160 research outputs found

    Towards understanding two-level-systems in amorphous solids -- Insights from quantum circuits

    Full text link
    Amorphous solids show surprisingly universal behaviour at low temperatures. The prevailing wisdom is that this can be explained by the existence of two-state defects within the material. The so-called standard tunneling model has become the established framework to explain these results, yet it still leaves the central question essentially unanswered -- what are these two-level defects? This question has recently taken on a new urgency with the rise of superconducting circuits in quantum computing, circuit quantum electrodynamics, magnetometry, electrometry and metrology. Superconducting circuits made from aluminium or niobium are fundamentally limited by losses due to two-level defects within the amorphous oxide layers encasing them. On the other hand, these circuits also provide a novel and effective method for studying the very defects which limit their operation. We can now go beyond ensemble measurements and probe individual defects -- observing the quantum nature of their dynamics and studying their formation, their behaviour as a function of applied field, strain, temperature and other properties. This article reviews the plethora of recent experimental results in this area and discusses the various theoretical models which have been used to describe the observations. In doing so, it summarises the current approaches to solving this fundamentally important problem in solid-state physics.Comment: 34 pages, 7 figures, 1 tabl

    Quantum Simulation with Interacting Photons

    Get PDF
    Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.Comment: invited review for Journal of Optic

    Quantum correlations in nanophotonics: from long-range dipole-dipole interactions to fundamental efficiency limits of coherent energy transfer

    Get PDF
    Quantum properties like coherence and entanglement can lead to enhanced performance characteristics in a wide range of applications including quantum computation, quantum memory storage, optical sensing, and energy harvesting. Entanglement is very sensitive to static and dynamical disorder. Similarly, the generation of highly-entangled states requires strong coupling or strong driving fields. Satisfying all of these requirements is generally quite difficult. In the first part of this thesis, we present an approach to overcome these limitations through the use of exotic light-matter states in hyperbolic media which provide a new approach to control quantum correlations and interatomic interactions. We reveal a class of excited-state, long-range interactions, referred to as Super-Coulombic interactions that are singular along a material-dependent resonance angle. In practical systems, the Super-Coulombic interaction achieves dipole-dipole coupling that is orders of magnitude larger than conventional approaches, while also occurring across a large frequency bandwidth making it robust to static energy-level disorder. This unique hyperbolic response is not only naturally occurring, found in materials like h-BN, BiTe2, BiSe2, and mono-layered black phosphorus, but can also be designed with artificial nanostructured materials (metamaterials) to create the desired hyperbolic dispersion across different parts of the electromagnetic spectrum. Our theoretical prediction motivated an intense search for the effect and was confirmed by an experimental demonstration at room temperature. To obtain agreement with experimental results, we present a rigorous theoretical framework that takes into account ensemble effects, finite-sized effects, and dimensional effects that arise from confined geometries ultimately modifying the Super-Coulombic spatial scaling law. In the second part of this thesis, we solve an outstanding theoretical problem dealing with the control of resonance energy transfer in nanophotonic environments in both the incoherent and coherent coupling limits. Resonance energy transfer is a fundamental process that is the subject of intense research across all sciences. For example, in chemistry for drug delivery and chemical monitoring, in engineering for photovoltatic and up-conversion devices, and in biology for exciton transport within photosynthetic complexes. First, we consider the disordered and weak coupling limit of resonance energy transfer often encountered in chemistry. We propose new design principles for enhancing and suppressing the energy transfer rate and efficiency quantitatively captured by a simple image dipole model. Our theory explains a wide range of experimental results which have been the subject of an ongoing debate for the past 15 years. Second, we present our recent result aimed at understanding the fundamental role of entanglement and quantum coherence in resonance energy transfer. To uncover the role of these effects, we develop a unified theory of energy transfer valid from the incoherent to quantum coherent coupling regimes. Ultimately, our theory reveals a fundamental bound ηmax = γa for energy transfer efficiency arising from γd+γa the spontaneous emission rates γd and γa of the donor and acceptor. This bound provides an upper limit to the efficiency of energy transfer regardless of quantum coherence or entanglement, suggesting new design principles for achieving near-unity energy transfer efficiency in coherent systems. The result has important implications for the two-chromophore model found in photosynthetic complexes and paves the way for nanophotonic analogues of efficiency-enhancing environments mimicking biological photosynthetic systems

    Estimating phase parameters of a three-level system interacting with two classical monochromatic fields in simultaneous and individual metrological strategies

    Full text link
    Recently, the Hilbert-Schmidt speed, as a special class of quantum statistical speed, has been reported to improve the interferometric phase in single-parameter quantum estimation. Here, we test this concept in the multiparameter scenario where two laser phases are estimated in a theoretical model consisting of a three-level atom interacting with two classical monochromatic fields. When the atom is initially prepared in the lower bare state taking into account the detuning parameters, we extract an exact analytical solution of the atomic density matrix in the case of two-photon resonant transition. Further, we compare the performance of laser phase parameters estimation in individual and simultaneous metrological strategies, and we explore the role of quantum coherence in improving the efficiency of unknown multi-phase shift estimation protocols. The obtained results show that the Hilbert-Schmidt speed detects the lower bound on the statistical estimation error as well as the optimal estimation regions, where its maximal corresponds to the maximal quantum Fisher information, the performance of simultaneous multiparameter estimation with individual estimation inevitably depends on the detuning parameters of the three-level atom, and not only the quantum entanglement, but also the quantum coherence is a crucial resource to improve the accuracy of a metrological protocol

    Enhancing spin squeezing using soft-core interactions

    Full text link
    We propose a new protocol for preparing spin squeezed states in controllable atomic, molecular, and optical systems, with particular relevance to emerging optical clock platforms compatible with Rydberg interactions. By combining a short-ranged, soft-core potential with an external drive, we can transform naturally emerging Ising interactions into an XX spin model while opening a many-body gap. The gap helps maintain the system within a collective manifold of states where metrologically useful spin squeezing can be generated at a level comparable to the spin squeezing generated in systems with genuine all-to-all interactions. We examine the robustness of our protocol to experimentally-relevant decoherence and show favorable performance over typical protocols lacking gap protection.Comment: 5+4 pages, 3+3 figure

    Strongly interacting photons in one-dimensional continuum

    Full text link
    Photon-photon scattering in vacuum is extremely weak. However, strong effective interactions between single photons can be realized by employing strong light-matter coupling. These interactions are a fundamental building block for quantum optics, bringing many-body physics to the photonic world and providing important resources for quantum photonic devices and for optical metrology. In this Colloquium, we review the physics of strongly-interacting photons in one-dimensional systems with no optical confinement along the propagation direction. We focus on two recently-demonstrated experimental realizations: superconducting qubits coupled to open transmission lines, and interacting Rydberg atoms in a cold gas. Advancements in the theoretical understanding of these systems are presented in complementary formalisms and compared to experimental results. The experimental achievements are summarized alongside a description of the quantum optical effects and quantum devices emerging from them.Comment: Updated version, accepted for publication in Reviews of Modern Physic

    Interfacing single photons and single quantum dots with photonic nanostructures

    Full text link
    Photonic nanostructures provide means of tailoring the interaction between light and matter and the past decade has witnessed a tremendous experimental and theoretical progress in this subject. In particular, the combination with semiconductor quantum dots has proven successful. This manuscript reviews quantum optics with excitons in single quantum dots embedded in photonic nanostructures. The ability to engineer the light-matter interaction strength in integrated photonic nanostructures enables a range of fundamental quantum-electrodynamics experiments on, e.g., spontaneous-emission control, modified Lamb shifts, and enhanced dipole-dipole interaction. Furthermore, highly efficient single-photon sources and giant photon nonlinearities may be implemented with immediate applications for photonic quantum-information processing. The review summarizes the general theoretical framework of photon emission including the role of dephasing processes, and applies it to photonic nanostructures of current interest, such as photonic-crystal cavities and waveguides, dielectric nanowires, and plasmonic waveguides. The introduced concepts are generally applicable in quantum nanophotonics and apply to a large extent also to other quantum emitters, such as molecules, nitrogen vacancy ceters, or atoms. Finally, the progress and future prospects of applications in quantum-information processing are considered.Comment: Updated version resubmitted to Reviews of Modern Physic

    Quantum dots for quantum information processing

    Get PDF
    Electron spins confined in quantum dots (QDs) are among the leading contenders for implementing quantum information processing. In this Thesis we address two of the most significant technological challenges towards developing a scalable quantum information processor based on spins in quantum dots: (i) decoherence of the electronic spin qubit due to the surrounding nuclear spin bath, and (ii) long-range spin-spin coupling between remote qubits. To this end, we develop novel strategies that turn the unavoidable coupling to the solid-state environment (in particular, nuclear spins and phonons) into a valuable asset rather than a liability. In the first part of this Thesis, we investigate electron transport through single and double QDs, with the aim of harnessing the (dissipative) coupling to the electronic degrees of freedom for the creation of coherence in both the transient and steady-state behaviour of the ambient nuclear spins. First, we theoretically show that intriguing features of coherent many-body physics can be observed in electron transport through a single QD. To this end, we first develop a master-equation-based formalism for electron transport in the Coulomb-blockade regime assisted by hyperfine (HF) interaction with the nuclear spin ensemble in the QD. This general tool is then used to study the leakage current through a single QD in a transport setting. When starting from an initially uncorrelated, highly polarized state, the nuclear system experiences a strong correlation buildup, due to the collective nature of the coupling to the central electron spin. We demonstrate that this results in a sudden intensity burst in the electronic tunneling current emitted from the QD system, which exceeds the maximal current of a corresponding classical system by several orders of magnitude. This gives rise to the new paradigm of electronic superradiance. Second, building upon the insight that the nuclear spin dynamics are governed by collective interactions giving rise to coherent effects such as superradiance, we propose a scheme for the deterministic generation of steady-state entanglement between the two nuclear spin ensembles in an electrically defined double quantum dot. Because of quantum interference in the collective coupling to the electronic degrees of freedom, the nuclear system is actively driven into a two-mode squeezedlike target state. The entanglement buildup is accompanied by a self-polarization of the nuclear spins towards large Overhauser field gradients. Moreover, the feedback between the electronic and nuclear dynamics is shown to lead to intriguing effects such as multistability and criticality in the steady-state solutions. In the second part of this Thesis, our focus turns towards the realization of long-range spin-spin coupling between remote qubits. We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezo-active materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits, including quantum dots, trapped ions, nitrogen-vacancy centers or superconducting qubits. The quantized modes of surface acoustic waves lie in the gigahertz range, can be strongly confined close to the surface in phononic cavities and guided in acoustic waveguides. We show that this type of surface acoustic excitations can be utilized efficiently as a quantum bus, serving as an on-chip, mechanical cavity-QED equivalent of microwave photons and enabling long-range coupling of a wide range of qubits. In summary, this thesis provides contributions towards developing a scalable quantum information processor based on spins in quantum dots in two different aspects. The first part is dedicated to a deeper understanding of the nuclear spin dynamics in quantum dots. In the second part we put forward a novel sound-based strategy to realize long-range spin-spin coupling between remote qubits. This completes a broad picture of spin-based quantum information processing which integrates different perspectives, ranging from the single-qubit level to a broader quantum network level.Elektronenspins in Quantenpunkten gehören zu den vielversprechendsten Ansätzen für die erfolgreiche Implementierung von Quanteninformationsverarbeitung. Diese Arbeit behandelt zwei der größten Herausforderungen für die Entwicklung eines skalierbaren Quanteninformationsprozessors auf Basis von Spins in Quantenpunkten: (i) die Kontrolle der Dekohärenz des elektronischen Spins aufgrund der Wechselwirkung mit dem umliegenden Kernspin-Bad, und (ii) die Realisierung einer langreichweitigen Spin-Spin Kopplung zwischen entfernt liegenden Qubits. Zu diesem Zweck entwickeln wir neue Strategien, die die unvermeidliche Kopplung an die Festkörperumgebung (insbesondere Kernspins und Phononen) zu ihrem Vorteil ausnutzen. Im ersten Teil dieser Arbeit untersuchen wir den Elektronentransport durch Einzel- und Doppel-Quantenpunkte, mit dem Ziel die dissipative Kopplung an die elektronischen Freiheitsgrade zur Erzeugung von kohärenter Kernspindynamik auszunutzen. Dies gilt sowohl für das kurzfristige wie auch das langfristige Verhalten der Kernspins. Zunächst zeigen wir theoretisch, dass faszinierende Eigenschaften kohärenter Vielteilchenphysik im Elektronen-transport durch einen einzelnen Quantenpunkt beobachtet werden können. Dazu entwickeln wir zunächst einen auf Master-Gleichungen basierenden Formalismus für den Elektronentransport im Coulomb-Blockade Regime, der die Hyperfeinwechselwirkung mit dem Kernspin-Ensemble im Quantenpunkt berücksichtigt. Dieses allgemeine theoretische Werkzeug wird anschließend verwendet, um den Strom durch einen einzelnen Quantenpunkt in einem Transportszenario zu studieren. Sind die Kernspins anfänglich in einem unkorrelierten, hoch polarisierten Zustand, so bauen sich aufgrund der kollektiven Wechselwirkung mit dem zentralen Elektronenspin starke Korrelationen zwischen den Kernspins auf. Wir zeigen, dass dies zu einem plötzlichen, starken Anstieg im Tunnelstrom durch den Quantenpunkt führt, welcher den maximalen Strom in einem analogen klassischen System um mehrere Größenordnungen übersteigt. Dieses Verhalten begründet das neue Paradigma von elektronischer Superradianz. Ausgehend von der Einsicht, dass die Kernspindynamik von kollektiven Wechselwirkungen bestimmt wird, welche wiederum zu kohärenten Effekten wie Superradianz führen können, schlagen wir im nächsten Schritt ein Modell zur deterministischen Verschränkungserzeugung zwischen den beiden Kernspinensembles in einem elektrisch definierten Doppelquantenpunkt vor. Aufgrund von Quanteninterferenz in der kollektiven Kopplung an die elektronischen Freiheitsgrade wird das Kernspinsystem aktiv in einen gequetschten zwei-Moden Zustand gepumpt. Der Aufbau von Verschränkung wird durch einen Polarisationsprozess der Kernspins hin zu großen Overhauser-Feldern begleitet. Darüber hinaus wird gezeigt, dass die Rückkopplung zwischen elektronischen und Kernspin-Freiheitsgraden zu interessanten Effekten wie zum Beispiel Multistabilität und kritischem Verhalten in den stationären Lösungen führt. Im zweiten Teil der Arbeit wenden wir uns der langreichweitigen Spin-Spin Kopplung zwischen entfernt liegenden Qubits zu. Dazu schlagen wir einen universellen Quanten-Transducer vor, der auf akustischen Oberflächenwellen in piezo-aktiven Materialen beruht und direkt auf Chips aufgebracht werden kann. Aufgrund der piezo-elektrischen (und/oder magnetostriktiven) Eigenschaften des Materials bietet unser Ansatz eine universelle Platform für eine ganze Reihe von Qubits; dazu gehören Quantenpunkte, Ionen, Stickstoff-Fehlstellen-Zentren (NV-Zentren) oder auch supraleitende Qubits. Die quantisierten Moden der akustischen Oberflächenwellen haben typische Frequenzen im Gigahertz-Bereich, können stark in der Nähe der Oberfläche in phononischen Resonatoren lokalisiert werden und entlang akustischer Wellenleiter geleitet werden. Wir zeigen, dass diese Art der akustischen Oberflächenanregung effizient als Quanten-Bus verwendet werden kann, der als mechanisches Analogon zu Mikrowellen-Photonen in der Resonator-Quanten-Elektrodynamik fungiert und langreichweitige Kopplung zwischen entfernt liegenden Qubits ermöglicht. Zusammenfassend liefert diese Arbeit einen Beitrag zur Entwicklung eines skalierbaren, auf Spins in Quantenpunkten beruhenden Quanteninformationsprozessors aus zwei verschiedenen Perspektiven. Der erste Teil widmet sich eines tiefgehenderen Verständnisses der Kernspin-dynamik in Quantenpunkten. Im zweiten Teil schlagen wir eine neue, auf Schall basierende Strategie zur Erzeugung von langreichweitiger Spin-Spin Kopplung zwischen entfernt liegenden Qubits vor. Dies vervollständigt ein breites Bild von Spin-basierter Quanteninformationsverarbeitung, welches verschiedene Perspektiven vereinigt, von der Ebene einzelner Qubits bis hinzu einer umfassenderen Ebene eines Quanten-Netzwerks
    corecore