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A secure data outsourcing scheme based on Asmuth-Bloom secret 

sharing 

Data outsourcing is an emerging paradigm for data management in which a 

database is provided as a service by third party service providers. One of the major 

benefits of offering database as a service is to provide organizations, which are 

unable to purchase expensive hardware and software to host their databases, with 

efficient data storage accessible online at a cheap rate. Despite that, several issues 

of data confidentiality, integrity, availability and efficient indexing of users’ 

queries at the server side have to be addressed in the data outsourcing paradigm. 

Service providers have to guarantee that their clients’ data is secured against 

internal (insider) and external attacks. This paper briefly analyses the existing 

indexing schemes in data outsourcing and highlights their advantages and 

disadvantages. Then it proposes a secure data outsourcing scheme based on 

Asmuth-Bloom secret sharing which tries to address the issues in data outsourcing 

such as data confidentiality, availability and order preservation for efficient 

indexing.  

Keywords: data outsourcing; indexing; secret sharing.  

Introduction 

The rapid increase in the amount of data held by organizations has drastically increased 

the cost of in-house data management. Services providers that share resources across 

different organizations are therefore required in order to reduce the cost [1]. In-house data 

management cost was estimated to be 5-10 times higher than the initial acquisition cost 

[2]. 

Despite the economic advantage of data outsourcing, it faces a lot of challenges 

to get widespread acceptance [3]. Data owners are cautious to place their secret 

information under the control of a third party without the guarantee of having an efficient 

and robust service that manages the information in a secure and privacy preserving 

manner. Studies have shown that users’ secret information stored at the premises of 



service providers is susceptible to insider attacks; for example employees of online social 

network can know which profiles a user has visited [4]. Some may sell their users data to 

third party companies who can use them for commercial purposes [5]. In addition, 

governments may have a direct access to users’ private information through collaboration 

with service providers, as revealed in 2013 by one of the NSA contractors Edward 

Snowden [6, 7]. For data outsourcing to take over in-house data management, these issues 

have to be adequately addressed. 

The prominent techniques used in securing outsourced data are Data encryption 

[8], Homomorphic encryption [9], Secret Sharing algorithms and Private Information 

Retrieval (PIR) [10]. 

Encryption has been a traditional solution to the issue of confidentiality. However, 

performing database manipulations operations such as insert, update, delete and query on 

an outsourced encrypted data imposes an extra overhead due to the several encryption 

and decryption processes that need to take place at the client side [11-14]. 

In homomorphic encryption, data processing operations are performed on an 

encrypted outsourced data at the server side while the client only verifies the correctness 

of the answer without spending much computational effort [15]. This reduces the 

overhead of encryption and decryption processes that have to be performed at the client 

side. However, homomorphic encryption is considered to be computationally expensive 

due to its dependence on public key cryptosystems [10]. 

Apart from data confidentiality, another important issue is data availability. 

“Downtime can cripple work flow and impose substantial cost - from time and money 

spent on repairs to lapses in productivity to the inability to meet service levels and 

compliance mandates” [16]. Data availability is usually achieved by duplicating the data 



and storing it at different servers [10]. Secret sharing schemes and Information Dispersal 

Algorithms (IDAs) [17] are used to provide data availability. 

Secret sharing [18] refers to a method of distributing a secret to a group of 

participants each of whom is allocated a share of the secret [19]. There are several types 

of secret sharing schemes. The most basic types are the threshold schemes, where only 

the cardinality of the set of shares matters [19, 20]. In other words, given a secret S, 

and n shares, any set of t out of n shares is a set with the smallest cardinality from which 

the secret can be recovered [21], in the sense that any set of (t-1) shares is not enough to 

give S. This is known as a threshold access structure and is also known as (t, n) 

threshold secret sharing scheme [22]. Several secret sharing schemes have been 

employed in [2, 10, 23] to provide data availability for outsourced data. 

In PIR protocols, the queries performed by the client on the database are hidden 

from the service provider. One trivial but inefficient way to achieve PIR is for the server 

to send the entire encrypted database to the client. Then the client has to decrypt and 

execute the query locally. This provides privacy but introduces communication latency 

and computational overhead on the client especially for large databases [24]. 

Due to this, many approaches were designed to enable an efficient execution of 

different types of queries on an encrypted data e.g. encryption based indexing [8], 

homomorphic encryption [9], partition based indexing [25], hash based indexing [26],  

B+ tree indexing [25], and order preservation encryption [27] (order preservation is a very 

important aspect in a data outsourcing scenario, in order to  support comparison 

operations to be directly applied on encrypted/shared data at the server side without the 

need to retrieve and decrypt it at the client side). 



Apart from providing data as a service, the data outsourcing model has been 

incorporated in many real-time applications to solve users’ privacy issues.  As an 

example, several data outsourcing paradigms have been proposed to address the privacy 

issue that exists in Online Social Networks [28, 29] such as flyByNight [5], faceCloak 

[30] and Cloud-based OSN projects [31].  

 This paper proposes a new data outsourcing scheme based on Asmuth-Bloom 

Secret Sharing (ABSS) [32]. ABSS is a threshold scheme based on the Chinese 

Remainder Theorem. It requires O(r) modular operations to recover a shared data as 

compared with other secret sharing schemes such as Shamir Secret Sharing which is 

sensitive to error and uses an interpolation formula that requires O(rlog2r) operations. 

ABSS is secure in the sense that no useful information can be recovered out of (r - 1) 

shares. ABSS can be modified to include the option of checking the validity of the shared 

outsourced data before recovery [32]. For the previously mentioned advantages of ABSS, 

this paper proposes a new data outsourcing scheme based on ABSS that addresses several 

security challenges existing in data outsourcing, namely, availability, confidentiality and 

order preservation efficiently. There are other schemes that offer one [8, 9] or two [19, 

21] of these characteristics, however, our proposed scheme supports all three 

characteristics in an efficient and computationally less expensive manner. 

The rest of this paper is organized as follows: Section II discusses the data 

outsourcing model. Section III gives a detailed review of related work. Section IV 

discusses the secret sharing scheme using Chinese Remainder Theorem (CRT). Section 

V presents a direct implementation of the Asmuth-Bloom secret sharing scheme in data 

outsourcing. In Section VI, an enhanced data outsourcing model based on the Asmuth-

Bloom secret sharing scheme is proposed. Then, Section VII presents a security analysis 

of the proposed scheme. Finally, the paper concludes in Section VIII. 



Data outsourcing model 

A data outsourcing model [34] consists of the following entities depicted in Figure 1. 

 Data owner: the entity that owns the data and wishes to outsource it. 

 User: an entity that needs to access the outsourced data published by the data 

owner. 

 Service provider: an entity that stores and manages the outsourced data. 

 Client: the only party trusted by all the entities involved in a data outsourcing 

scenario. The client transforms queries presented by users into equivalent queries 

that operate on the encrypted database stored on the server side. 

The data owner and the clients rely upon the service provider for the availability 

of the outsourced data. However, the confidentiality of the outsourced data is not trusted 

with the service provider as it may contain sensitive information that the data owner needs 

to reveal only to authorized users. Therefore, it is necessary to prevent the service 

provider from having unauthorized access to the outsourced data.  

 

Figure 1: Data outsourcing model 



The Figure above illustrates how the data outsourcing model works. The data 

owner encrypts his/her data and outsources it to the third party service provider where it 

will be stored and managed in an encrypted form. Whenever a user wants to access the 

outsourced data, he/she sends his/her query to the client where it will be transformed to a 

corresponding query that can work on the encrypted data at the server side. The server 

then responds to the request and sends the encrypted result back to the client, where it 

will be decrypted, further processed and finally sent to the user. 

Related works 

A lot of techniques were designed to support queries on encrypted relational databases 

and to protect the outsourced database against compromises in confidentiality, integrity 

and availability. However, some of these techniques have certain limitations which make 

them inefficient. 

The table below illustrates a simple database example used throughout this paper. 

It is a database of employees’ information. The data owner may outsource this database 

to multiple Data Service Providers (DSPj). 

Table 1: Employees’ table 

S/N Fname Salary 

1 Alicia 10 

2 Bob 18 

3 Carol 21 

4 Danna 36 

5 Ebe 67 

6 Frank 69 

7 Gabza 71 

8 Habu 81 

9 Ibro 93 

10 Joseph 238 

Encryption based indexing approach 

Database encryption refers to the use of encryption techniques to transform a plaintext 

database into an encrypted database, thus making it unreadable to anyone except those 

who possess the decryption key [8]. 



Encryption protects the exposure of sensitive information even if the server is 

compromised, and ensures its integrity since data tampering can be detected. Data 

decryption cannot be executed at the server side, therefore solutions have been developed 

that allow the server to execute queries directly on the encrypted data [12]. 

In [8], an encryption approach is employed in which the attributes of the relation 

are encrypted and used as an index. The index value Ii[j] associated with the attribute 

value ai[j] in tuple j is computed as Ek(ai[j]), where Ek is a conventional encryption 

function and k is the encryption key.  

The advantages of this approach are: 

 It supports the confidentiality service. 

 It supports equality. As an example, searching for a tuple in an outsourced 

encrypted data whose attribute a1 value in Table 1 is equal to 10 will be directly 

translated by the client into searching for a tuple in the encrypted relation whose  

I1 value is equal to Ek(10) [25]. 

The limitations of this approach are: 

 It does not support range queries because conventional encryption need not be 

order preserving [27]. 

 It does not support availability. 

Homomorphic encryption 

Homomorphic encryption is a form of encryption that allows mathematical operations to 

be performed on encrypted data without compromising the encryption, and the result 

when decrypted should match the operations on the plaintext. 



Homomorphic encryption is desirable in modern communication system 

architectures especially in Cloud Computing [8]. This is because it can allow the chaining 

of different services together without exposing the data to each of those services [35]. For 

example, a chain of different services from different companies could be: calculate the 

tax, the currency exchange rate and the shipping. All of these services are needed within 

a single transaction without exposing the unencrypted data to any of them [36]. This 

feature makes this scheme good in providing confidentiality of an outsourced data, though 

it does not preserve its order due to the encryption process. 

In [9], a privacy homomorphic encryption that allows basic arithmetic operations 

to be performed over encrypted data is employed. In this scheme two functions α and β 

are defined over the domains of unencrypted and encrypted values respectively. If A is a 

domain of unencrypted values, Ek is an encryption function with key k, and Dk is the 

corresponding decryption function, then (Ek, Dk, α, β) can be defined as a privacy 

homomorphism if: 

Dk( βi ( Ek(a1), Ek(a2), …, Ek(an))) = αi (a1, a2,…, am): 1≤ i ≤ n 

To add two values a1 and a2 which are encrypted and stored at the server side the 

system goes through the following steps; assuming Ek(ai) = ( ai mod p, ai mod q) while 

(p, q) are prime numbers representing the shared secret key k between owner and client): 

 Compute n = p.q, where n is a public parameter.  

 The server is instructed to compute Ek(a1) + Ek(a2) and then return the result to 

the client 

 The client decrypts the result using the function: (d1qq-1+d2pp-1) (mod n), where 

d1 = a1 (mod p), d2 = a2 (mod q), qq-1 = 1(mod p) and pp-1 = 1(mod q). 



As an example, if k = (p = 5, q = 7) and a1 = 10, a2 = 18 are two salaries of two 

different employees (as shown in Table 1) ⇒ Ek(a1) = (10 mod 5, 10 mod 7) = (0, 3) and 

Ek(a2) = (18 mod 5, 18 mod 7) = (3, 4). To add a1 and a2 stored encrypted at the server: 

 n = p.q = 5 × 7 = 35 

 E(a1)+E(a2) = (0+3, 3+4) = (3, 7) 

 The client finally decrypt the result using the function (d1qq-1+d2pp-1) (mod n) = 

(3×7×3 + 7×5×3) mod (35) = 168 mod 35 = 28 which is the addition of a1 to a2. 

The advantages of homomorphic encryption are: 

 It supports confidentiality. 

 It supports equality, aggregation and logical operations on the outsourced data [9]. 

The limitations of this approach are: 

 It is computationally expensive due to its dependence on PKI [10]. 

 It does not preserve the order of the outsourced data so it cannot execute range 

queries. 

 It does not support the availability service. 

Partitioned based indexing approach 

In this approach the attribute domain Di is partitioned into contiguous subsets of values 

of the same size without overlapping. Each partition is augmented with a label in an 

ordered or random manner in the domain Di.  

 In [25], an architecture is proposed based on a partition based indexing approach. 

It comprises of three entities: a user, a server and a client (similar to Figure 1). A user 

poses a query to a client to transform it to an equivalent query that can run on encrypted 

data at the server side. The encrypted database is augmented with an index to make the 



encrypted data queryable. Based on the index, a technique is developed to split the user’s 

query over encrypted data into 2 queries; a server query runs on the encrypted data and a 

client query runs on the client side to post-process the results obtained from the server 

query. To split the query, three functions are introduced: a partitioning function, an 

identification function and a mapping function. 

 The partition function splits the domain values of attributes into partitions of equal 

length using a histogram construction technique (e.g. MaxDiff [37] or equi-depth 

[38]) such that it covers the whole domain. 

 The identification function assigns a unique identifier to each of these partitions. 

To avoid collisions, a collision free hash function can be used for this purpose. 

 The mapping function maps each of the partitions to its identifier. 

The advantages of this approach are: 

 It supports the confidentiality service. 

 It allows server evaluation of the equality condition [34]. 

 The partitioning of the domain values into contiguous subsets makes it possible 

to partially preserve the order of the outsourced data [34]. 

The limitations of this approach are:   

 It can produce spurious tuples. Spurious tuples are tuples that satisfy the 

correspondent query condition over the indexes of the outsourced data but do not 

satisfy the query condition over the original plaintext [34]. These spurious tuples 

need to be further processed and eliminated at the client side. 

 It partially supports range queries [34]. 

 It does not support availability. 



Hash based indexing 

The hash based indexing technique uses as an index the result of a secure hash function 

over the attribute values of a relation. The hash function can be adapted for different 

granularities of the presented data. As an example if the co-domain C of the hash function 

is small compared to the number of attribute values, the hash function distributes the 

tuples uniformly in |C| buckets. 

With respect to direct encryption, hash based indexing provides more 

confidentiality, however, it does not preserve the order of the outsourced data. When 

hashing is used, different plaintext values are mapped onto the same index, so the query 

results often produce spurious tuples that need to be further processed by the client [26]. 

As an example, consider the relation in Table 2 of an encrypted employee table 

Employeek. The indexes of the attributes Fname and Salary in relation Employee (shown 

in Table 1) are computed by applying the hash-based method. Three distinct values 

namely α, β and γ have been mapped to the values of the attribute Fname while four 

distinct values 𝜖, 𝜃, 𝜙 and 𝜎 have been mapped to the values of the attribute Salary. 

Table 2: Employeek 

S/N Encrypted tuple Index1 Index2 

1 tyuR34+pcn α 𝜖 

2 Kljm$=4tye β 𝜎 

3 Frgshgajk2 γ 𝜎 

4 Njwklp345y α 𝜃 

5 Rnozh12p*0 β 𝜖 

6 Yajkie409@ γ 𝜙 

7 WblpAeNR%7 α 𝜙 

8 yusbr)@jkl γ 𝜃 

9 pls-2wema> β 𝜃 

10 Rtcbrtmlas α 𝜎 



The advantages of hash based indexing are: 

 It is more confidential than direct encryption based indexing [5]. 

 It allows server side evaluation of the equality condition. As an example each 

condition aij = v, where v is a constant value is transformed into a condition Iij = 

h(v), where Iij is the index corresponding to aij in the encrypted relation [5]. 

The limitations of hash based indexing are: 

 It produces spurious tuples in cases where the hash function is not collision free, 

which adds a burden to the client side [34]. 

 It is not order preserving, therefore it does not support range queries [34]. 

 It does not support the availability service. 

B + tree indexing approach 

A B+ tree can be viewed as a B-tree [39] in which each node contains only keys (not key-

value pairs), and to which an additional level is added at the bottom with linked leaves. It 

consists of leaves, internal nodes and a root. The root may be either a leaf or a node with 

two or more children. The main essence of a B+ tree is in storing data for efficient data 

processing operations [40]. 

Damiani et al. [8], propose an indexing method based on the B+ tree that can be 

attached to an encrypted database, which can be used by the server to select the data to 

be returned in response to a query without the need for disclosing the database content. 

Given an internal vertex storing f key values k1,…,kf  with f ≤ n-1, each key value 

ki is followed by a pointer pi, and k1 is preceded by a pointer p0. Pointer p0  points to the 

subtree that contains keys with values lower than k1, pf  points to the sub-tree that contains 

keys with values greater than or equal to kf, and each pi points to the sub-tree that contains 

http://en.wikipedia.org/wiki/B-tree


keys with values included in the interval [ki, ki+1]. Internal vertices do not directly refer 

to tuples in the database, but just point to other vertices in the structure. Leaf vertices 

directly refer to the tuples in the database that have a specific value for the indexed 

attribute. Leaf vertices are linked in a chain that allows the efficient execution of range 

queries. 

A B+ tree is built over the most queried attribute aij of a database Di. It is then 

represented as a relational table, encrypted and stored at the server side along with the 

encrypted database [34]. The relational table consists of two attributes: 

 Id - represents the identifier of a vertex, and 

 Vertexcontent - represents the content of a vertex. 

Each row in the relation represents a vertex of the tree, while the pointers are 

represented through cross references from the vertex content to other vertex identifiers in 

the relation. Encryption is applied at the vertex level in order to protect the order 

relationship among plaintext, index values and the mapping between the two domains 

[41]. 

To search for a tuple with key k in B+ tree, the client starts searching from the 

root vertex, which is a tuple with Id = 1, retrieves it and decrypts it to see whether it 

satisfies the given condition. If not, it then traverses through the nodes, and at each node 

retrieves the content of the vertex and decrypts it until the leaf containing the key k is 

found. 

This kind of indexing approach provides both confidentiality and order 

preservation, as the outsourced data is stored encrypted with a B+ tree built over the most 

queried attribute for efficient data processing operation. However, it does not support 

availability. 



Figure 2 illustrates how this scheme is applied to the employee table (Figure 2 (a)) 

encrypted (Figure 2 (b)), the B+ tree is built over the most queried attribute of the database 

(Figure 2 (c)), it is then represented in a relational table (Figure 2 (d)), encrypted (Figure 

2 (e)) and stored along with the encrypted database at the server side. 

The advantages of the B+ tree indexing approach [34] are: 

 It supports confidentially. 

 It is secure against inference attacks, since the B+ tree content itself is encrypted. 

 It supports equality queries. 

 It is order preserving so it can support range queries. 

 It does not produce spurious tuples. 

 It allows the evaluation of ORDER-BY and GROUP-BY clauses of SQL queries. 

The limitations of the B+ tree indexing approach are: 

 B+ tree indexing is expensive for the client compared to bucket and hash based. 

Several trips (as many as the levels we have in the B+ tree) between the client and 

the server are needed to retrieve the required tuples [8]. 

 It does not support the availability service. 



 

 

Figure 2.  Example of the B+ tree indexing approach 

  



Order preservation encryption scheme (OPES) 

The idea behind OPES is that unique values are generated from a user specified target 

distribution and sorted in a table T. Then the ith plaintext (pi) value in the sorted list of |P| 

plaintexts is encrypted into the ith value in the sorted list of |P| values obtained from the 

user’s specified target distribution. This makes the scheme good in preserving the order 

of the encrypted data and also provides confidentiality. To decrypt any of the ciphertext 

a lookup into a reverse map is required [27]. In this case the table T is the encryption key 

that must be kept secret. 

OPES uses three stages to encrypt a database:  

 Model Stage 

 Flatten Stage and  

 Transform stage. 

Model stage:  

In this stage the input and the target distributions are modeled as piece wise linear splines 

using either of the following techniques. 

 Histogram technique: this technique captures statistical information about the data 

value distributions using counters for a specified number of data value buckets 

[42] 

 Parametric technique: this technique approximates data value distributions by 

fitting the parameters of a given type of function (e.g. polynomial of a given 

maximum degree) [42]. 

In [43], the two modeling techniques were used to first of all partition the values 

into buckets using the histogram-based technique then model the distribution within each 



bucket as a linear spline (a linear spline of a bucket is a line connecting the densities at 

the two end points of a bucket) using the parametric technique. 

Flatten stage:  

In this stage the plaintext database P is transformed into a flat database f such that values 

in f are uniformly distributed. In cases where a bucket has dense plaintext, the bucket will 

be stretched so that the density of the plaintext in the flattened bucket will be uniform. 

Transform stage:  

In this stage the flattened database is transformed into a cipher database C such that the 

values in C are distributed according to the target distribution.  

As an example, if we have pi and pj where pi < pj, this will be transformed to fi < 

fj in the flatten stage, and finally the flattened buckets will be transformed to a uniformly 

distributed cipher database ci < cj. ( i.e. Pi < Pj ⇒ fi < fj ⇒ Ci < Cj) 

In [44], an order preserving indexing scheme over encrypted data is proposed 

based on a simple mathematical expression (av + b + noise). The result of the expression 

is made public while the coefficients a and b are the secret keys known only to the data 

owner and the client. v is the value to be indexed and noise is randomly chosen from the 

range {0, …, a - 1} to preserve the order of the index. One of the limitations of this scheme 

is that the secret keys a and b are reused throughout the system, which makes the scheme 

insecure. Adding noise randomly means that even the same encrypted values may not 

have the same noise, which may give false queried information. Another limitation is 

when an attacker obtains the ciphertext c1 for plaintext zero (i.e. c1 = b + n1) and ciphertext 

c2 for large plaintext k (i.e. c2 = ak + b + n2), then by computing the difference between 

the two ciphertexts, the attacker obtains (c2 - c1 = ak + n2 - n1). Since the randomly selected 



noises n1 and n2 are between zero and a (i.e. 0 ≤ n1, n2 < a) then the attacker learns that 

the secret a is in the interval 𝐼1 =
𝑐2−𝑐1

𝑘+1
≤ 𝑎 ≤ 𝐼2 =

𝑐2−𝑐1

𝑘−1
  [46, 47]. 

The advantages of the OPES indexing approach are [27]: 

 It supports the confidentiality service. 

 It is order preserving. 

 It produces exact results for the query without any spurious tuples. 

 It can handle updates, without the need for re-encryption. 

The limitations of the OPES indexing approach are: 

 It is vulnerable to tight estimation and statistical attacks [45]. 

 It is vulnerable to chosen plaintext attacks [45]. 

 It does not support availability. 

Information dispersal algorithms (IDAs) 

IDAs were first proposed by Michael O. Rabin in 1989 to protect data sent over the 

network or sitting in storage arrays and not to be accessed except by the right user [48]. 

In IDAs, a file is split into n pieces where a minimum m pieces (n > m) are 

required for reconstructing the original file. A transform matrix of n rows and m columns 

is used to transform the original file into n pieces [47]. 

In a salted IDA, confidentiality is achieved by using a modified IDA scheme. A 

salted IDA depends on randomness to improve data confidentiality. While it relies on the 

original IDA scheme to provide data availability [50]. 

A transform matrix TM of (n x m) is maintained by the client as the information 

dispersal matrix and the keys for encoding and decoding a data matrix D. n and m are 



determined by the client based on the number of servers that are planned to be used and 

the estimated number of non-faulty (available) servers. Also the client keeps a secret ss 

(a shared secret between the data owner and client) and a deterministic function fs for 

producing random factors (called salts) based on the address of the data entries on D. 

Function fs feeds ss and the address of the data entry into a pseudorandom number 

generator (PRNG) before encoding and dispersing D onto the servers, for each column i 

of D the client calls the PRNG procedure i times, sets the last generated random number 

(the output of the ith round) as the salt to each data entry of column i. The data matrix 

after adding the salt is called a tuple matrix TD. The essence of the generated random 

number was to improve the confidentiality of the original IDA. 

It is difficult to search for data in an encoded matrix based on plaintext input. To 

solve this issue, a B+ tree index was built on the key attribute and kept secured at the 

client side. The leaf nodes of the index tree contain pointers to the columns of the tuple 

matrix (TD) where the tuple with its key are stored.  

The Index matrix (ID) and TD are encoded into IE = (ID × TM) and TE = (TD × 

TM) respectively and then dispersed onto n servers, S1, S2, ..., Sn, by the salted IDA as 

shown in Figure 3. Queries on the index key attribute can be efficiently processed by 

locating the columns of ID (tree nodes) that store the query keys and then retrieving the 

corresponding tuples from the columns of TD. 

After decoding the encoded data retrieved from m non-faulty servers, the client 

reconstructs the salts by calling fs and then deducts these salts from the decoded data 

entries, recovering D. 



 

Figure 3: Framework for dispersing data in a cloud using salts [50] 

The advantages of the IDA are [50]: 

 It provides a confidentiality service. 

 It supports equality queries. 

 It is order preserving, and as such it supports range queries. 

 It supports availability. 

 It does not produce spurious tuples. 

 It is secured against statistical analysis of the encrypted data. 

The limitations of the IDA are [50]: 

 For every query the whole column where the candidate answer tuple is located 

has to be retrieved. 

 It is expensive for the client. 

Table 3 compares the reviewed approaches in the literature based on six criteria: 

support for equality queries and/or range queries, the cost of performing operations at the 

client side, returning spurious tuples, data availability and data confidentiality. It is 

obvious that none of the aforementioned approaches are able to adequately address all the 

data outsourcing issues. Every approach has some limitations. This motivates us to 

propose a new data outsourcing scheme that tries to address all the issues. 



Table 3: Comparison of the existing approaches 

Approaches 

Equality 

Queries 

Range 

Queries 

Client 

Burden 

Spurious 

Tuples 

Availability Confidentiality 

Encryption based indexing Fully No High Yes No Yes 

Homomorphic encryption Fully No High Yes No Yes 

Partitioned based indexing Fully Partially Partially Yes No Yes 

Hash based indexing Fully No High Yes No Yes 

B+ tree indexing Fully Yes High No No Yes 

Order preservation encryption Fully Fully High No No Yes 

IDAs Fully Fully High No Yes Yes 

A secret sharing scheme using Chinese Remainder Theorem (CRT) 

A secret sharing algorithm is one of the prominent techniques widely used in data 

outsourcing [3, 15, 29, 55]. It is an ideal scheme for storing sensitive and highly important 

information. Traditional encryption methods, as discussed earlier, are not efficient for 

achieving a high level of confidentiality and availability at the same time. 

The aim of this paper is to explore a secret sharing algorithm based on the Chinese 

Reminder Theorem (CRT) to provide data availability, confidentiality and order 

preservation for outsourced data. 

The secret sharing scheme based on CRT produces shares presented in 

congruence equations and the secret can be recovered by solving the system of 

congruencies to get a unique solution, which is the original outsourced data. Secret 

sharing schemes that are based on CRT are proved by Quisquater et el [49] to be 

asymptotically perfect schemes [51]. 

http://en.wikipedia.org/wiki/Secret_sharing


CRT Theorem: 

Suppose that m1, m2, …, mk are pairwise relatively prime positive integers. Then for any 

given integers a1, a2, …, ak, the following system of simultaneous congruencies 

x ≡ ai (mod mi) for 1 ≤ i ≤ k 

has a unique solution x modulo the product M = m1…mk. 

This is given by: 

x ≡ a1M1y1 + a2M2y2 + …+ akMkyk(modM) 

where 𝑀𝑖 =
𝑀

𝑚𝑖
    and yi ≡ (Mi)

-1(mod mi) 

Asmuth-Bloom threshold scheme 

Asmuth-Bloom secret sharing is a threshold scheme that is based on CRT. It was 

proposed with the intent of safeguarding a key [34]. In this scheme, a key K is 

decomposed into n shares Ii (congruence classes of a number associated with the original 

key), in such a way that the key is only recoverable from any r ≤ n of the shares, and no 

useful information can be recovered from (r - 1) shares. 

The value of this scheme depends on the following features [34]: 

 the efficiency of decomposition and recoverability of the key, 

 the sensitivity of the method to random error or deliberate tempering, 

 the relationship between the number of shares (n), the minimum number of shares 

required to recover the secret (r) and the number of shares that is not enough to 

recover the secret (r - 1). 

The Asmuth-Bloom threshold scheme consists of two phases [52]: 

 Environmental formation phase 

 Secret recovery phase. 



Environmental formation phase:  

This phase consists of two stages:  

Initialization stage: In this stage, a set of integers {p, m1, m2, …, mn} are chosen 

subject to the following conditions: 

 m1 < m2 < … < mn 

 gcd(mi, mj) = 1 for i ≠ j 

 gcd(p, mi) = 1 for all i 

 ∏ mi
r
i=1 > 𝑝 ∏ mn−i+1

r−1
i=1  

 p > K 

Decomposition stage: In this stage, the decomposition process goes as follows: 

 compute  M = ∏ 𝑚𝑖
𝑟
𝑖=1  

 compute the parameter I = K + β.p, where 0 ≤ I < M and β is an arbitrary integer 

chosen from the range [0,
𝑀

𝑃
− 1] 

 then decompose the Key using Ii ≡ K(mod mi) and share it to the users with the ith 

user having the Ii share where 1 ≤ i ≤ n 

Secret recovery phase: 

Suppose we have a system of congruencies Ii ≡ K (mod mi). The secret K can be uniquely 

recovered using a constructive algorithm as follows [53]: 

 compute the product of the r primes that are required to recover the secret as 

M=m1m2…mr 

 for each prime compute 𝑀𝑖 =
𝑀

𝑚𝑖
  

 use an Extended Euclidean Algorithm to find the integers αi and γi such that: 



αi.mi + γi (M/mi) = 1 

Let ei = γi (M / mi) ⇒ αi.mi + ei = 1 

ei in the above equation guarantees that its remainder when divided by mi must be 

1, i.e. ei ≡ 1(mod mi) 

Hence, the system of congruencies has one solution that is 𝐾 = ∑ 𝐼𝑖𝑒𝑖
𝑟
𝑖=0  based 

on CRT. Shares construction in the Asmuth-Bloom secret sharing scheme has a 

complexity of Olog(r) [49]. 

The Asmuth-Bloom scheme can be modified to provide a validity check and a 

deliberate tempering of the shares. To make the scheme perform a validity check to the 

shares of the key, the second condition of the initialization stage has to be weakened to 

allow gcd(mi, mj ) = qij where qij ≠ 1. As an example if Ii and Ij are known and gcd(mi, mj) 

= qij, then for the correct shares Ii ≡ Ij (mod qij). 

If there is an error in Ii, this will alter its congruencies class modulo all of the qij, 

therefore the error free shares would be in general agreement with each other and those 

in error can be discarded [32]. 

Direct implementation of Asmuth-Bloom secret sharing schema in data 

outsourcing 

This section proposes a new data outsourcing scheme based on Asmuth-Bloom 

threshold secret sharing. It consists of three stages: 

Setup: 

In this stage the data owner performs the following steps: 

 choose a set of prime integers {p, m1, m2, …, mn} based on the following 

conditions: 



o p  >  di : di represents a single attribute value  

o m1 < m2 < … < mn, where n is the number of DSP 

o gcd(mi, mj) = 1 for i ≠ j 

o gcd(p, mj) = 1 for all j 

o ∏ mj
r
j=1 > 𝑝 ∏ mn−j+1

r−1
j=1  

 choose a random integer β ϵ [0,
𝑀

𝑃
− 1] and compute Ii = di + β.p for each data 

value (di) of the attribute to be used as an index for the outsourced database. 

Outsourcing: 

To distribute the database to multiple DSP servers, the data owner performs the following 

step: 

 compute 𝐼𝑗
′ values for each Ii as the following 𝐼𝑗

′ ≡ 𝐼𝑖(𝒎𝒐𝒅 𝑚𝑗) and then distribute 

them to n service providers along with the encrypted database. 

The essence of each 𝐼𝑗
′ value is to serve as an order-preserving index for the 

encrypted database outsourced to the jth server. 

Retrieving: 

To retrieve the outsourced encrypted data, the server uses the modulus as an index to 

retrieve the encrypted data and decrypt it at the client side. 

The example below illustrates how this scheme can be used to build an index on 

the salary attribute of the employee database (Table 1). Assume the data owner needs to 

outsource the database of his/her employees to five different service providers (DSPj). 

Let m1=101, m2=103, m3=107, m4=109, m5=111, p=45, β=3. 

 Compute Ii = di + β.p as shown in Table 4 column 3 



 Then the salary can be shared using 𝐼𝑗
′ ≡ 𝐼𝑖(𝒎𝒐𝒅 𝑚𝑗) as shown in Table 4 

columns (4-8) 

Table 4: Indexes of the employee’s Database to each DSP. 

S/N 
Salary 

(di) 
Ii 

Server 1 

Ii (mod 101) 

Server 2 

Ii (mod 103) 

Server 3 

Ii (mod 107) 

Server 4 

Ii (mod 109) 

Server 5 

Ii (mod 111) 

1 10 145 44 42 38 36 34 

2 18 153 52 50 46 44 42 

3 21 156 55 53 49 47 45 

4 36 171 70 68 64 62 60 

5 67 202 0 99 95 93 91 

6 69 204 2 101 97 95 93 

7 71 206 4 0 99 97 95 

8 81 216 14 10 97 107 105 

9 93 228 26 22 2 10 6 

10 238 373 70 64 52 46 40 

In the previous works, we can see that outsourcing by encrypting the whole data 

without building order-preserving indexes is prohibitive in terms of performance and does 

not solve the problem of availability. In contrast, ABSS can be used to create n shares 

and distribute it to different service providers as shown in Table 4. We can use these 

shares as indexes in various DSPs in order to achieve the following advantages: 

 Partially preserve the order of the outsourced data (when di < p) to support range 

queries. 

 Support equality queries. 

 Reduce the computational cost of encryption. 

 Reduce the burden of encrypting and decrypting on the client when making a 

query. 

From Figure 4, we can extract the limitations of the direct implementation to this 

scheme as follows: 

 from an employee with id = 1 to that with id = 4, the order of the index was 

preserved because the salaries are less than the chosen prime p = 45. But when 

Max(di) > P the order cannot be preserved over all the attribute values. Thus 



queries can produce spurious tuples. As an example, employees with id = 4 and 

id = 10 have the same index. 

 By statistical analysis of the outsourced modulus values, an adversary can obtain 

the primes. For example, in Server 2 and Server 3, the highest moduli numbers 

are 101 and 107 respectively before it wraps around. Those values are very close 

to (m2 = 103) and (m3 = 109) values. 

 

Figure 4: Index of employees’ database in DSP1. 

Due to the issues raised in the direct implementation of ABSS in data outsourcing, 

the next section proposed an enhanced data outsourcing model based on ABSS that 

mitigates the aforementioned issues of direct implementation. 

Enhanced data outsourcing model based on Asmuth-Bloom scheme 

In this section, we have enhanced the direct implementation of Asmuth Bloom secret 

sharing to counteract its security threats. The enhanced scheme involves the following 

stages: 

Setup: 

In this stage the data owner initializes the data outsourcing environment through the 

following steps: 



 choose an increasing polynomial function f(di) (a function applied on the attribute 

values (di)) in which the variable is the attribute values to be outsourced and the 

coefficients are secrets to be selected by the data owner and shared with the client. 

Without loss of generality let us assume a degree 2 polynomial function of the 

following form:  

𝑓(𝑑𝑖) = 𝑎𝑑𝑖
2 + 𝑏𝑑𝑖

1 + 𝑐    𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑐 > 0 

The above polynomial equation can have one positive and one negative root as 

there is single change of sign (𝑓(𝑑𝑖) − 𝑎𝑑𝑖
2 − 𝑏𝑑𝑖

1 − 𝑐 = 0) which determines the 

number of positive roots that exist [54]. If the outsourced data contains single 

signed values (either positive or negative), the client can easily choose the correct 

root value when it solves the equation. However, in case the outsourced data 

contains both positive and negative values, we need to apply a scaling factor to 

make sure all the data values are of the same sign. The scale factor serves as an 

additional secret shared between the client and data owner. As an example if the 

expected data range is [-10, 25] then we can add a scaling factor ≥ 10 to have a 

new range of values that are all positive. If the scaling factor is selected as 10 then 

the new range will be [0, 35]. 

 choose a set of prime integers {p, m1, m2, …, mn} such that : 

o mj <  min(f(di)) 

o m1 < m2 < … < mn, where n is the number of DSP 

o p << m1 

o gcd(mi, mj) =1 for i ≠ j 

o gcd(p,mj)=1 for all j 

o ∏ mj
r
j=1 > 𝑝 ∏ mn−j+1

r−1
j=1  



 choose a random integer β ϵ [0,
𝑀

𝑃
− 1] and compute Ii = f(di) + β.p for each 

attribute value di, where  𝑀 = ∏ mj
r
j=1  

Outsourcing: 

To distribute the database to multiple DSP servers, the data owner performs the following 

steps: 

 compute the quotients qi = Ii div mj and the modulus  𝐼𝑗
′ ≡ 𝐼𝑖(𝒎𝒐𝒅 𝑚𝑗) for all the 

attribute values, 

 encrypt the modulus  𝐼𝑗
′ and store it with the unencrypted quotient qi. 

The essence of the introduced polynomial function f is to enhance system security 

as the coefficients are extra secrets known only to the data owner and the client. It is also 

used to enlarge the data to give a chance of selecting large co-prime integers mj. 

The quotient of the data is used as an index to maintain the order of the stored 

information at the server side, which will consequently help in supporting spurious-less 

range queries. The modulus is encrypted to keep the data secured as (mj)s are selected big 

enough to make the quotient alone not sufficient to estimate the actual data. 

Selecting large co-primes also helps in enhancing security because it increases the 

range that the modulus can take before it wraps around and thus reduces the chance of 

the adversary obtaining the modulus even in an unencrypted form. 

Retrieving: 

To retrieve the outsourced data the client performs the following steps: 

 convert the queried data value into n quotient based query 



 retrieve the correspondent tuples from at least r servers (r is the minimum number 

of servers out of which we can reconstruct the shared data) and decrypt the 

retrieved modulus  

 use the following constructive algorithm to obtain Ii 

𝐼𝑖 = ∑ 𝐼𝑗
′. 𝑒𝑗

𝑟

𝑗=1

 

where 𝑒𝑗 = 𝛾𝑗 (
𝑀

𝑚𝑗
) is computed by the Extended Euclidean Algorithm out of αj.mj 

+ ei = 1  

 compute the value Ii in mod ∏ 𝑚𝑗 
𝑟
𝑗=1  

 subtract the value β.p from Ii to obtain f(di) 

 solve the polynomial equation to obtain di. 

Let us illustrate how the scheme can be applied on the Employees table (Table 1). 

Setup: 

 let f(di) = adi
2 + bdi + c: the coefficients a=2, b=1 and c=1  as shown in Table 5 

 let p = 45, m1 =101, m2 = 103, m3 = 107, m4 =109, m5 =111 

 let β=3 

 compute Ii = f(di) + β.p for each attribute value di as shown in Table 5 

Table 5: Environmental Set up 

S/N Salary (di) f(di) = adi2 + bdi + c Ii = f(di)+β.p 
1 10 211 346 

2 18 667 802 

3 21 904 1039 

4 36 2629 2764 

5 67 9046 9181 

6 69 9592 9727 

7 71 10154 10289 

8 81 13204 13339 

9 93 17392 17527 

10 238 113527 113662 



Outsourcing: 

 compute the quotients qi and modulus for each di 

 encrypt the modulus and disperse it to the servers as shown in Table 6. 

Table 6: Indexing scheme using a quotient of the outsourced data 

Server 1 Server 2 Server 3 Server 4 Server 5 
Index E(Ii mod 101) Index E(Ii mod 103) Index E(Ii mod 107) Index E(Ii mod 109) Index E(Ii mod 111) 

3 #1anv,yuw 3 %1anghyuw 3 L?]ojub 3 Poknv$9 3 byyttt7 

7 $89b5dja% 7 239b5dja% 7 P,mvs3# 7 Pomnbgfd3 7 Bbyughik 

10 *s(1mfk3} 10 lkj6mfkdf 9 “;kubdu 9 “lkkmhgtui 9 hyt}x#4 

27 =s(1gkk3} 26 hdgkdgdg 25 Pomngfa 2 (mkkjj”,?. 24 Buu46”p 

90 [79b5sjq% 89 ty9fgsjqy 85 “lkjhf5 84 {dfrt5789 82 Yyggggg# 

96 q@medh6 94 m.pmedhp 90 Piknhg6 89 q@medh6 87 Niiinioii* 

101 s?dcms#th 99 =rtcmsm., 96 ‘p”hggff 94 ,mngfswaw 92 yhyygg@g 

132 @12hz+ef 129 asd2hzlm 124 Yunhzkjh 122 ,kn gerxwxt 120 Ij%hhii” 

173 Xbs&whw 170 SDbs&mne 163 ybsl./op 160 SF43455n 157 5nhjhdd 

1125 Zxc!u!inm0 1103 RTN!u908u 1062 lkhu!ipoi 1042 Mhgfdc4k’ 1023 Kuy6789 

Retrieving: 

To illustrate how this scheme can be used to retrieve outsourced data from the server, an 

example query to Table 6 for the salary d1 = 10 is used. 

 the client converts the query into an index corresponding to each server. Assume 

that out of the five servers only Server 1 (m1 = 101), Server 2 (m2 = 103) and Server 

3 (m3 = 107) respond to the request. The client therefore: 

 retrieves the encrypted moduli and decrypts them, 

 uses a constructive algorithm to compute I1 = ∑ 𝐼𝑗
′. 𝑒𝑗

3
𝑗=1  where e1, e2 and e3 are 

obtained using the Extended Euclidean Algorithm such that: 

gcd(m1, (m2 × m3)) = 4583(101) - 42(11021) ⇒ e1 = -42(11021) 

gcd(m2, (m1 × m3)) = 1364(103) - 13(10807) ⇒ e2 = -13(10807) 

gcd(m3, (m1 × m2)) = 4764(107) - 49(10403) ⇒ e3 = - 49(10403) 

this yields I1 = 43.e1 + 37.e2 + 25.e3 = -37845768 

 computes I1 in mod ∏ 𝑚𝑗
3
𝑗=1  ⇒ I1 = -37845768 mod (101×103×107) = 346 



 I1 = f(d1) + β.p ⇒ f(d1) = I1 - β.p ⇒ f(d1) = 346 - 3 × 45 = 211. 

 solves the equation (2d1
2 + d1 + 1 = 211) to obtain d1 ⇒ d1 = 10 or d1 = -10.5 

Table 7 shows the same criteria as Table 3. It can be seen that the proposed scheme 

satisfies all criteria. It is more efficient compared to the previously reviewed ones in that 

it can jointly support equality and range queries, guarantees less burden on the client 

compared to some of previous approaches such as B+ tree indexing, produces no spurious 

tuples and also provides data availability and confidentiality. 

Although IDA addresses many of the data outsourcing issues as shown in Table 

3, however, the shares of IDA contain part of the original data that can be of use to a third 

party [33]. By snooping, an eavesdropper who obtains fewer than the threshold shares 

may reconstruct some part of the original data explicitly resulting in partial data leakage 

[56]. In contrast, no single share in the proposed approach can reveal information about 

the original data. Moreover, IDA places extra burden on the client side since it uses the 

B+ tree, which demands a lot of trips between the server and the client. This makes it less 

efficient compared to the proposed approach. Thus, the proposed Asmuth-Bloom secret 

sharing data outsourcing scheme provides more confidentiality and better performance 

when compared to IDA. 

Table 7: Analysis parameters of the proposed scheme  

 

Equality 

Queries 

Range 

Queries 

Client Burden 

Spurious 

Tuples 

Availability Confidentiality 

Secure Data Outsourcing 

Scheme Based On Asmuth-

Bloom Secret Sharing 

Fully Fully Low No Yes Yes 



Security analysis 

This section discusses different attack scenarios that can be launched successfully against 

some of the reviewed schemes. Then it shows how the proposed scheme is secured against 

such attacks. 

Scenario 1: 

An attacker succeeds in launching a Denial of Service attack against one or two of the 

servers involved in the outsourcing service. He/she cannot cripple the overall system, as 

only r out of the n servers are required to retrieve the outsourced data, and not all of them. 

Thus, the proposed scheme is secure against a DoS attack to a few of the servers and can 

maintain service availability. 

Scenario 2: 

An internal/external attacker might try to gain knowledge of the secrets (primes) by 

launching an inference attack, as the modulus values may expose the range of the secrets. 

However, the proposed scheme is secured against such attacks, since the modulus values 

are stored encrypted at the server side to preserve the confidentiality of the outsourced 

data. 

Scenario 3: 

An attacker succeeds in obtaining the order-preserved indexes of the outsourced data. 

Even so, he/she cannot gain any kind of knowledge about the original outsourced data 

since these indexes were obtained as a result of a function applied on the original attribute 

values. The coefficients of this function are shared secrets between the data owner and 

the client only. Thus, the proposed scheme preserves the order of the outsourced data 

without revealing information about the original data. 



Scenario 4: 

An adversary might try to obtain the indexes and the modulus values of different tuples 

from the same server, or the modulus values of the same tuple from different servers, in 

order to form linear equations that can be solved simultaneously so as to reveal the 

outsourced data. This kind of attack is not feasible in the proposed scheme as the modulus 

values are stored encrypted. 

Scenario 5: 

If an adversary, in scenario 4, has further succeeded in obtaining the unencrypted modulus 

values, he/she is still going to have more unknowns (the outsourced data and the scheme’s 

primes) than the number of equations that he/she can form. Therefore, it will be 

computationally infeasible to get a deterministic solution.  

Conclusion 

Data outsourcing is a new paradigm that has gained a high popularity recently but it is 

hindered by some security challenges from gaining wide spread acceptance. The security 

challenges include: data confidentiality, availability and order preservation of the 

outsourced data. Data confidentiality is mostly achieved using a traditional encryption 

scheme, but traditional encryption is not good in preserving the order of the outsourced 

data, which is an important property that is needed in data outsourcing. Availability is 

another issue as the data loss can affect the business of the data owner. Data availability 

is usually achieved by duplicating the data and storing it at different servers. 

This paper analyses some of the previous work in data outsourcing, and shows the 

advantages and limitations of each. It then proposes a secure data outsourcing scheme 

based on Asmuth-Bloom secret sharing, which uses congruence classes and the Chinese 

Remainder Theorem to solve the aforementioned issues. Firstly, we proposed a direct 



implementation of this scheme that consists of three stages: setup, outsourcing and 

retrieving. In the setup stage the data owner chooses a set of prime integers known only 

to him/her and his/her client; in the data outsourcing stage the data owner outsources the 

encrypted attribute values and its modulus, where the modulus is used as an index. In the 

retrieving stage the client uses the index to retrieve the encrypted data and decrypt it at 

the client side. However, the direct implementation is expensive for the client as it 

produces spurious tuples. It is also vulnerable to statistical analysis attacks that can expose 

the used secret primes. 

Finally, an enhanced scheme is proposed that also consists of three stages. In the 

setup stage, an increasing polynomial function is introduced to enlarge the attribute 

values. This allows larger co-prime integers to be selected so as to increase the modulus 

range before it wraps around, thus reducing the chance of an adversary obtaining the 

modulus value even in an unencrypted form. In the outsourcing stage, the data owner 

outsources the encrypted modulus and the quotient of the attribute values, to various 

servers for availability. The quotient is used as an index to keep the order of the 

outsourced encrypted modulus. To retrieve any value, the client retrieves the encrypted 

values, decrypts them and constructs the modulus using the CRT constructive algorithm. 

The proposed scheme is computationally efficient as it uses simple modular 

arithmetic. It is more secure as the index is generated after wrapping the outsourced data 

by a polynomial function whose coefficients are kept secret. It also produces no spurious 

tuples and provides availability and confidentiality. In addition, it is an order-preserving 

scheme, which further reduces the burden of encryption and decryption of every query. 

Because of all its properties, the proposed scheme is strongly recommended as an efficient 

tool for real data outsourcing scenarios. 
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