailed review of related work. Section IV

discusses the secret sharing scheme using Chinese Remainder Theorem (CRT). Section

V presents a direct implementation of the Asmuth-Bloom secret sharing scheme in data

outsourcing. In Section VI, an enhanced data outsourcing model based on the Asmuth-

Bloom secret sharing scheme is proposed. Then, Section VII presents a security analysis

of the proposed scheme. Finally, the paper concludes in Section VIII.

Data outsourcing model

A data outsourcing model [34] consists of the following entities depicted in Figure 1.

 Data owner: the entity that owns the data and wishes to outsource it.

 User: an entity that needs to access the outsourced data published by the data

owner.

 Service provider: an entity that stores and manages the outsourced data.

 Client: the only party trusted by all the entities involved in a data outsourcing

scenario. The client transforms queries presented by users into equivalent queries

that operate on the encrypted database stored on the server side.

The data owner and the clients rely upon the service provider for the availability

of the outsourced data. However, the confidentiality of the outsourced data is not trusted

with the service provider as it may contain sensitive information that the data owner needs

to reveal only to authorized users. Therefore, it is necessary to prevent the service

provider from having unauthorized access to the outsourced data.

Figure 1: Data outsourcing model

The Figure above illustrates how the data outsourcing model works. The data

owner encrypts his/her data and outsources it to the third party service provider where it

will be stored and managed in an encrypted form. Whenever a user wants to access the

outsourced data, he/she sends his/her query to the client where it will be transformed to a

corresponding query that can work on the encrypted data at the server side. The server

then responds to the request and sends the encrypted result back to the client, where it

will be decrypted, further processed and finally sent to the user.

Related works

A lot of techniques were designed to support queries on encrypted relational databases

and to protect the outsourced database against compromises in confidentiality, integrity

and availability. However, some of these techniques have certain limitations which make

them inefficient.

The table below illustrates a simple database example used throughout this paper.

It is a database of employees’ information. The data owner may outsource this database

to multiple Data Service Providers (DSPj).

Table 1: Employees’ table

S/N Fname Salary

1 Alicia 10

2 Bob 18

3 Carol 21

4 Danna 36

5 Ebe 67

6 Frank 69

7 Gabza 71

8 Habu 81

9 Ibro 93

10 Joseph 238

Encryption based indexing approach

Database encryption refers to the use of encryption techniques to transform a plaintext

database into an encrypted database, thus making it unreadable to anyone except those

who possess the decryption key [8].

Encryption protects the exposure of sensitive information even if the server is

compromised, and ensures its integrity since data tampering can be detected. Data

decryption cannot be executed at the server side, therefore solutions have been developed

that allow the server to execute queries directly on the encrypted data [12].

In [8], an encryption approach is employed in which the attributes of the relation

are encrypted and used as an index. The index value Ii[j] associated with the attribute

value ai[j] in tuple j is computed as Ek(ai[j]), where Ek is a conventional encryption

function and k is the encryption key.

The advantages of this approach are:

 It supports the confidentiality service.

 It supports equality. As an example, searching for a tuple in an outsourced

encrypted data whose attribute a1 value in Table 1 is equal to 10 will be directly

translated by the client into searching for a tuple in the encrypted relation whose

I1 value is equal to Ek(10) [25].

The limitations of this approach are:

 It does not support range queries because conventional encryption need not be

order preserving [27].

 It does not support availability.

Homomorphic encryption

Homomorphic encryption is a form of encryption that allows mathematical operations to

be performed on encrypted data without compromising the encryption, and the result

when decrypted should match the operations on the plaintext.

Homomorphic encryption is desirable in modern communication system

architectures especially in Cloud Computing [8]. This is because it can allow the chaining

of different services together without exposing the data to each of those services [35]. For

example, a chain of different services from different companies could be: calculate the

tax, the currency exchange rate and the shipping. All of these services are needed within

a single transaction without exposing the unencrypted data to any of them [36]. This

feature makes this scheme good in providing confidentiality of an outsourced data, though

it does not preserve its order due to the encryption process.

In [9], a privacy homomorphic encryption that allows basic arithmetic operations

to be performed over encrypted data is employed. In this scheme two functions α and β

are defined over the domains of unencrypted and encrypted values respectively. If A is a

domain of unencrypted values, Ek is an encryption function with key k, and Dk is the

corresponding decryption function, then (Ek, Dk, α, β) can be defined as a privacy

homomorphism if:

Dk(βi (Ek(a1), Ek(a2), …, Ek(an))) = αi (a1, a2,…, am): 1≤ i ≤ n

To add two values a1 and a2 which are encrypted and stored at the server side the

system goes through the following steps; assuming Ek(ai) = (ai mod p, ai mod q) while

(p, q) are prime numbers representing the shared secret key k between owner and client):

 Compute n = p.q, where n is a public parameter.

 The server is instructed to compute Ek(a1) + Ek(a2) and then return the result to

the client

 The client decrypts the result using the function: (d1qq-1+d2pp-1) (mod n), where

d1 = a1 (mod p), d2 = a2 (mod q), qq-1 = 1(mod p) and pp-1 = 1(mod q).

As an example, if k = (p = 5, q = 7) and a1 = 10, a2 = 18 are two salaries of two

different employees (as shown in Table 1) ⇒ Ek(a1) = (10 mod 5, 10 mod 7) = (0, 3) and

Ek(a2) = (18 mod 5, 18 mod 7) = (3, 4). To add a1 and a2 stored encrypted at the server:

 n = p.q = 5 × 7 = 35

 E(a1)+E(a2) = (0+3, 3+4) = (3, 7)

 The client finally decrypt the result using the function (d1qq-1+d2pp-1) (mod n) =

(3×7×3 + 7×5×3) mod (35) = 168 mod 35 = 28 which is the addition of a1 to a2.

The advantages of homomorphic encryption are:

 It supports confidentiality.

 It supports equality, aggregation and logical operations on the outsourced data [9].

The limitations of this approach are:

 It is computationally expensive due to its dependence on PKI [10].

 It does not preserve the order of the outsourced data so it cannot execute range

queries.

 It does not support the availability service.

Partitioned based indexing approach

In this approach the attribute domain Di is partitioned into contiguous subsets of values

of the same size without overlapping. Each partition is augmented with a label in an

ordered or random manner in the domain Di.

 In [25], an architecture is proposed based on a partition based indexing approach.

It comprises of three entities: a user, a server and a client (similar to Figure 1). A user

poses a query to a client to transform it to an equivalent query that can run on encrypted

data at the server side. The encrypted database is augmented with an index to make the

encrypted data queryable. Based on the index, a technique is developed to split the user’s

query over encrypted data into 2 queries; a server query runs on the encrypted data and a

client query runs on the client side to post-process the results obtained from the server

query. To split the query, three functions are introduced: a partitioning function, an

identification function and a mapping function.

 The partition function splits the domain values of attributes into partitions of equal

length using a histogram construction technique (e.g. MaxDiff [37] or equi-depth

[38]) such that it covers the whole domain.

 The identification function assigns a unique identifier to each of these partitions.

To avoid collisions, a collision free hash function can be used for this purpose.

 The mapping function maps each of the partitions to its identifier.

The advantages of this approach are:

 It supports the confidentiality service.

 It allows server evaluation of the equality condition [34].

 The partitioning of the domain values into contiguous subsets makes it possible

to partially preserve the order of the outsourced data [34].

The limitations of this approach are:

 It can produce spurious tuples. Spurious tuples are tuples that satisfy the

correspondent query condition over the indexes of the outsourced data but do not

satisfy the query condition over the original plaintext [34]. These spurious tuples

need to be further processed and eliminated at the client side.

 It partially supports range queries [34].

 It does not support availability.

Hash based indexing

The hash based indexing technique uses as an index the result of a secure hash function

over the attribute values of a relation. The hash function can be adapted for different

granularities of the presented data. As an example if the co-domain C of the hash function

is small compared to the number of attribute values, the hash function distributes the

tuples uniformly in |C| buckets.

With respect to direct encryption, hash based indexing provides more

confidentiality, however, it does not preserve the order of the outsourced data. When

hashing is used, different plaintext values are mapped onto the same index, so the query

results often produce spurious tuples that need to be further processed by the client [26].

As an example, consider the relation in Table 2 of an encrypted employee table

Employeek. The indexes of the attributes Fname and Salary in relation Employee (shown

in Table 1) are computed by applying the hash-based method. Three distinct values

namely α, β and γ have been mapped to the values of the attribute Fname while four

distinct values 𝜖, 𝜃, 𝜙 and 𝜎 have been mapped to the values of the attribute Salary.

Table 2: Employeek

S/N Encrypted tuple Index1 Index2

1 tyuR34+pcn α 𝜖

2 Kljm$=4tye β 𝜎

3 Frgshgajk2 γ 𝜎

4 Njwklp345y α 𝜃

5 Rnozh12p*0 β 𝜖

6 Yajkie409@ γ 𝜙

7 WblpAeNR%7 α 𝜙

8 yusbr)@jkl γ 𝜃

9 pls-2wema> β 𝜃

10 Rtcbrtmlas α 𝜎

The advantages of hash based indexing are:

 It is more confidential than direct encryption based indexing [5].

 It allows server side evaluation of the equality condition. As an example each

condition aij = v, where v is a constant value is transformed into a condition Iij =

h(v), where Iij is the index corresponding to aij in the encrypted relation [5].

The limitations of hash based indexing are:

 It produces spurious tuples in cases where the hash function is not collision free,

which adds a burden to the client side [34].

 It is not order preserving, therefore it does not support range queries [34].

 It does not support the availability service.

B + tree indexing approach

A B+ tree can be viewed as a B-tree [39] in which each node contains only keys (not key-

value pairs), and to which an additional level is added at the bottom with linked leaves. It

consists of leaves, internal nodes and a root. The root may be either a leaf or a node with

two or more children. The main essence of a B+ tree is in storing data for efficient data

processing operations [40].

Damiani et al. [8], propose an indexing method based on the B+ tree that can be

attached to an encrypted database, which can be used by the server to select the data to

be returned in response to a query without the need for disclosing the database content.

Given an internal vertex storing f key values k1,…,kf with f ≤ n-1, each key value

ki is followed by a pointer pi, and k1 is preceded by a pointer p0. Pointer p0 points to the

subtree that contains keys with values lower than k1, pf points to the sub-tree that contains

keys with values greater than or equal to kf, and each pi points to the sub-tree that contains

http://en.wikipedia.org/wiki/B-tree

keys with values included in the interval [ki, ki+1]. Internal vertices do not directly refer

to tuples in the database, but just point to other vertices in the structure. Leaf vertices

directly refer to the tuples in the database that have a specific value for the indexed

attribute. Leaf vertices are linked in a chain that allows the efficient execution of range

queries.

A B+ tree is built over the most queried attribute aij of a database Di. It is then

represented as a relational table, encrypted and stored at the server side along with the

encrypted database [34]. The relational table consists of two attributes:

 Id - represents the identifier of a vertex, and

 Vertexcontent - represents the content of a vertex.

Each row in the relation represents a vertex of the tree, while the pointers are

represented through cross references from the vertex content to other vertex identifiers in

the relation. Encryption is applied at the vertex level in order to protect the order

relationship among plaintext, index values and the mapping between the two domains

[41].

To search for a tuple with key k in B+ tree, the client starts searching from the

root vertex, which is a tuple with Id = 1, retrieves it and decrypts it to see whether it

satisfies the given condition. If not, it then traverses through the nodes, and at each node

retrieves the content of the vertex and decrypts it until the leaf containing the key k is

found.

This kind of indexing approach provides both confidentiality and order

preservation, as the outsourced data is stored encrypted with a B+ tree built over the most

queried attribute for efficient data processing operation. However, it does not support

availability.

Figure 2 illustrates how this scheme is applied to the employee table (Figure 2 (a))

encrypted (Figure 2 (b)), the B+ tree is built over the most queried attribute of the database

(Figure 2 (c)), it is then represented in a relational table (Figure 2 (d)), encrypted (Figure

2 (e)) and stored along with the encrypted database at the server side.

The advantages of the B+ tree indexing approach [34] are:

 It supports confidentially.

 It is secure against inference attacks, since the B+ tree content itself is encrypted.

 It supports equality queries.

 It is order preserving so it can support range queries.

 It does not produce spurious tuples.

 It allows the evaluation of ORDER-BY and GROUP-BY clauses of SQL queries.

The limitations of the B+ tree indexing approach are:

 B+ tree indexing is expensive for the client compared to bucket and hash based.

Several trips (as many as the levels we have in the B+ tree) between the client and

the server are needed to retrieve the required tuples [8].

 It does not support the availability service.

Figure 2. Example of the B+ tree indexing approach

Order preservation encryption scheme (OPES)

The idea behind OPES is that unique values are generated from a user specified target

distribution and sorted in a table T. Then the ith plaintext (pi) value in the sorted list of |P|

plaintexts is encrypted into the ith value in the sorted list of |P| values obtained from the

user’s specified target distribution. This makes the scheme good in preserving the order

of the encrypted data and also provides confidentiality. To decrypt any of the ciphertext

a lookup into a reverse map is required [27]. In this case the table T is the encryption key

that must be kept secret.

OPES uses three stages to encrypt a database:

 Model Stage

 Flatten Stage and

 Transform stage.

Model stage:

In this stage the input and the target distributions are modeled as piece wise linear splines

using either of the following techniques.

 Histogram technique: this technique captures statistical information about the data

value distributions using counters for a specified number of data value buckets

[42]

 Parametric technique: this technique approximates data value distributions by

fitting the parameters of a given type of function (e.g. polynomial of a given

maximum degree) [42].

In [43], the two modeling techniques were used to first of all partition the values

into buckets using the histogram-based technique then model the distribution within each

bucket as a linear spline (a linear spline of a bucket is a line connecting the densities at

the two end points of a bucket) using the parametric technique.

Flatten stage:

In this stage the plaintext database P is transformed into a flat database f such that values

in f are uniformly distributed. In cases where a bucket has dense plaintext, the bucket will

be stretched so that the density of the plaintext in the flattened bucket will be uniform.

Transform stage:

In this stage the flattened database is transformed into a cipher database C such that the

values in C are distributed according to the target distribution.

As an example, if we have pi and pj where pi < pj, this will be transformed to fi <

fj in the flatten stage, and finally the flattened buckets will be transformed to a uniformly

distributed cipher database ci < cj. (i.e. Pi < Pj ⇒ fi < fj ⇒ Ci < Cj)

In [44], an order preserving indexing scheme over encrypted data is proposed

based on a simple mathematical expression (av + b + noise). The result of the expression

is made public while the coefficients a and b are the secret keys known only to the data

owner and the client. v is the value to be indexed and noise is randomly chosen from the

range {0, …, a - 1} to preserve the order of the index. One of the limitations of this scheme

is that the secret keys a and b are reused throughout the system, which makes the scheme

insecure. Adding noise randomly means that even the same encrypted values may not

have the same noise, which may give false queried information. Another limitation is

when an attacker obtains the ciphertext c1 for plaintext zero (i.e. c1 = b + n1) and ciphertext

c2 for large plaintext k (i.e. c2 = ak + b + n2), then by computing the difference between

the two ciphertexts, the attacker obtains (c2 - c1 = ak + n2 - n1). Since the randomly selected

noises n1 and n2 are between zero and a (i.e. 0 ≤ n1, n2 < a) then the attacker learns that

the secret a is in the interval 𝐼1 =
𝑐2−𝑐1

𝑘+1
≤ 𝑎 ≤ 𝐼2 =

𝑐2−𝑐1

𝑘−1
 [46, 47].

The advantages of the OPES indexing approach are [27]:

 It supports the confidentiality service.

 It is order preserving.

 It produces exact results for the query without any spurious tuples.

 It can handle updates, without the need for re-encryption.

The limitations of the OPES indexing approach are:

 It is vulnerable to tight estimation and statistical attacks [45].

 It is vulnerable to chosen plaintext attacks [45].

 It does not support availability.

Information dispersal algorithms (IDAs)

IDAs were first proposed by Michael O. Rabin in 1989 to protect data sent over the

network or sitting in storage arrays and not to be accessed except by the right user [48].

In IDAs, a file is split into n pieces where a minimum m pieces (n > m) are

required for reconstructing the original file. A transform matrix of n rows and m columns

is used to transform the original file into n pieces [47].

In a salted IDA, confidentiality is achieved by using a modified IDA scheme. A

salted IDA depends on randomness to improve data confidentiality. While it relies on the

original IDA scheme to provide data availability [50].

A transform matrix TM of (n x m) is maintained by the client as the information

dispersal matrix and the keys for encoding and decoding a data matrix D. n and m are

determined by the client based on the number of servers that are planned to be used and

the estimated number of non-faulty (available) servers. Also the client keeps a secret ss

(a shared secret between the data owner and client) and a deterministic function fs for

producing random factors (called salts) based on the address of the data entries on D.

Function fs feeds ss and the address of the data entry into a pseudorandom number

generator (PRNG) before encoding and dispersing D onto the servers, for each column i

of D the client calls the PRNG procedure i times, sets the last generated random number

(the output of the ith round) as the salt to each data entry of column i. The data matrix

after adding the salt is called a tuple matrix TD. The essence of the generated random

number was to improve the confidentiality of the original IDA.

It is difficult to search for data in an encoded matrix based on plaintext input. To

solve this issue, a B+ tree index was built on the key attribute and kept secured at the

client side. The leaf nodes of the index tree contain pointers to the columns of the tuple

matrix (TD) where the tuple with its key are stored.

The Index matrix (ID) and TD are encoded into IE = (ID × TM) and TE = (TD ×

TM) respectively and then dispersed onto n servers, S1, S2, ..., Sn, by the salted IDA as

shown in Figure 3. Queries on the index key attribute can be efficiently processed by

locating the columns of ID (tree nodes) that store the query keys and then retrieving the

corresponding tuples from the columns of TD.

After decoding the encoded data retrieved from m non-faulty servers, the client

reconstructs the salts by calling fs and then deducts these salts from the decoded data

entries, recovering D.

Figure 3: Framework for dispersing data in a cloud using salts [50]

The advantages of the IDA are [50]:

 It provides a confidentiality service.

 It supports equality queries.

 It is order preserving, and as such it supports range queries.

 It supports availability.

 It does not produce spurious tuples.

 It is secured against statistical analysis of the encrypted data.

The limitations of the IDA are [50]:

 For every query the whole column where the candidate answer tuple is located

has to be retrieved.

 It is expensive for the client.

Table 3 compares the reviewed approaches in the literature based on six criteria:

support for equality queries and/or range queries, the cost of performing operations at the

client side, returning spurious tuples, data availability and data confidentiality. It is

obvious that none of the aforementioned approaches are able to adequately address all the

data outsourcing issues. Every approach has some limitations. This motivates us to

propose a new data outsourcing scheme that tries to address all the issues.

Table 3: Comparison of the existing approaches

Approaches

Equality

Queries

Range

Queries

Client

Burden

Spurious

Tuples

Availability Confidentiality

Encryption based indexing Fully No High Yes No Yes

Homomorphic encryption Fully No High Yes No Yes

Partitioned based indexing Fully Partially Partially Yes No Yes

Hash based indexing Fully No High Yes No Yes

B+ tree indexing Fully Yes High No No Yes

Order preservation encryption Fully Fully High No No Yes

IDAs Fully Fully High No Yes Yes

A secret sharing scheme using Chinese Remainder Theorem (CRT)

A secret sharing algorithm is one of the prominent techniques widely used in data

outsourcing [3, 15, 29, 55]. It is an ideal scheme for storing sensitive and highly important

information. Traditional encryption methods, as discussed earlier, are not efficient for

achieving a high level of confidentiality and availability at the same time.

The aim of this paper is to explore a secret sharing algorithm based on the Chinese

Reminder Theorem (CRT) to provide data availability, confidentiality and order

preservation for outsourced data.

The secret sharing scheme based on CRT produces shares presented in

congruence equations and the secret can be recovered by solving the system of

congruencies to get a unique solution, which is the original outsourced data. Secret

sharing schemes that are based on CRT are proved by Quisquater et el [49] to be

asymptotically perfect schemes [51].

http://en.wikipedia.org/wiki/Secret_sharing

CRT Theorem:

Suppose that m1, m2, …, mk are pairwise relatively prime positive integers. Then for any

given integers a1, a2, …, ak, the following system of simultaneous congruencies

x ≡ ai (mod mi) for 1 ≤ i ≤ k

has a unique solution x modulo the product M = m1…mk.

This is given by:

x ≡ a1M1y1 + a2M2y2 + …+ akMkyk(modM)

where 𝑀𝑖 =
𝑀

𝑚𝑖
 and yi ≡ (Mi)

-1(mod mi)

Asmuth-Bloom threshold scheme

Asmuth-Bloom secret sharing is a threshold scheme that is based on CRT. It was

proposed with the intent of safeguarding a key [34]. In this scheme, a key K is

decomposed into n shares Ii (congruence classes of a number associated with the original

key), in such a way that the key is only recoverable from any r ≤ n of the shares, and no

useful information can be recovered from (r - 1) shares.

The value of this scheme depends on the following features [34]:

 the efficiency of decomposition and recoverability of the key,

 the sensitivity of the method to random error or deliberate tempering,

 the relationship between the number of shares (n), the minimum number of shares

required to recover the secret (r) and the number of shares that is not enough to

recover the secret (r - 1).

The Asmuth-Bloom threshold scheme consists of two phases [52]:

 Environmental formation phase

 Secret recovery phase.

Environmental formation phase:

This phase consists of two stages:

Initialization stage: In this stage, a set of integers {p, m1, m2, …, mn} are chosen

subject to the following conditions:

 m1 < m2 < … < mn

 gcd(mi, mj) = 1 for i ≠ j

 gcd(p, mi) = 1 for all i

 ∏ mi
r
i=1 > 𝑝 ∏ mn−i+1

r−1
i=1

 p > K

Decomposition stage: In this stage, the decomposition process goes as follows:

 compute M = ∏ 𝑚𝑖
𝑟
𝑖=1

 compute the parameter I = K + β.p, where 0 ≤ I < M and β is an arbitrary integer

chosen from the range [0,
𝑀

𝑃
− 1]

 then decompose the Key using Ii ≡ K(mod mi) and share it to the users with the ith

user having the Ii share where 1 ≤ i ≤ n

Secret recovery phase:

Suppose we have a system of congruencies Ii ≡ K (mod mi). The secret K can be uniquely

recovered using a constructive algorithm as follows [53]:

 compute the product of the r primes that are required to recover the secret as

M=m1m2…mr

 for each prime compute 𝑀𝑖 =
𝑀

𝑚𝑖

 use an Extended Euclidean Algorithm to find the integers αi and γi such that:

αi.mi + γi (M/mi) = 1

Let ei = γi (M / mi) ⇒ αi.mi + ei = 1

ei in the above equation guarantees that its remainder when divided by mi must be

1, i.e. ei ≡ 1(mod mi)

Hence, the system of congruencies has one solution that is 𝐾 = ∑ 𝐼𝑖𝑒𝑖
𝑟
𝑖=0 based

on CRT. Shares construction in the Asmuth-Bloom secret sharing scheme has a

complexity of Olog(r) [49].

The Asmuth-Bloom scheme can be modified to provide a validity check and a

deliberate tempering of the shares. To make the scheme perform a validity check to the

shares of the key, the second condition of the initialization stage has to be weakened to

allow gcd(mi, mj) = qij where qij ≠ 1. As an example if Ii and Ij are known and gcd(mi, mj)

= qij, then for the correct shares Ii ≡ Ij (mod qij).

If there is an error in Ii, this will alter its congruencies class modulo all of the qij,

therefore the error free shares would be in general agreement with each other and those

in error can be discarded [32].

Direct implementation of Asmuth-Bloom secret sharing schema in data

outsourcing

This section proposes a new data outsourcing scheme based on Asmuth-Bloom

threshold secret sharing. It consists of three stages:

Setup:

In this stage the data owner performs the following steps:

 choose a set of prime integers {p, m1, m2, …, mn} based on the following

conditions:

o p > di : di represents a single attribute value

o m1 < m2 < … < mn, where n is the number of DSP

o gcd(mi, mj) = 1 for i ≠ j

o gcd(p, mj) = 1 for all j

o ∏ mj
r
j=1 > 𝑝 ∏ mn−j+1

r−1
j=1

 choose a random integer β ϵ [0,
𝑀

𝑃
− 1] and compute Ii = di + β.p for each data

value (di) of the attribute to be used as an index for the outsourced database.

Outsourcing:

To distribute the database to multiple DSP servers, the data owner performs the following

step:

 compute 𝐼𝑗
′ values for each Ii as the following 𝐼𝑗

′ ≡ 𝐼𝑖(𝒎𝒐𝒅 𝑚𝑗) and then distribute

them to n service providers along with the encrypted database.

The essence of each 𝐼𝑗
′ value is to serve as an order-preserving index for the

encrypted database outsourced to the jth server.

Retrieving:

To retrieve the outsourced encrypted data, the server uses the modulus as an index to

retrieve the encrypted data and decrypt it at the client side.

The example below illustrates how this scheme can be used to build an index on

the salary attribute of the employee database (Table 1). Assume the data owner needs to

outsource the database of his/her employees to five different service providers (DSPj).

Let m1=101, m2=103, m3=107, m4=109, m5=111, p=45, β=3.

 Compute Ii = di + β.p as shown in Table 4 column 3

 Then the salary can be shared using 𝐼𝑗
′ ≡ 𝐼𝑖(𝒎𝒐𝒅 𝑚𝑗) as shown in Table 4

columns (4-8)

Table 4: Indexes of the employee’s Database to each DSP.

S/N
Salary

(di)
Ii

Server 1

Ii (mod 101)

Server 2

Ii (mod 103)

Server 3

Ii (mod 107)

Server 4

Ii (mod 109)

Server 5

Ii (mod 111)

1 10 145 44 42 38 36 34

2 18 153 52 50 46 44 42

3 21 156 55 53 49 47 45

4 36 171 70 68 64 62 60

5 67 202 0 99 95 93 91

6 69 204 2 101 97 95 93

7 71 206 4 0 99 97 95

8 81 216 14 10 97 107 105

9 93 228 26 22 2 10 6

10 238 373 70 64 52 46 40

In the previous works, we can see that outsourcing by encrypting the whole data

without building order-preserving indexes is prohibitive in terms of performance and does

not solve the problem of availability. In contrast, ABSS can be used to create n shares

and distribute it to different service providers as shown in Table 4. We can use these

shares as indexes in various DSPs in order to achieve the following advantages:

 Partially preserve the order of the outsourced data (when di < p) to support range

queries.

 Support equality queries.

 Reduce the computational cost of encryption.

 Reduce the burden of encrypting and decrypting on the client when making a

query.

From Figure 4, we can extract the limitations of the direct implementation to this

scheme as follows:

 from an employee with id = 1 to that with id = 4, the order of the index was

preserved because the salaries are less than the chosen prime p = 45. But when

Max(di) > P the order cannot be preserved over all the attribute values. Thus

queries can produce spurious tuples. As an example, employees with id = 4 and

id = 10 have the same index.

 By statistical analysis of the outsourced modulus values, an adversary can obtain

the primes. For example, in Server 2 and Server 3, the highest moduli numbers

are 101 and 107 respectively before it wraps around. Those values are very close

to (m2 = 103) and (m3 = 109) values.

Figure 4: Index of employees’ database in DSP1.

Due to the issues raised in the direct implementation of ABSS in data outsourcing,

the next section proposed an enhanced data outsourcing model based on ABSS that

mitigates the aforementioned issues of direct implementation.

Enhanced data outsourcing model based on Asmuth-Bloom scheme

In this section, we have enhanced the direct implementation of Asmuth Bloom secret

sharing to counteract its security threats. The enhanced scheme involves the following

stages:

Setup:

In this stage the data owner initializes the data outsourcing environment through the

following steps:

 choose an increasing polynomial function f(di) (a function applied on the attribute

values (di)) in which the variable is the attribute values to be outsourced and the

coefficients are secrets to be selected by the data owner and shared with the client.

Without loss of generality let us assume a degree 2 polynomial function of the

following form:

𝑓(𝑑𝑖) = 𝑎𝑑𝑖
2 + 𝑏𝑑𝑖

1 + 𝑐 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 > 0

The above polynomial equation can have one positive and one negative root as

there is single change of sign (𝑓(𝑑𝑖) − 𝑎𝑑𝑖
2 − 𝑏𝑑𝑖

1 − 𝑐 = 0) which determines the

number of positive roots that exist [54]. If the outsourced data contains single

signed values (either positive or negative), the client can easily choose the correct

root value when it solves the equation. However, in case the outsourced data

contains both positive and negative values, we need to apply a scaling factor to

make sure all the data values are of the same sign. The scale factor serves as an

additional secret shared between the client and data owner. As an example if the

expected data range is [-10, 25] then we can add a scaling factor ≥ 10 to have a

new range of values that are all positive. If the scaling factor is selected as 10 then

the new range will be [0, 35].

 choose a set of prime integers {p, m1, m2, …, mn} such that :

o mj < min(f(di))

o m1 < m2 < … < mn, where n is the number of DSP

o p << m1

o gcd(mi, mj) =1 for i ≠ j

o gcd(p,mj)=1 for all j

o ∏ mj
r
j=1 > 𝑝 ∏ mn−j+1

r−1
j=1

 choose a random integer β ϵ [0,
𝑀

𝑃
− 1] and compute Ii = f(di) + β.p for each

attribute value di, where 𝑀 = ∏ mj
r
j=1

Outsourcing:

To distribute the database to multiple DSP servers, the data owner performs the following

steps:

 compute the quotients qi = Ii div mj and the modulus 𝐼𝑗
′ ≡ 𝐼𝑖(𝒎𝒐𝒅 𝑚𝑗) for all the

attribute values,

 encrypt the modulus 𝐼𝑗
′ and store it with the unencrypted quotient qi.

The essence of the introduced polynomial function f is to enhance system security

as the coefficients are extra secrets known only to the data owner and the client. It is also

used to enlarge the data to give a chance of selecting large co-prime integers mj.

The quotient of the data is used as an index to maintain the order of the stored

information at the server side, which will consequently help in supporting spurious-less

range queries. The modulus is encrypted to keep the data secured as (mj)s are selected big

enough to make the quotient alone not sufficient to estimate the actual data.

Selecting large co-primes also helps in enhancing security because it increases the

range that the modulus can take before it wraps around and thus reduces the chance of

the adversary obtaining the modulus even in an unencrypted form.

Retrieving:

To retrieve the outsourced data the client performs the following steps:

 convert the queried data value into n quotient based query

 retrieve the correspondent tuples from at least r servers (r is the minimum number

of servers out of which we can reconstruct the shared data) and decrypt the

retrieved modulus

 use the following constructive algorithm to obtain Ii

𝐼𝑖 = ∑ 𝐼𝑗
′. 𝑒𝑗

𝑟

𝑗=1

where 𝑒𝑗 = 𝛾𝑗 (
𝑀

𝑚𝑗
) is computed by the Extended Euclidean Algorithm out of αj.mj

+ ei = 1

 compute the value Ii in mod ∏ 𝑚𝑗
𝑟
𝑗=1

 subtract the value β.p from Ii to obtain f(di)

 solve the polynomial equation to obtain di.

Let us illustrate how the scheme can be applied on the Employees table (Table 1).

Setup:

 let f(di) = adi
2 + bdi + c: the coefficients a=2, b=1 and c=1 as shown in Table 5

 let p = 45, m1 =101, m2 = 103, m3 = 107, m4 =109, m5 =111

 let β=3

 compute Ii = f(di) + β.p for each attribute value di as shown in Table 5

Table 5: Environmental Set up

S/N Salary (di) f(di) = adi2 + bdi + c Ii = f(di)+β.p
1 10 211 346

2 18 667 802

3 21 904 1039

4 36 2629 2764

5 67 9046 9181

6 69 9592 9727

7 71 10154 10289

8 81 13204 13339

9 93 17392 17527

10 238 113527 113662

Outsourcing:

 compute the quotients qi and modulus for each di

 encrypt the modulus and disperse it to the servers as shown in Table 6.

Table 6: Indexing scheme using a quotient of the outsourced data

Server 1 Server 2 Server 3 Server 4 Server 5
Index E(Ii mod 101) Index E(Ii mod 103) Index E(Ii mod 107) Index E(Ii mod 109) Index E(Ii mod 111)

3 #1anv,yuw 3 %1anghyuw 3 L?]ojub 3 Poknv$9 3 byyttt7

7 $89b5dja% 7 239b5dja% 7 P,mvs3# 7 Pomnbgfd3 7 Bbyughik

10 *s(1mfk3} 10 lkj6mfkdf 9 “;kubdu 9 “lkkmhgtui 9 hyt}x#4

27 =s(1gkk3} 26 hdgkdgdg 25 Pomngfa 2 (mkkjj”,?. 24 Buu46”p

90 [79b5sjq% 89 ty9fgsjqy 85 “lkjhf5 84 {dfrt5789 82 Yyggggg#

96 q@medh6 94 m.pmedhp 90 Piknhg6 89 q@medh6 87 Niiinioii*

101 s?dcms#th 99 =rtcmsm., 96 ‘p”hggff 94 ,mngfswaw 92 yhyygg@g

132 @12hz+ef 129 asd2hzlm 124 Yunhzkjh 122 ,kn gerxwxt 120 Ij%hhii”

173 Xbs&whw 170 SDbs&mne 163 ybsl./op 160 SF43455n 157 5nhjhdd

1125 Zxc!u!inm0 1103 RTN!u908u 1062 lkhu!ipoi 1042 Mhgfdc4k’ 1023 Kuy6789

Retrieving:

To illustrate how this scheme can be used to retrieve outsourced data from the server, an

example query to Table 6 for the salary d1 = 10 is used.

 the client converts the query into an index corresponding to each server. Assume

that out of the five servers only Server 1 (m1 = 101), Server 2 (m2 = 103) and Server

3 (m3 = 107) respond to the request. The client therefore:

 retrieves the encrypted moduli and decrypts them,

 uses a constructive algorithm to compute I1 = ∑ 𝐼𝑗
′. 𝑒𝑗

3
𝑗=1 where e1, e2 and e3 are

obtained using the Extended Euclidean Algorithm such that:

gcd(m1, (m2 × m3)) = 4583(101) - 42(11021) ⇒ e1 = -42(11021)

gcd(m2, (m1 × m3)) = 1364(103) - 13(10807) ⇒ e2 = -13(10807)

gcd(m3, (m1 × m2)) = 4764(107) - 49(10403) ⇒ e3 = - 49(10403)

this yields I1 = 43.e1 + 37.e2 + 25.e3 = -37845768

 computes I1 in mod ∏ 𝑚𝑗
3
𝑗=1 ⇒ I1 = -37845768 mod (101×103×107) = 346

 I1 = f(d1) + β.p ⇒ f(d1) = I1 - β.p ⇒ f(d1) = 346 - 3 × 45 = 211.

 solves the equation (2d1
2 + d1 + 1 = 211) to obtain d1 ⇒ d1 = 10 or d1 = -10.5

Table 7 shows the same criteria as Table 3. It can be seen that the proposed scheme

satisfies all criteria. It is more efficient compared to the previously reviewed ones in that

it can jointly support equality and range queries, guarantees less burden on the client

compared to some of previous approaches such as B+ tree indexing, produces no spurious

tuples and also provides data availability and confidentiality.

Although IDA addresses many of the data outsourcing issues as shown in Table

3, however, the shares of IDA contain part of the original data that can be of use to a third

party [33]. By snooping, an eavesdropper who obtains fewer than the threshold shares

may reconstruct some part of the original data explicitly resulting in partial data leakage

[56]. In contrast, no single share in the proposed approach can reveal information about

the original data. Moreover, IDA places extra burden on the client side since it uses the

B+ tree, which demands a lot of trips between the server and the client. This makes it less

efficient compared to the proposed approach. Thus, the proposed Asmuth-Bloom secret

sharing data outsourcing scheme provides more confidentiality and better performance

when compared to IDA.

Table 7: Analysis parameters of the proposed scheme

Equality

Queries

Range

Queries

Client Burden

Spurious

Tuples

Availability Confidentiality

Secure Data Outsourcing

Scheme Based On Asmuth-

Bloom Secret Sharing

Fully Fully Low No Yes Yes

Security analysis

This section discusses different attack scenarios that can be launched successfully against

some of the reviewed schemes. Then it shows how the proposed scheme is secured against

such attacks.

Scenario 1:

An attacker succeeds in launching a Denial of Service attack against one or two of the

servers involved in the outsourcing service. He/she cannot cripple the overall system, as

only r out of the n servers are required to retrieve the outsourced data, and not all of them.

Thus, the proposed scheme is secure against a DoS attack to a few of the servers and can

maintain service availability.

Scenario 2:

An internal/external attacker might try to gain knowledge of the secrets (primes) by

launching an inference attack, as the modulus values may expose the range of the secrets.

However, the proposed scheme is secured against such attacks, since the modulus values

are stored encrypted at the server side to preserve the confidentiality of the outsourced

data.

Scenario 3:

An attacker succeeds in obtaining the order-preserved indexes of the outsourced data.

Even so, he/she cannot gain any kind of knowledge about the original outsourced data

since these indexes were obtained as a result of a function applied on the original attribute

values. The coefficients of this function are shared secrets between the data owner and

the client only. Thus, the proposed scheme preserves the order of the outsourced data

without revealing information about the original data.

Scenario 4:

An adversary might try to obtain the indexes and the modulus values of different tuples

from the same server, or the modulus values of the same tuple from different servers, in

order to form linear equations that can be solved simultaneously so as to reveal the

outsourced data. This kind of attack is not feasible in the proposed scheme as the modulus

values are stored encrypted.

Scenario 5:

If an adversary, in scenario 4, has further succeeded in obtaining the unencrypted modulus

values, he/she is still going to have more unknowns (the outsourced data and the scheme’s

primes) than the number of equations that he/she can form. Therefore, it will be

computationally infeasible to get a deterministic solution.

Conclusion

Data outsourcing is a new paradigm that has gained a high popularity recently but it is

hindered by some security challenges from gaining wide spread acceptance. The security

challenges include: data confidentiality, availability and order preservation of the

outsourced data. Data confidentiality is mostly achieved using a traditional encryption

scheme, but traditional encryption is not good in preserving the order of the outsourced

data, which is an important property that is needed in data outsourcing. Availability is

another issue as the data loss can affect the business of the data owner. Data availability

is usually achieved by duplicating the data and storing it at different servers.

This paper analyses some of the previous work in data outsourcing, and shows the

advantages and limitations of each. It then proposes a secure data outsourcing scheme

based on Asmuth-Bloom secret sharing, which uses congruence classes and the Chinese

Remainder Theorem to solve the aforementioned issues. Firstly, we proposed a direct

implementation of this scheme that consists of three stages: setup, outsourcing and

retrieving. In the setup stage the data owner chooses a set of prime integers known only

to him/her and his/her client; in the data outsourcing stage the data owner outsources the

encrypted attribute values and its modulus, where the modulus is used as an index. In the

retrieving stage the client uses the index to retrieve the encrypted data and decrypt it at

the client side. However, the direct implementation is expensive for the client as it

produces spurious tuples. It is also vulnerable to statistical analysis attacks that can expose

the used secret primes.

Finally, an enhanced scheme is proposed that also consists of three stages. In the

setup stage, an increasing polynomial function is introduced to enlarge the attribute

values. This allows larger co-prime integers to be selected so as to increase the modulus

range before it wraps around, thus reducing the chance of an adversary obtaining the

modulus value even in an unencrypted form. In the outsourcing stage, the data owner

outsources the encrypted modulus and the quotient of the attribute values, to various

servers for availability. The quotient is used as an index to keep the order of the

outsourced encrypted modulus. To retrieve any value, the client retrieves the encrypted

values, decrypts them and constructs the modulus using the CRT constructive algorithm.

The proposed scheme is computationally efficient as it uses simple modular

arithmetic. It is more secure as the index is generated after wrapping the outsourced data

by a polynomial function whose coefficients are kept secret. It also produces no spurious

tuples and provides availability and confidentiality. In addition, it is an order-preserving

scheme, which further reduces the burden of encryption and decryption of every query.

Because of all its properties, the proposed scheme is strongly recommended as an efficient

tool for real data outsourcing scenarios.

Acknowledgments

The authors would like to thank Prof. David W Chadwick from the University of Kent

for proof reading this paper.

References

[1] Pope, J. A., Key, K. A., and Saigal, A. 2015. “Nonprofit Outsourcing Patterns: Why Don’t

Small NPOs Outsource More?.” Journal of Nonprofit & Public Sector Marketing, 27(1): p. 99-

116.

[2] Agrawal, D., El Abbadi, A., Emekci, F., and Metwally, 2009. “A. Database management as a

service: Challenges and opportunities.” Paper presented at the IEEE 25th International Conference

on Data Engineering ICDE'09, Shanghai, March, 1709-1716.

[3] Li, Q., Wang, Z., Li, W., Li, J., Wang, C. and Du, R. 2013. “Applications integration in a hybrid

cloud computing environment: modelling and platform.” Enterprise Information Systems, 7(3): p.

237-271.

[4] Douglas, N. 2007. “Facebook Employees Know Whose Profiles You Look At.” Valleywag,

http://gawker.com/315901/facebook-employees-know-what-profiles-you-look-at.

[5] Lucas, M. M., and Borisov, N. 2008. “Flybynight: mitigating the privacy risks of social

networking”. Paper presented at the 7th ACM workshop on Privacy in the electronic society,

Alexandria, Virginia, USA, October, 1-8.

[6] APUZZO, M. 2013. “What is the problem with prism?.” http://news.yahoo.com/whats-problem-

prism-203441280.html.

[7] Bajaj, K. 2014. “Cyberspace: Post-Snowden.” Strategic Analysis, 38(4): p. 582-587.

[8] Damiani, E., Vimercati, S. D. C., Jajodia, S., Paraboschi, S. and Samarati, P. 2003. “Balancing

confidentiality and efficiency in untrusted relational DBMSs.” Paper presented at the 10th ACM

conference on Computer and communications security, Washington, DC, October, 93-102.

[9] Rivest, R. L., Adleman, L., and Dertouzos, M. L. 1978. “On data banks and privacy

homomorphisms.” Foundations of secure computation, 4(11): p. 169-180.

[10] Nirmala, S. J., Bhanu, S. M. S., and Patel, A. A. 2012. “A Comparative study of the secret

sharing algorithms for secure data in the cloud.” International Journal on Cloud Computing:

Services and Architecture (IJCCSA), 2(4): p. 63-71.

[11] Agrawal, R., Evfimievski, A., and Srikant, R. 2003, “Information sharing across private

databases.” Paper presented at the 2003 ACM SIGMOD international conference on

Management of data, San Diego, June, 86-97.

[12] Samarati, P., and Vimercati, S. D. C. 2010. “Data protection in outsourcing scenarios:

issues and directions.” Paper presented at the 5th ACM Symposium on Information,

Computer and Communications Security, Beijing, April, 1-14.
[13] Wang, C., Ren, K., Yu, S., and Urs, K. M. R. 2012. “Achieving usable and privacy-assured

similarity search over outsourced cloud data”. Paper presented at IEEE 2012 INFOCOM, March,

451-459.

[14] Selvam, L., Kumar, P. M., and Renjith, J. A. 2014. “Encryption-Based Secure Sharing of Data

with Fine-Grained Access Control in Public Clouds.” Journal of Applied Security Research, 9(2):

p. 172-184.

[15] Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakrishnan, H. 2011. “CryptDB: protecting

confidentiality with encrypted query processing.” Paper presented at the 23rd ACM Symposium

on Operating Systems Principles, Cascais, Portugal, October, 85-100.

[16] Stratus Technologies. 2009. “Continuous Uptime for SQL Server: The best way to protect critical

databases against downtime and loss.”,

http://www.platformmodernization.org/stratus/Lists/news/Attachments/1/Continuous-Uptime-

for-SQL-Server.pdf.

[17] Bowers, K. D., Juels, A., and Oprea, A. 2009. “HAIL: a high-availability and integrity layer for

cloud storage.” Paper presented at the 16th ACM conference on Computer and communications

security, Chicago, November, 187-198.

http://news.yahoo.com/whats-problem-prism-203441280.html
http://news.yahoo.com/whats-problem-prism-203441280.html

[18] Shamir, A. 1979. “How to share a secret.” Communications of the ACM, 22(11): p. 612-613.

[19] Stadler, M. 1996. “Publicly verifiable secret sharing.” Paper presented at the 15th annual

international conference on Theory and application of cryptographic techniques -

EUROCRYPT’96 – LNCS, Berlin, 190-199.

[20] Benaloh, J., and Leichter, J. 1990. “Generalized secret sharing and monotone functions.” Paper

presented at the Advances in cryptology – LNCS, California, USA, 27-35.

[21] Chandramowliswaran, N., Srinivasan, S., and Muralikrishna, P. 2015. “Authenticated key

distribution using given set of primes for secret sharing.” Systems Science & Control Engineering:

An Open Access Journal, 3(1): p. 106-112.

[22] Tassa, T. 2007. “Hierarchical threshold secret sharing.” Journal of Cryptology, 20(2): p. 237-264

[23] Emekci, F., Agrawal, D., and El Abbadi, A. 2005. “Abacus: A distributed middleware for privacy

preserving data sharing across private data warehouses.” Paper presented at the

ACM/IFIP/USENIX 6th International Middleware Conference, France, November, 21-41.

[24] Hore, B., Mehrotra, S., and Tsudik, G. 2004. “A privacy-preserving index for range queries.”

Paper presented at the Thirtieth international conference on Very large data bases, Canada, 720-

731.

[25] Hacigümüş, H., Iyer, B., Li C., and Mehrotra, S. 2002. “Executing SQL over encrypted data in the

database-service-provider model.” Paper presented at the 2002 ACM SIGMOD international

conference on Management of data, Madison, Wisconsin, June, 216-227.

[26] Damiani, E., Vimercati, S. D. C., Foresti, S., Samarati, P., and Viviani, M. 2006. “Measuring

inference exposure in outsourced encrypted databases.” Paper presented at Quality of Protection -

Advances in Information Security, Springer, Feb, 185-195.

[27] Agrawal, R., Kiernan, J., Srikant, R. and Xu, Y. 2004. “Order preserving encryption for numeric

data.” Paper presented at the 2004 ACM SIGMOD international conference on Management of

data, Paris, 563-574.

[28] Devmane, M. A., and Rana, N. K. 2012. “Privacy Issues in Online Social Networks.” International

Journal of Computer Applications, 41(13): p. 5-8.

[29] Gross, R., and Acquisti, A. 2005. “Information revelation and privacy in online social networks.”

Paper presented at the 2005 ACM workshop on Privacy in the electronic society, Alexandria, 71-

80.

[30] Luo, W., Xie, Q., and Hengartner, U. 2009. “Facecloak: An architecture for user privacy on social

networking sites.” Paper presented at the International Conference on Computational Science and

Engineering 2009 - CSE'09, Vancouver, BC, Aug. 26-33.

[31] Auwal, S. I., Faisal, S. I., Yusuf, I. M., Altun, H., Kaiiali, M., and Wazan, A. S. 2013. “Cloud-

based online social network.” Paper presented at the 2013 International Conference on

Electronics, Computer and Computation (ICECCO), Ankara, Turkey, November. 289-292.

[32] Asmuth, C., and John B. 1983. “A modular approach to key safeguarding.” IEEE transactions on

information theory, 30(2): p. 208-210.

[33] Tse, D. W. K., Chen, D., Liu, Q., Wang, F., and Wei, Z. 2014. “Emerging Issues in Cloud Storage

Security: Encryption, Key Management, Data Redundancy, Trust Mechanism.” Paper presented

at the International Conference of Multidisciplinary Social Networks Research, Kaohsiung,

Taiwan, September, 297-310.

[34] Foresti, S. 2010. “Preserving privacy in data outsourcing.” Springer Science & Business Media.

[35] Kaosar, M., and Quazi M. 2014. “Privacy-preserving interest group formation in online social

networks (OSNs) using fully homomorphic encryption.” Journal of Information Privacy and

Security, 10(1): 44-52.

[36] “Homomorphic Encryption”, https://en.wikipedia.org/wiki/Homomorphic_encryption.

[37] Poosala, V., Haas, P. J., Ioannidis, Y. E. and Shekita, E. J. 1996. “Improved histograms for

selectivity estimation of range predicates.” Paper presented at ACM SIGMOD international

conference on Management of data, Montreal, Quebec, Canada, June, 294-305.

[38] Mousavi, H., and Zaniolo, C. 2011. “Fast and accurate computation of equi-depth histograms over

data streams.” Paper presented at the 14th International Conference on Extending Database

Technology, Uppsala, Sweden, 69-80.

[39] B- tree, https://en.wikipedia.org/wiki/B-tree.

[40] Graefe, G. 2012. “A survey of B-tree logging and recovery techniques.” ACM Transactions on

Database Systems (TODS), 37(1): 1-35.

[41] Stuntz, C. 2010. “What is Homomorphic Encryption, and Why Should I Care?”,

http://blogs.teamb.com/craigstuntz/2010/04/08/38577.

[42] König, A. C., and Weikum, G. 1999. “Combining histograms and parametric curve fitting for

feedback-driven query result-size estimation.” Paper presented at the 25th International

Conference on Very Large Data Bases, San Francisco, CA, USA, 423-434.

[43] Wang, S., Agrawal, D., and El Abbadi, A. 2012. “Is Homomorphic Encryption the Holy Grail for

Database Queries on Encrypted Data?” Technical report, University of California, USA.

[44] Liu, D., and Wang, S. 2012. “Programmable order-preserving secure index for encrypted database

query.” Paper presented at the IEEE 5th International Conference on Cloud Computing (CLOUD),

June, 502-509.

[45] Kadhem, H., Amagasa, T., and Kitagawa, H. 2010. “An encryption scheme to prevent statistical

attacks in the das model.” Paper presented at DEIM Forum.

[46] Popa, R. A., Li, F. H., and Zeldovich, N. 2013. “An ideal-security protocol for order-preserving

encoding.” Paper presented at IEEE Symposium on Security and Privacy (SP), May, 463-477.

[47] Mar, K. K. 2011. “Secured virtual diffused file system for the cloud.” Paper presented at

International Conference for Internet Technology and Secured Transactions (ICITST), Dec, 116-

121.

[48] Tech Target. 2010. “Information Dispersal Algorithms: Data-parsing for network security.”,

http://searchnetworking.techtarget.com/Information-dispersal-algorithms-Data-parsing-for-

network-security.

[49] Quisquater, M., Preneel, B., and Vandewalle, J. 2002. “On the security of the threshold scheme

based on the Chinese remainder theorem.” Paper presented at Public Key Cryptography – LNCS,

199-210.

[50] Wang, S., Agrawal, D., and El Abbadi, A. 2011. “A comprehensive framework for secure query

processing on relational data in the cloud.” Paper presented at Secure Data Management - LNCS,

52-69.

[51] Dragan, C. C., and Tiplea, F. L. “On the Asymptotic Idealness of the Asmuth-Bloom Threshold

Secret Sharing Scheme.” International Journal on Designs, Codes and Cryptography, submitted

for publication in 2013.

[52] Kuo, W. C., Fu, C. J., and Laih, C. S. 2006. “Design a Secure and Practical Metering Scheme.”

Paper presented at the International Conference on Internet Computing, 443-447.

[53] Secret sharing using the Chinese remainder theorem,

https://en.wikipedia.org/wiki/Secret_sharing_using_the_Chinese_remainder_theorem.

[54] MATHs is FUN advanced, “Polynomials: The Rule of Signs.”,

http://www.mathsisfun.com/algebra/polynomials-rule-signs.html.

[55] Maohua, S., Shoushan, L., Lei, P., Zhe, J., and Yang, X. 2012. “Research on Secret Sharing and

Privacy-preserving Secret Sharing with SMC.” International Journal of Advancements in

Computing Technology, 4(4): 115-123.

[56] Li, M. 2013. “On the confidentiality of information dispersal algorithms and their erasure codes.”

Journal of Computing Research Repository - arXiv:1206.4123.

